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Abstract

Objective—Epidemiological evidence shows an inverse relationship between sleep duration and 

overweight/obesity risk. However, there are few polysomnographic studies that relate the 

organization of sleep stages to pediatric overweight (OW). We compared sleep organization in 

otherwise healthy OW and normal weight (NW) 10-year-old children.

Subjects—Polysomnographic assessments were performed in 37 NW and 59 OW children 

drawn from a longitudinal study beginning in infancy. Weight and height were used to evaluate 

body-mass index (BMI) according to international criteria. Non-REM (NREM) sleep (stages N1, 

N2 and N3), rapid eye movement (REM) sleep (stage R), and wakefulness (stage W) were visually 

scored. Sleep parameters were compared in NW and OW groups for the whole total sleep period 

(SPT) and for each successive third of it using independent student t-tests or non-parametric tests. 

The relationship between BMI and sleep variables was evaluated by correlation analyses 

controlling for relevant covariates.

Results—The groups were similar in timing of sleep onset and offset, and sleep period time. 

BMI was inversely related to total sleep time (TST) and sleep efficiency. OW children showed 

reduced TST, sleep efficiency, and stage R amount, but higher stage W amount. In analysis by 

thirds of the SPT, the duration of stage N3 episodes, was shorter in the first third and longer in the 

second third in OW children, compared with NW children.

Conclusions—Our results show reduced sleep amount and quality in otherwise healthy OW 

children. The lower stage R amount and changes involving stage N3 throughout the night suggest 

that OW in childhood is associated with modifications not only in sleep duration, but also in the 

ongoing nighttime patterns of NREM sleep and REM sleep stages.
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Introduction

Obesity and overweight (OW) in children is a pressing public health problem worldwide (1). 

Considering several co-morbid conditions and long-term health consequences associated 

with obesity (2), there is a need to identify other modifiable factors that may be amenable to 

therapeutic interventions. Sleep patterns appear to be relevant factors that may contribute to 

OW (3). Among disorders/complications seen in OW adult populations, obstructive sleep 

apnea syndrome and short sleep duration have received the most attention (4). Respiratory 

and non-respiratory sleep disorders are also reported with childhood obesity (5).

The increases in OW and obesity rates have occurred concurrently with a rise in sleep debt 

(5, 6) and chronic sleep restriction across societies and age groups (6). This phenomenon 

appears to be related to social changes, with increasing access and use of electrical 

technologies, and work demands (7). In the United States, about one third of adults report 

sleeping less than 7 hours per night, with an increasing proportion sleeping less than 6 hours 

per night (8). In pediatric groups, almost half of 11- to 17-year-old children sleep less than 8 

hours, with a tendency towards decreasing sleep duration in older adolescents (9).

The duration of nighttime sleep and body-mass index (BMI) shows an inverse relationship 

(10). Sleep curtailment appears to be an independent risk factor for weight gain and obesity 

risk in children (11). Meta-analyses and systematic reviews of pediatric studies have 

consistently concluded that risk estimates for being OW and obese are higher in short-

sleepers, particularly at young ages (12, 13). These findings have received further support 

from longitudinal epidemiological studies (14, 15).

Most of the epidemiological evidence, however, is based on maternal or self-reported sleep 

data. Information of sleep duration is thus likely to be a proxy for the time spent in bed and 

not necessarily time asleep (16). Studies based on more objective methods for sleep 

assessment, such as actigraphy, have also reported a similar tendency (17). However, little 

attention has been given to sleep organization throughout the night. Polysomnographic 

(PSG) evaluation remains the gold-standard method for the assessment of sleep 

organization.

The study of sleep macrostructure includes characteristics such as sleep duration, sleep 

efficiency, and the organization of rapid eye movement (REM) sleep (stage R) and non-

REM (NREM) sleep stages 1 (N1), 2 (N2), and 3 (N3) (18). These sleep stages cycle 

throughout the sleep period time (SPT), with the deepest stage of NREM sleep (stage N3) 

prevailing in the first part and stage R in the last part of the SPT. Consequently, analyzing 

the number, amount, and mean duration of NREM sleep stages and stage R episodes 

according to thirds of the SPT may contribute to a better understanding of the temporal 

distribution of sleep stages (19). This approach is in line with studies suggesting that, in 
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addition to sleep amount other sleep characteristics may be related to obesity, including 

sleep timing and sleep regularity (20).

Sleep organization appears relevant to the issue of OW and obesity, since stage R and 

NREM sleep stages are critically involved in endocrine and metabolic regulation (5, 21). 

PSG-based studies in obese adults have shown reduced sleep efficiency and stage R amount 

(22). Similar findings have been shown in the few available studies of obese children and 

adolescents, with emphasis on stage R modifications (23, 24). However, previous studies 

with objective assessment of sleep organization in OW children have been conducted in 

small sample sizes or in subjects with affective disorders that typically alter stage R features 

(24–26). The amount of stage R and stage N3 are increased after surgical interventions for 

weight reduction in obese adults (27), but results in adolescents are less consistent (26).

The aim of the present study was to evaluate sleep macrostructure characteristics (sleep 

duration and sleep stages organization) in otherwise healthy OW and normal weight (NW) 

10-year-old children. We hypothesized that total sleep duration, sleep quality, and the 

amount of both stage N3 and stage R would be diminished in OW children.

Subjects and Methods

Subjects

A total of 96 children who had neurophysiological evaluations at 10 years were included in 

the present study. All children were participants in an ongoing longitudinal study of the 

behavioral and developmental effects of iron-deficiency anemia in infancy. As detailed 

previously (28), inclusion criteria for enrollment in the infancy phase of the study were 

healthy full-term birth, with birth weight ≥ 3kg, without perinatal complications, and the 

absence of acute or chronic illnesses. Iron status was assessed, and infants with iron-

deficiency anemia at 6, 12 or 18 months were considered for neurophysiological 

evaluations. The control group consisted of randomly chosen infants who were clearly 

nonanemic (venous Hb ≥ 115 g/L). All participants were treated with oral iron for at least 6 

months and had normal hemoglobin concentrations after treatment. No participant has been 

iron deficient anemic at subsequent follow-ups.

Parents provided signed informed consent and children signed an informed assent at 10 

years. The original and follow-up research protocols were approved and reviewed annually 

by the Institutional Review Boards of the University of Michigan Medical Center, Ann 

Arbor, and INTA, University of Chile, Santiago.

Anthropometric measurements

Weight and height were measured wearing light clothes and no shoes using a Seca scale 

(model 700) at the Sleep Laboratory before the PSG recording. Weight was measured with 

an accuracy of 100g and height was measured with a fixed tallimeter with an accuracy of 1 

mm. BMI (weight (kg) / [height (m)]2) was calculated and evaluated by age- and sex- BMI 

z-score according to WHO charts. The following categories were used (29): NW (−1 < BMI 

z-score < 1; n = 37), OW (1 ≤ BMI z-score < 2, n = 29), and obese (BMI z-score ≥ 2, n = 
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30). Given that OW and obese children were pooled together in the same group (OW group), 

the groups were constituted by 37 NW and 59 OW children.

PSG assessment

Subjects underwent an overnight PSG recording at the Sleep Laboratory, INTA, University 

of Chile. The protocol followed the individual’s routine time schedule for food intake and 

sleep. Accompanied by a parent, children arrived at the laboratory 2 hours before they 

usually fell asleep. So they could become familiar with personnel and the laboratory setting. 

All recordings started at the child’s usual bedtime and continued until spontaneous 

awakening the next morning. Recordings were performed in a special, quiet and comfortable 

room with controlled temperature, light, and humidity. PSG recordings were performed 

using Cadwell Easy EEG II® system (Cadwell Lab., Kennewick, WA, USA) and included 

the following signals: electro-encephalogram with electrode placement according to the 10–

20 system (30) (F3, F4, C3, C4, O1, O2) referenced to the contralateral mastoid, left and 

right electro-oculogram, chin electromyogram, left and right tibialis electromyogram, 

electrocardiogram, thermistor and nasal pressure cannula, thoracic and abdominal effort, 

peripheral oxygen saturation, snoring and position sensors. Data were acquired and stored in 

digital format for subsequent analyses. Each PSG recording was transformed off-line to the 

European Data Format (31). Throughout the night, any meaningful behavior, such as general 

body movements and/or body position, was noted by trained personnel.

Scoring and processing of sleep-wake stages

The duration of daytime waking episode was obtained by asking mothers when her child 

woke up on the morning of the PSG evaluation. Based on PSG sleep onset time, we 

calculated the duration of the waking episode.

Sleep and waking stages were visually scored in 30-s epochs and defined as stages N1, N2 

and N3, stage R, and wakefulness (stage W), according to international standard criteria (32, 

33). Scoring was performed without knowledge of the children’s NW or OW status or 

background characteristics. The resulting sleep data were processed using tools provided by 

the Sleep-Analyzer system (34).

The following conventional sleep parameters were evaluated:

• Time in bed (TIB);

• Sleep period time (SPT): time from sleep onset to sleep end;

• Total sleep time (TST): time from sleep onset to the end of the final sleep epoch 

minus time awake;

• Sleep latency (in minutes): time from lights out to sleep onset, defined as the first 

epoch of any sleep stage;

• REM latency: time from sleep onset to the first stage R epoch;

• Sleep efficiency: the percentage ratio between TST and SPT (TST/SPT*100);

• Stage shifts: number of transitions between sleep and wake stages during the SPT;
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• Sleep cycle: the time elapsed between the first epoch of any NREM sleep stage to 

the last epoch of the succeeding stage R of at least 1 min duration;

• Time spent in stage W after sleep onset (WASO), i.e., the time spent awake 

between sleep onset and end of sleep, in minutes

• Percentage and total duration of TST spent in each NREM sleep stage and stage R, 

and percentage and total duration of SPT spent in WASO.

In addition, for each sleep-wake stage the number and duration of episodes was assessed for 

the whole SPT and for each successive third of it (19).

Analysis of respiratory events

Respiratory events were detected by automated processing using Cadwell Easy EEG II 

software (Cadwell Lab., Kennewick, WA, USA). The definitions of obstructive apnea and 

hypopnea were based on the American Academy of Sleep Medicine criteria (35).

Respiratory events lasting two or more respiratory cycles were scored. After automated 

detection, a visual editing of the whole recording was performed to add, confirm, or reject 

the respiratory events before computing a final result. The obstructive apnea-hypopnea 

index (OAHI) per hour of sleep was then calculated.

Statistical analysis

Statistical analyses used the independent samples t-test or a non-parametric test depending 

on a variable’s distribution. Categorical variables were analyzed using Chi-squared test or 

Fisher’s Exact Test. The relationship between sleep and growth variables was tested using 

bivariate Pearson or Spearman correlation depending on the distribution, considering the 

combined data of the NW and OW groups. Relevant background factors associated with 

sleep time and sleep stages variables were also assessed by Pearson or Spearman 

correlations. Birth weight was associated with some sleep variables and therefore included 

as a control variable in a partial correlation analysis, together with age, gender, iron status 

(both in infancy and at 10 years), sleep onset time, and OAHI. All analyses were done using 

SPSS (Chicago, Illinois, v.15.0). Statistical significance was set at α level ≤ 0.05.

Results

Background characteristics

Groups were similar regarding age, gender, gestational age, iron status in infancy, and cow 

milk consumption during the first year of life (Table 1). The groups differed in 

anthropometric variables at 10 years by design. In addition, the OW group had higher birth 

weight and percentage of maternal obesity, and lower percentage of iron sufficiency at 10 

years (see Table 1).

Conventional sleep parameters

Morning wake-up and sleep onset times and the resulting length of the previous diurnal 

waking episode were similar in both groups (Table 2). This was also the case for bed- and 

wake-up times and SPT. However, compared with NW children, OW children showed 
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shorter TST (p < 0.03), higher WASO (p < 0.01), and consequently reduced sleep efficiency 

(p < 0.01). The number of sleep cycles was lower (p < 0.05) and stage R latency tended to 

be longer in the OW group (p < 0.057, Table 2). The groups were similar regarding the 

OAHI.

Sleep-wake stages

The OW group had a higher amount of stage W (p < 0.02), a lower amount of stage R (p < 

0.05), and a suggestive tendency for a lower amount of stage N2 (p < 0.06) relative to the 

NW group; stage N3 total amount was similar in both groups (Table 2). The proportion of 

sleep stages within TST was the same in both groups, but WASO was higher in the OW 

group: 8.5 % vs. 5.7 % (p < 0.04).

In the initial third of the SPT, the first stage N3 episode was shorter in the OW group (p < 

0.04) with a suggestive trend for reduced duration of N3 episodes (p < 0.07). In the middle 

third of the SPT, the OW group showed longer episodes and higher percentage of stage N3 

(p < 0.02) compared with the NW group. In the last third, the groups were similar in stage 

N3.

Sleep and anthropometric variables

Anthropometric parameters did not correlate with sleep onset, sleep offset, TIB, or SPT. 

BMI was negatively correlated with sleep efficiency (r = −0.22, p < 0.03) and mean duration 

of N2 episodes (rho = −0.28, p < 0.004). After controlling for potential covariates, there was 

a negative correlation between BMI and TST (r = −0.28, p < 0.01) and sleep efficiency (r = 

−0.24, p < 0.03) (Table 3). Regarding sleep-wake stages, BMI was positively related to 

stage W amount (rho = 0.20, p < 0.05) and percentage (rho = 0.21, p < 0.04) and negatively 

to the amounts of stage N2 (r = −0.24, p < 0.03) and stage R (r = −0.25, p < 0.03, Fig.1 and 

Table 3). There were no statistically relationships between BMI and the amounts of stages 

N1 or N3.

Discussion

We compared the macrostructure of nighttime sleep in a sample of otherwise healthy 10-

year-old OW and NW children. OW children showed shorter TST and higher WASO, 

indicating lower sleep efficiency. Differences between groups were also apparent regarding 

sleep stages, with OW children having decreased stage R amount and altered duration of 

stage N3 episodes during the first two thirds of the SPT. Even though both groups showed 

similar nighttime stage N3 amount, the duration of the episodes in the OW group was 

shorter in the first third and longer in the second third of the SPT relative to the NW group. 

These findings extend the epidemiological evidence relating sleep duration and OW in 

children and suggest that, in addition to sleep amount, the organization of sleep stages and 

sleep efficiency are also altered.

The inverse relationship between sleep duration and BMI is in line with previous studies in 

pediatric and adults groups based on sleep questionnaires and self- or parental-report (36, 

37). In our study, the relationship between sleep amount and BMI was apparent even after 

adjusting for several covariates, in agreement with the few other PSG studies of OW 
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children (23, 24). Sleep efficiency was also inversely associated with BMI, suggesting that 

sleep consolidation is diminished in this group. A recent study of children and adolescents 

based on self-report data found that poorer sleep quality and higher sleep disturbances, as 

well as shorter sleep duration, were associated with higher adiposity, supporting the idea that 

both sleep duration and quality are related to childhood obesity (38). Since all participants in 

our study were healthy and most children in the OW group were not severely, the shorter 

sleep amount and lower sleep efficiency in this group cannot be attributed to medical 

conditions that are known to alter sleep patterns (39).

The features of reduced sleep amount and sleep efficiency in the OW group are in agreement 

with PSG characteristics reported in severely obese adults and adolescents (22, 27), which 

are even more pronounced in obese adolescents with polycystic ovarian syndrome (40). 

Weight loss (through bariatric surgery) leads to the improvement not only in respiratory 

abnormalities and sleep quality, but also in sleep architecture in adults, with an increase in 

both stage N3 and stage R (27). These findings of sleep alterations corrected by weight loss 

add support to the close relationship between sleep macrostructure changes and weight 

excess.

The whole spectrum of sleep breathing disorders is exacerbated by increased body weight 

(41), but sleep modifications relate to energy balance in OW adults even in the absence of 

respiratory or motor sleep-related abnormalities. Sleep restriction (42) and sleep 

fragmentation (43) reduced stage R amount. Stage R is negatively related to food intake and 

feelings of hunger/appetite, changes that were associated with higher insulin and lower 

glucose-like peptide 1 profiles the following day (43). In depressive/anxious children and 

adolescents without sleep respiratory abnormalities, Liu et al. (23) reported altered stage R 

patterns -longer latency and lower amount- in OW subjects compared with NW subjects. In 

line with these results, Wojnar et al. (24) reported a greater reduction of stage R in OW 

children with major depressive disorder relative to OW children without depressive disorder. 

In our study, the longer REM latency and lower amount of stage R in OW children agree 

with the above mentioned results, supporting the association between weight excess and 

stage R organization.

It is well known that the latency and amount of stage R are influenced by several factors, 

including age, sleep restriction/deprivation, circadian phase, pharmacological effects, and 

pathological conditions (44). Since age was almost identical in our study groups and 

recordings were performed during naturally-occurring sleep, these factors are unlikely to 

explain group differences in stage R organization. Moreover, our findings come from a 

group of healthy children, in contrast to studies involving children and adolescents with 

affective disorders (23, 24), which are conditions known for stage R modifications (25).

Earlier studies in adults have also reported that stage R relates to weight and associated 

parameters. For instance, Adam (45) observed a positive correlation between the amount 

and percentage of stage R and body weight in healthy adults, but others have reported 

contradictory data (46). In pediatric populations, decreased nighttime stage R has been 

reported in obese children (47), suggesting that stage R relates to body weight and could be 

modified by OW. Our observations that OW children showed reduced stage R and stage R 
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amount was inversely associated with BMI add support to the hypothesis that stage R is a 

key player in weight gain in humans (23).

In this respect, there is evidence that both circadian and ultradian stage R regulation 

mechanisms appear to be affected by OW (48). Patients with narcolepsy/cataplexy are 

characterized by higher BMI and altered stage R patterns (49). Rodent models of obesity 

show reduced stage R during the light (rest) phase and increased stage R during the dark 

(active) phase, suggesting altered stage R circadian regulation (47, 50). Our findings of 

reduced number of sleep cycles, lower stage R amount, and a suggestive tendency for longer 

stage R latency in OW children suggest an altered ultradian regulation of stage R in the 

human. Experimental studies in rodent models of obesity showing longer duration of NREM 

sleep episodes and lower frequency of transitions between NREM sleep and stage R might 

support this interpretation (51).

With acute sleep restriction in adults, the amounts of both stage R and stage N2 are reduced 

(52) and relate to BMI, hunger perception, and energy intake (42). These findings may be 

pertinent to our observation that stage N2 and stage R amounts were inversely associated 

with BMI, whereas stage W amount was positively associated with it.

For the whole night, we did not observe differences in the total amount or proportion of 

stage N3 between groups. However, the OW group showed lower and higher proportions of 

this stage during the first and second thirds of the SPT, respectively. It is well accepted that 

stage N3 relates to the homeostatic component of sleep organization, with the length of the 

preceding waking episode acting as a key factor (53). Given that the timing and length of the 

diurnal waking episode were similar in both groups, it is unlikely that this could explain our 

findings. Differences in the organization of stage N3 could suggest a slower (or more 

extended) process of fulfilling the restorative function of sleep in OW children. However, it 

was not within the scope of this study to assess whether this pattern relates to altered 

homeostatic sleep regulation in OW children.

Chronic sleep restriction could modify body weight and BMI by several mechanisms (54). 

For instance, altered endocrine pathways result in increased food intake, reduced daytime 

physical activity, disturbed carbohydrate metabolism and/or autonomic nervous system 

activity (54). These changes could modify the balance between energy intake and energy 

expenditure, leading to weight gain over time. Although experimental data supports 

increased energy intake and reduced energy expenditure arising from sleep loss (52), some 

studies indicate no effect (55). Nonetheless, if shorter and more fragmented sleep exposes 

OW children to adverse changes in metabolic regulation as in healthy adults under 

experimental conditions (56), then OW children could be more prone to metabolic 

disruptions.

Some experimental evidence has already shown that not only sleep restriction but also 

changes in stage R and stage N3 are involved in hunger/appetite regulation and nutritional 

parameters (42, 43). In animal models rats with stage R deprivation increased their body 

weight and food intake (especially for rich-carbohydrates diets) (57). Adults who were 

habitual short sleepers and increased their sleep amount over a 6-year period, had slower 
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increase in BMI and fat mass gain than those who did not (58). Additionally, both sleep 

duration and sleep quality were positively related to fat mass loss in OW adults submitted to 

a low-caloric dietary intake (59). These findings further support the interpretation that a 

sustained pattern of sleep restriction could lead to increased weight gain and OW risk over 

time at the population level, and that interventions to improve sleep in OW subjects, may 

have beneficial effects on BMI and fat mass.

Our study has several limitations. A single night recording in the laboratory may alter sleep 

organization in some children more than others. Additional nights would be needed to 

evaluate this issue. Bedtime and sleep onset time were established following each child’s 

routine. Although this approach may seem more susceptible to uncontrolled factors than 

using a fixed bedtime, we considered it important to increase child comfort by respecting the 

usual timing of sleep. Anthropometric measurements of weight and height were only 

measured once. Although more than one measure would be desirable, all measures were 

performed by trained personnel at the same circadian time. We could not ascertain the 

influence of physical activity and food intake on the observed differences in sleep 

organization, since we did not have objective measures of these factors. Finally, although 

groups consisted of the same percentage of children with or without iron deficiency anemia 

in infancy, we cannot note rule out its potential effect on sleep organization in some children 

more than others.

In conclusion, otherwise healthy OW children showed a reduced amount of sleep and lower 

sleep efficiency than NW children. The lower amount of stage R and altered distribution of 

stage N3 in OW children indicate that the ongoing nighttime pattern of sleep-waking stages 

is also disrupted.
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Figure 1. Correlation between Total Sleep Time and stage N2 and body-mass index
Scatter plot of correlations between TST and BMI (r = −0.28) and stage N2 and BMI (r = 

−0.24) are shown in A) and B), respectively. Central and curve lines within the graph 

indicates tendency line and 95% confidence interval. TST: total sleep time (in minutes); 

stage N2: non REM sleep stage 2 (in minutes); BMI: body-mass index (kg/m2).
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Table 1

Background characteristics

Background variable Normal weight (n = 37) Overweight (n = 59) p-value

Age, years 10.3 ± 0.2 10.2 ± 0.2 NSe

Gender, male n (%) 24 (64.8) 39 (66.1) NS

Weight, kg 32.6 ± 4.0 46.3 ± 9.1 0.0001

Weight z-scorea −0.15 ± 0.86 1.2 ± 0.83 0.0001

Height, m 1.38 ± 0.6 1.42 ± 0.1 0.005

Height z-scorea −0.19 ± 0.95 0.36 ± 0.96 0.007

BMI (kg/m2) 16.9 ± 1.2 22.7 ± 3.3 0.0001

BMI z-scoreb 0.09 ± 0.6 2.04 ± 0.7 0.0001

Birth weight, g 3402.7 ± 336.5 3598.1 ± 394.4 0.01

Birth height, cm 50.5 ± 2.1 50.8 ± 1.7 NS

Gestational age, weeks 39.4 ± 0.96 39.2 ± 0.98 NS

Cow milk/formula consumption, ml/dayc 396.4 ± 180.7 308.7 ± 214.9 NS

Maternal obesity, n (%) 8 (22.2) 27 (50) 0.008

IDAd in infancy, % 56.7 50.8 NS

Iron sufficient at 10 years, n (%) 36 (97.2) 48 (87.3) 0.02

a
Number of subjects varied slightly due to occasional missing data in some measures.

b
BMI z-score adjusted by age and gender according to WHO reference growth standards.

c
Cow milk/formula consumption during the first year of life.

d
IDA, iron-deficiency anemia.

e
NS = not significant; p-values are from t-tests for continuous variables, and chi-squared test for categorical variables.
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Table 2

Sleep macrostructure characteristics

PSG parameters Normal weight (n = 37) Overweight (n = 59) p-value

Diurnal waking duration, min 805.0 ± 101.6 809.9 ± 102.3 NSe

OAHIa,c 0.4 (0.1 – 0.8) 0.6 (0.3 – 0.9) NS

Sleep onset, hh:mm 23:10 ± 0:41 23:20 ± 0:48 NS

End of sleep, hh:mm 7:23 ± 1:01 7:18 ± 0:47 NS

Time in bed, min 614.3 ± 64.7 605.2 ± 48.0 NS

Sleep period time, min 500.6 ± 49.4 478.2 ± 61.2 0.05

Total sleep time, min 467.1 ± 63.4 426.8 ± 79.0 0.008

Sleep efficiency, %b 93.3 ± 6.9 89.4 ± 9.5 0.02

Sleep cycles, n 4.6 ± 1.1 4.1 ± 1.5 0.05

Stage shift/hour, n 39.2 ± 9.6 41.0 ± 9.2 NS

Sleep latency, minc 9.9 (4.8 – 27.5) 13.5 (4.5 34.0) NS

Stage R latency, min 120.0 ± 50.2 138.7 ± 55.2 0.05

WASO, minc,d 18.0 (5 – 63.7) 38.5 (12.5 – 76.9) 0.03

Stage N1, minc,e 40.9 (25.2 – 52.7) 36.5 (24.9 – 53.5) NS

Stage N2, mine 236.2 ± 50.7 216.6 ± 47.4 0.06

Stage N3, mine 94.7 ± 24. 3 94.6 ± 21.8 NS

Stage R, minf 87.3 ± 27.9 75.6 ± 29.6 0.05

a
OAHI = Obstructive apnea-hypopnea index (n events/hour).

b
Sleep efficiency = (Total sleep time/Sleep period time)*100.

c
Data are presented as median (inter-quartile range).

d
WASO = Wake after sleep onset, in minutes.

e
Stages N1, N2, and N3 = non rapid eye movement sleep stages.

f
Stage R = rapid eye movement sleep.

e
NS = not significant.
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Table 3

Partial correlation analysisa between sleep features and sleep stages and anthropometric parameters

PSG variable Weight z-score Height z-score BMI BMI z-score

Sleep period time, min −0.11 (ns) −0.04 (ns) −0.17 (ns) −0.14 (ns)

Total sleep time, min −0.14 (ns) 0.02 (ns) −0.28 (0.01) −0.25 (0.03)

Sleep efficiency, %b −0.07 (ns) 0.1 (ns) −0.24 (0.03) −0.22 (0.05)

Stage shift/hour, n 0.14 (ns) 0.16 (ns) 0.07 (ns) 0.09 (ns)

WASO, minc 0.09 (ns) −0.05 (ns) 0.22 (0.05) 0.21 (0.06)

Stage N1, mind 0.07 (ns) 0.09 (ns) −0.03 (ns) −0.03 (ns)

Stage N2, mind −0.11 (ns) 0.05 (ns) −0.24 (0.03) −0.22 (0.05)

Stage N3, mind −0.01 (ns) −0.07 (ns) 0.02 (ns) 0.03 (ns)

Stage R, mine −0.09 (ns) 0.03 (ns) −0.25 (0.03) −0.21 (0.06)

a
Partial correlation analysis controlling for age, gender, iron status in infancy, iron status at 10-yr, birth weight, maternal BMI, sleep onset time and 

OAHI.

b
Sleep efficiency = (Total sleep time/Sleep period time)*100.

c
WASO = wake after sleep onset, in minutes.

d
Stages N1, N2, and N3 = non rapid eye movement sleep stages.

e
Stage R = rapid eye movement sleep. Values are r coefficients, and level of statistical significance is shown in (); r values in bold indicates 

statistically significant correlation result. NS = not significant.

Int J Obes (Lond). Author manuscript; available in PMC 2015 February 01.


