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Photoacoustic (PA) imaging has received more and more attention on disease diagnosis
and fundamental scientific research. It is still challenging to amplify their imaging ability and
reduce the toxicity of inorganic materials and exogenous contrast agents. Semiconducting
polymer nanoparticles (SPNs), as a new type of contrast agent, have the advantages of low
toxicity, flexible structure adjustment, good photostability, and excellent photothermal
conversion efficiency. SPNs containing benzo(1,2-c;4,5-c′)bis(1,2,5)thiadiazole (BBT)
units, as the most classic second near-infrared window (NIR-II, 1,000–1700 nm) PA
contrast agents, can achieve light absorption in the NIR-II region, thereby effectively
reducing light loss in biological tissues and improving imaging resolution. This mini review
summarizes the recent advances in the design strategy of BBT and its derivative-based
semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging.
The evolution process of BBT blocks provides a unique perspective for the design of high-
performance NIR-II PA contrast agents.

Keywords: photoacoustic imaging, near-infrared-II, semiconducting polymer, nanoparticles, benzobisthiadiazole,
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INTRODUCTION

Photoacoustic (PA) imaging is a hybrid imaging technology based on light excitation and ultrasound
detection, which is widely used in monitoring surgery, visualization of blood vessels, and early
detection of disease biomarkers (Zhen et al., 2021). The PA imaging process consists of three stages
(Hong et al., 2017). First, a safe non-ionizing laser pulse is used to irradiate the corresponding
biological tissue, and the photon energy is converted into heat in a short time. Second, the localized
heat inside tissues undergoes transient thermoelastic expansion to generate ultrasonic waves. Finally,
the generated ultrasonic signals are collected by a broadband ultrasonic transducer and converted
into PA images. Therefore, PA imaging not only has the advantage of the sensitive light absorption in
contrast to an optical method but also has the advantage of small acoustic scattering similar to an
acoustic method, and exhibits better spatial resolution and imaging depth than traditional optical
imaging (Yin et al., 2021).

The excitation light source is an important factor affecting PA imaging. Compared with
ultraviolet and visible light, near-infrared light has relatively weaker interaction force in
biological tissues, which is more conducive to clinical diagnosis (Lyu et al., 2019). Depending on
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the wavelength, the near-infrared range includes the first (NIR-I,
650–950 nm) and the second near-infrared wavelength ranges
(NIR-II, 1,000–1700 nm). Due to obvious advantages in

penetration depth and signal-to-noise ratio (SNR), PA imaging
in the NIR-II window (1,000–1700 nm) has aroused increasing
interest among clinicians and biomedical researchers. PA

SCHEME 1 | Chemical structures of BBT, TBZ, and ATQ-based SPs for NIR-II PA imaging.

TABLE 1 | Summary of the properties and applications of representative NIR-II SPNs discussed in this review (λonset, the onset of absorption value; λmax, the absorption peak
value; Ex, excitation wavelength; η, the photothermal conversion efficiency; and NA, not applicable).

SPNs λonset (nm) λmax (nm) Ex (nm) Properties Disease model References

P-BBT-1 1,320 1,079 1,064 SBR = 2.3 Brain Jiang et al. (2019)
η = 53%

P-BBT-2 1,280 1,064 1,064 SBR = 90 Brain tumor Guo et al. (2018)
P-BBT-3 1,230 1,079 1,064 η = 36% Brain Jiang et al. (2019)
P-BBT-4 1,280 1,064 1,064 SBR = 59 Orthotopic brain tumor Guo et al. (2017)
P-BBT-5 1700 1,150 1,064 η = 65% HepG-2 tumor cells Wei et al. (2020)
P-BBT-6 1900 1,079 1,064 η = 49% Brain Jiang et al. (2019)
P-BBT-7 >1,500 nm 1,300 1,064 η = 60% Breast tissue Zhang et al. (2019)
P-TBZ-1 1,400 1,064 1,064 Imaging depth = 4 cm (breast tissue), 3.8 mm (skull) Breast tissue/brain tumor Yang et al. (2019)
P-TBZ-2 1,450 1,170 1,064 SBR = 22.3 dB; depth = 1,001 µm Cerebral/tumor vasculatures Guo et al. (2019)
P-TBZ-3 1,400 1,064 1,064 η = 53%, MPE = 0.5 W cm−2 Tumor-bearing mice Men et al. (2020)
P-ATQ-1 1,200 929 1,064 η = 21.2% Brain tumor Wen et al. (2020)
P-ATQ-2 1,130 990 1,064 Contrast enhancement = 21.7-fold Subcutaneous/brain Yin et al. (2018)
P-ATQ-3 1,150 897 1,064 NA Situ hepatic tumor Zha et al. (2020)
P-ATQ-4 1,200 905 1,064 NA Situ hepatic tumor Zha et al. (2020)
P-ATQ-5 1,380 1,109 1,064 η = 61.6% Situ hepatic tumor Zha et al. (2020)
P-ATQ-6 1,550 1,140 1,064 NA Brain vasculature Luo et al. (2021)
P-ATQ-7 2000 1,270 1,064 Depth = 10 mm Brain vasculature Luo et al. (2021)
P-ATQ-8 2,214 1,500 1,064 NA Brain vasculature Luo et al. (2021)
P-ATQ-9 NA 1,253 1,064 Depth = 3 cm Brain vasculature Jiang et al. (2017)
P-ATQ-10 1,060 930 980 Small vessels = ~2 μm The whole body Yang et al. (2020)
P-ATQ-11 1,350 1,000 1,064 η = 30.53%, imaging depth = 1.5 cm Breast tissue Yin et al. (2020)

Frontiers in Chemistry | www.frontiersin.org February 2022 | Volume 10 | Article 8427122

Huang et al. Benzobisthiadiazole SPNs for NIR-II PAI

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


imaging contrast agents in the NIR-II window have a relatively
weak extinction ability and can improve SNR by reducing
background fluorescence and photoacoustic signals .

PA imaging contrast agents in the NIR-II window mainly
focus on inorganic materials, including metallic nanoparticles,
quantum dots, carbon materials, and rare-earth nanoparticles
(Cheng et al., 2020). Although such kinds of inorganic agents
have good performance in extinction coefficient and light
stability, they cannot overcome the potential biological toxicity
caused by heavy metal ions and metabolic problems. In contrast,
organic material-based PA imaging contrast agents have good
biocompatibility and can effectively avoid the toxicity of heavy
metal ions to organisms (Jiang et al., 2019). Furthermore, the
advantages of good photostability, light stability, and adjustable
absorption properties indicate that organic materials, especially
π-conjugated organic semiconducting polymers, are an excellent
choice for NIR-II fluorescence imaging .

In recent decades, a large number of π-conjugated organic
semiconducting polymers with an absorption range up to the
near-infrared range have been developed, which can be used to
improve power conversion efficiency (PCE) of polymer solar cells
by capturing more photons in the NIR range. Benzo(1,2-c;4,5-c′]
bis(1,2,5)thiadiazole (BBT), which consists of four electron-
deficient C=N bonds, is considered to be the strongest
electron-deficient (acceptor, A) unit (Karikomi et al., 1995).
For instance, Reynolds et al. reported a donor–acceptor
(D–A)-conjugated polymer P(DTP-BThBBT) by combining
dithieno(3,2-b:2′,3′-d)pyrrole (DTP) as the D unit with BBT as
the A unit, which shows maximum absorption at 1,231 nm
(Steckler et al., 2009). It is indicated that D-A polymers
consisting of a BBT unit are a promising class of
semiconducting polymers (SPs) for the synthesis of efficient
PA contrast agents used within the NIR-II biological window.

In this mini review, we summarize the recent progress of SPNs
consisting of a BBT unit or its derivatives for NIR-II PA imaging.
First, we discuss the chemical structures and design strategy of
SPNs. The development trend of BBT-based SPNs and the
perspectives are given subsequently.

MOLECULAR DESIGNS

Molecular engineering of SPs plays a crucial role in PA imaging
quality, including the absorption property, radiative decay rate
(kr), SNR, and tissue penetration depth (Lei and Zhang, 2021).
According to the constitution of repeating units, the conjugated
backbones of the PA imaging contrast agents can be classified into
two forms: a quinoid polymer and donor–acceptor (D–A)
polymer (Huang et al., 2021). Empirical formula Eg = 1,240/λ
shows that in order to achieve the NIR-II window SPNs, the
bandgap of the SPs should be less than 1.24 eV. The process of
converting the aromatic resonance into the quinone resonance of
the quinone polymer is accompanied by the reduction of its
bandgap. The bandgap of D–A polymers can be easily tuned by
selecting D and A units of different electron-donating/
withdrawing capabilities to produce the intramolecular charge
transfer (ICT) effect. The D unit and the A unit are coupled

through a palladium-catalyzed coupling reaction to obtain a D–A
polymer. The extended conjugated backbone promotes the
delocalization of electrons to reduce the bandgap. The
perturbation theory explains that the narrow bandgap is
formed by the hybridization of molecular orbitals after the
polymerization of D and A units to produce a new higher-
lying highest occupied molecular orbital (HOMO) and a new
lower-lying lowest unoccupied molecular orbital (LUMO). Most
of the reported NIR-II SPs are developed based on the D–A
polymer strategy (Zhou et al., 2012).

Electronically, thiophene is a strong electron-rich unit. Due to
the characteristics of thiophene, donors fusing with thiophene
units are ideal donor choices for SPs, including typical donors
such as cyclopentadithiophene (CDT), dithienosilole (DTS), and
dithienopyrrole (DTP) (Zhou et al., 2013). On the other hand,
BBT, a strong acceptor with an electron-deficient ability
containing 4 C=N bonds, is widely used in the construction of
SPNs for NIR-II PA imaging (Zhang et al., 2019). The D–A
polymers based on the “strong donor–strong acceptor” strategy
have been designed to result in NIR-II SPNs via a strong ICT,
including many BBT-based polymers. However, the large planar
structure of BBT, which fuses with two thiadiazole rings without
solubilizing alkyl chains, reduces the solubility of BBT-based SPs
in organic solvents. To overcome this challenge, the thiadiazole
ring of BBT was replaced with a triazole or pyrazine ring to obtain
(1,2,5)thiadiazolo(3,4-f)benzotriazole (TBZ) or
thiadiazoloquinoxaline (ATQ) which can flexibly introduce
alkyl side chains to improve polymer solubility (Dong et al.,
2013; Luo et al., 2021). This account classifies NIR-II SPNs
according to their strong acceptor units, which include BBT,
TBZ, and ATQ (Scheme 1).

DESIGN OF NEAR-INFRARED WINDOW-II
SEMICONDUCTING POLYMER
NANOPARTICLES FOR PHOTOACOUSTIC
IMAGING

BBT-Based Near-Infrared Window-II
Semiconducting Polymer Nanoparticles
Since Yamashita first synthesized a narrow bandgap polymer
containing BBT units in 1995, BBT, as a classic strong electron-
withdrawing unit building block, is widely used in organic
semiconductor devices (Karikomi et al., 1995). Pu et al. chose
different donor units including [4,8-bis((2-ethylhexyl)oxy]
benzo(1,2-b:4,5-b′)dithiophene-2,6-diyl)bis(trimethylstannane),
2,6-bis(trimethyltin)-4,8-didodecylbenzo(1,2-b;4,5-b′)dithio-
phene, and 2,5-bis(trimethylstannyl)thieno(3,2-b)thiophene
copolymerized with BBT to form a series of degradable NIR-II
SPNs (P-BBT-1, P-BBT-3, and P-BBT-6) (Jiang et al., 2019). The
absorption of P-BBT-1 and P-BBT-2 is similar, and the
absorption edge is at 1,200 nm. For increasing the electron-
donating ability of the donor unit, the absorption edge is
extended to 1,500 nm in P-BBT-6, whose backbone consists of
thieno[3,2-b]thiophene and BBT units. P-BBT-1 is coprecipitated
with PLGA-PEG to yield water-soluble nanoparticles, which
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shows a photothermal conversion efficiency (PTCE, η) of 53%
under a 1,064-nm laser irradiation. The η of SPNs-(P-BBT-3) is
36%, followed by SPNs-(P-BBT-6) (49%). The particle size of
SPNs of P-BBT-1 is degraded from 30 to 1 nm under the action of
MPO and lipase, corresponding to the result that the complete
metabolism of SPNs can be completed by the kidney and liver in
15 days in living mice. Furthermore, NIR-II PA imaging of
P-BBT-1 exhibits a high signal-to-background ratio (SBR) of
4.6 and 2.3, respectively, in the tumor and brain vasculature
model (Table 1). Liu et al. developed SPNs of P-BBT-2 for precise
PA imaging and photothermal therapy (PPT) in the scalp and
skull, which optimizes the side chain of BDT building block with
2-(octyldodecyl)oxy compared with P-BBT-3 (Guo et al., 2018).
SPNs of P-BBT-2 decorated with cyclo[Arg-Gly-Asp-D-Phe-
Lys(mpa)] show an SBR of up to 90 and an imaging depth of
3 mm in the scalp and skull, and it being combined with PPT can
effectively extend the survival spans of brain tumor of mice. SPNs
of P-BBT-4, which are appended to alkyl side chains 2-ethylhexyl
(Eh) in the thiophene (T) units, would be used to investigate the
relationship between the laser excitation wavelengths and the PA
imaging ability, indicating that the SBR of 1,064 nm is better than
other wavelengths (Guo et al., 2017). The SBR value of P-BBT-4
in brain tumor imaging is higher than that of other types of
contrast agents, including MoS2 and perylene diimide.

Liu et al. synthesized P-BBT-5 by combining DTS as a donor
unit with BBT as an acceptor unit, which has a stronger ICT effect
than P-BBT-4 that makes the absorption peak of P-BBT-5
redshift to 1,150 nm (Wei et al., 2020). The η of SPNs P-BBT-
5 is up to 65%, and the SPNs show excellent targeting capability in
PA imaging of cancers. Diketopyrrolopyrrole (DPP) is a
promising building block as a natural pigment to construct
low bandgap polymers which exhibits strong electron affinity
and high absorptivity in the visible region. Fan et al.
copolymerized DPP containing 2-octyldodecyl (OD) alkyl
chain with BBT to obtain P-BBT-7 which exhibits a
broadened absorption peak in 1,333 nm (Zhang et al., 2019).
SPNs of P-BBT-7 modified with Pluronic F-127 exhibit an η of
60% and exhibit a strong PA imaging signal at 1,280 nm to
achieve the effect of passively targeting tumors in PA imaging of
subcutaneous xenograft tumor-bearing mice (Zhang et al., 2019).

TBZ-Based Near-Infrared Window-II
Semiconducting Polymer Nanoparticles
Compared with the analog of BBT, the advantage of the (1,2,5)
thiadiazolo(3,4-f)benzotriazole (TBZ) unit is that it provides an
opportunity on the N atom of the triazole ring to incorporate a
solubilizing alkyl chain while maintaining high electron-
withdrawing capability (Dong et al., 2013). Liu et al. used the
SPNs of P-TBZ-1 containing TBZ and DPP unit, which shows an
η of 67% and mass extinction coefficient of 43 ml mg−1 cm−1, to
image a glioma tumor with a depth of 3.8 mm in a mouse’s skull
(Yang et al., 2019). Liu et al. designed SPNs of P-TBZ-2 as an
exogenous contrast agent with a resolution of 19.2 µm and an SBR
of 29.3 dB in microscopy imaging of mice ear, indicating that it
can be potentially applied to assist 3D optical-resolution
photoacoustic microscopy imaging in various biomedical

applications (Guo et al., 2019). Zhen et al. constructed SPNs
of P-TBZ-3 with ultrasmall size, which exhibited an η of 53% and
specific targeting in a tumor-bearing nude mice model (Men
et al., 2020).

ATQ-Based Near-Infrared Window-II
Semiconducting Polymer Nanoparticles
ATQ, as an analog of BBT, can be alkylated to improve the
solubility of polymers with a stronger electron-accepting ability
compared to TBZ (Perzon et al., 2007). Bian et al. copolymerized
an acceptor unit, ATQ, with a donor unit, benzo(1,2-b:4,5-b′)
dithiophene, to obtain P-ATQ-1 exhibiting an absorption peak at
929 nm and a vibronic shoulder at 1,030 nm (Wen et al., 2020).
Under 1,064 nm excitation, SPNs of P-ATQ-1 generate a strong
PA signal with a mass extinction coefficient of 13.25 cm−1 mg−1

ml, which can passively target tumor sites in a brain tumormodel.
Subsequently, Bian and his coworkers prepared a positively
charged SPN consisting of a hydrophobic P-ATQ-2 core, an
anionic interlayer, and a cationic shell (Yin et al., 2018). The PA
signals generated by P-ATQ-2 can achieve a highly efficient PA
labeling of stem cells, and the PA contrast increased by an amount
of 40.6- and 21.7-fold in subcutaneous and brain imaging relative
to unlabeled cases. Li et al. synthesized a series of (1,2,5)
thiadiazolo(3,4-g)quinoxaline (TQ)-based SPNs, P-ATQ-3,
P-ATQ-4, and P-ATQ-5, through substitution with functional
groups to explore the molecular guideline for efficient non-
radiative decay (Zha et al., 2020). Due to the strong electron-
withdrawing capability of the ester-substituted TQ unit, P-ATQ-
5 exhibits a larger dihedral angle, lower radiative decay, and
narrower adiabatic energy than alkyloxyphenyl and alkylthienyl-
substituted TQ SPNs. SPNs of P-ATQ-5 show an η of up to 60%
and a signal increase of 26.44 and 22.35 times, respectively, in in
situ subcutaneous and hepatic tumors, which maintained a clear
PA tracking upon 20 days. Similarly, Liu et al. designed a series of
ATQ-based SPNs (P-ATQ-6, P-ATQ-7, and P-ATQ-8) via a
copolymerizing ester-substituted ATQ acceptor and various
donor monomers, with peaking at 1,140 , 1,270, and 1,500 nm
in P-ATQ-6, P-ATQ-7, and P-ATQ-8, respectively (Luo et al.,
2021). Under 1,064 nm irradiation, SPNs of P-ATQ-7 enhanced
the SNR by 10 times in a mouse cerebrovascular model with a
tissue depth of 10 mm. Pu et al. designed P-ATQ-9 composed of
ATQ as a acceptor unit and diketopyrrolopyrrole (DPP) as a
donor exhibiting broadband absorbing from the NIR-I to NIR-II
regions. Compared with the PA image at 750 nm, 1.5-times
higher SNR can be obtained by using P-ATQ-9 at a depth of
3 cm PA images of brain vasculature under 1,064 nm irradiation,
indicating the advantage of PA imaging within the NIR-II
window (Jiang et al., 2017). P-ATQ-10 designed by Liu et al.,
composed of 6,6,12,12-tetrakis(4-hexylphenyl)-s-
indacenodithieno[3,2-b]thiophene as an elongated π-system
donor and ATQ as the acceptor, exhibits a mass extinction
coefficient of 18 L g−1 cm−1 under 980 nm laser irradiation and
a quantum yield of 1.25% in the NIR-II region, indicating that the
NIR-II brightness is higher than that of most NIR-II SPNs (Yang
et al., 2020). Bian et al. developed a novel SPN P-ATQ-11 fusing
with hydrophilic PEG side chains in the ATQ segment, which is
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beneficial for improving the stability of SPNs via a self-assembly
process of amphiphilic PEG side chains (Yin et al., 2020). Due to
the broadband absorption of P-ATQ-11 in the NIR-II region, a
higher SNR in chicken breast tissue imaging was achieved than
that in PA imaging in NIR-I. This result shows that the flexible
modification of the ATQ unit provides an effective molecular
design methodology to improve the stability, brightness, and
biocompatibility of SPNs.

CONCLUSION

This review summarizes SPNs containing benzobisthiadiazole
or its derivative segments for NIR-II PA imaging. Due to the
high electron-withdrawing capability, BBT and its derivatives
can be flexibly copolymerized with a variety of donors to
obtain a number of SPNs in the NIR-II range with
objectively excellent PA properties and ηs. An ATQ or a
BTZ unit with better solubility through incorporating
solubilizing alkyl chains can be obtained by replacing one
thiadiazole ring of BBT with triazole or quinoxaline rings while
maintaining the electron-withdrawing capability close to BBT.
By flexibly adjusting the side-chain properties of the ATQ unit,
the twisted intramolecular charge transfer effect of the
molecule can be effectively enhanced, thereby optimizing
the photothermal conversion and photoacoustic
performance for PA imaging in the mouse model. Current
disease models for NIR-II PA imaging of BBT and its
derivative-based SPNs are mainly superficial tumor models
or brain tumor models. In order to achieve greater penetration
depth in NIR-II PA imaging, novel SPs with higher possible
absorption and extinction coefficients and photothermal

conversion efficiency should be explored to offset the
energy dissipation during the irradiation of deep tissues.
Once the limitation of the detection depth makes a
breakthrough, PA imaging based on SPNs will show great
potential in the diagnosis of clinical cancers such as lung
cancer and glioma due to its non-invasiveness and high
efficiency. All in all, BBT and its homologs, as a strong
electron-withdrawing acceptor with an easy-to-modify
structure, exhibit a unique strategy for constructing efficient
NIR-II photoacoustic agents.
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