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Abstract

Accurate and reliable short-term forecasts of influenza-like illness (ILI) visit volumes at

emergency departments can improve staffing and resource allocation decisions within hos-

pitals. In this paper, we developed a stacked ensemble model that averages the predictions

from various competing methodologies in the current frontier for ILI-related forecasts. We

also constructed a back-of-the-envelope prediction interval for the stacked ensemble, which

provides a conservative characterization of the uncertainty in the stacked ensemble predic-

tions. We assessed the accuracy and reliability of our model with 1 to 4 weeks ahead fore-

cast targets using real-time hospital-level data on weekly ILI visit volumes during the 2012-

2018 flu seasons in the Alberta Children’s Hospital, located in Calgary, Alberta, Canada.

Our results suggest the forecasting performance of the stacked ensemble meets or exceeds

the performance of the individual models over all forecast targets.

Introduction

Influenza-like illness (ILI) causes significant burden to healthcare systems [1, 2]. To address

this burden, a growing body of literature focuses on developing accurate and reliable forecasts

of ILI to help inform public health decisions and resource planning [3–5]. These research

efforts led to multiple candidate models which may be suitable for forecasting ILI activity

within a country or region.

While forecasts at a regional level may improve public health decisions, substantial hetero-

geneity within regions imply a one size fits all forecast at such a large level of spatial aggrega-

tion may be of little use for hospital-level staffing and resource allocation decisions [6]. Here,

we bridge this literature gap by assessing the forecasting performance of various models from

the recent literature using Emergency Department (ED)-level data from the Alberta Real-Time

Syndromic Surveillance Net (ARTSSN). Our goal is to equip decision makers in hospitals with

near-term forecasts (1 to 4 weeks ahead) of the number of weekly ILI visits to the ED.
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We used an ensembling method to leverage the strength of different modeling approaches.

Evidence from weather forecasting research [7] and infectious disease forecasts [8] suggest

that predictions from ensembling are at least as good as the best performing individual models

that they build upon, making the ensemble a potential candidate for predicting ILI positive

visit volumes at EDs. We used stacking—a data-driven approach—when leveraging the contri-

bution of each model to the ensemble. In our retrospective analysis, we found that the stacked

ensemble model performed as well as—when not better than—the best individual models

using various quantitative performance measures on each of the 1 to 4 weeks ahead forecast

targets.

Methods

We performed a retrospective analysis with the objective of forecasting weekly ILI positive vis-

its within an ED. The data and modelling decisions are described below.

Data

We used data from the ARTSSN, which offers daily records of patients screened ILI positive in

Calgary, Alberta. Our sample featured two EDs: the Alberta Children’s Hospital (ACH)—with

a high volume of ILI visits—and the Foothills Medical Center (FMC)—with a low volume of

ILI visits. The data covered flu seasons from 2012 to 2018, with each flu season starting roughly

on the last week of August and lasting 52 or 53 weeks depending on leap year status. The

ARTSSN records additionally include patient characteristics such as age, sex, and postal code

of last known residence. We supplemented ARTSSN with the following data sets: (1) patients’

recent flu immunization status and dates, obtained from Alberta Health; (2) laboratory diag-

nostics for ILI-causing viral pathogen confirmation (e.g. influenza A H1N1 and H3, influenza

B, rhino/enterovirus), obtained from the Alberta Public Health Laboratory; (3) annual mid-

year population estimates in Calgary, obtained from Calgary’s Civic Census; and, (4) weather

information, obtained from Environment and Climate Change Canada.

The unit of observation and analysis in the final linked data set was the weekly-aggregated

count of ILI visits at the high-volume ED. We used the low-volume ED data (i.e. FMC) for sen-

sitivity analysis of how the magnitude of visits affects model performance. In some richer

model specifications, we further disaggregated the ILI positive visit counts within age brackets

and distance buffers around the ED and assessed the impact of these alternative models on

forecast performance. Predictors available in a daily format (e.g. minimum temperature) were

transformed into weekly averages for the analysis.

Statistical models

Our objective was to estimate at week t, a function f̂ such that the forecast of ILI ℓ weeks into

the future is given by:

ŷtþ‘ ¼ f̂ ðyt; yt� 1; yt� 2 . . . ; xt; xt� 1; xt� 2 . . .Þ; ð1Þ

where yt is the observed count of ILI visits to the ED at week t and xt are other predictors of ILI

which are available at time t. Each model drew information from different predictors and spec-

ified different relationships between predictors and the outcome of interest. Model implemen-

tation is described below.

Empirical Bayes. The Empirical Bayes (EB) model we draw upon is a framework devel-

oped by Brooks et al for predicting epidemics by relying on slightly modified versions of past

epidemics to form possibilities for the current season [9, 10]. With this approach, we first
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modelled previous flu seasons using non-parametric smoothed piecewise quadratic curves

generated with the cv.trendfilter method of the genlasso R package [11]. This gave us a set of

smoothed trajectories {f s} for each flu season s in the training data. Next, we drew at random

with equal probability one trajectory from {f s} and applied a series of transformations to this

curve, resulting in a curve ~f s. The transformations shift the epidemic curve’s peak height, peak

location, and pacing toward the peak, respectively. For these transformations, we randomly

sampled a peak height, peak location, and pacing parameter, where candidate peak heights

and locations came from the smoothed trajectories f s and the pacing parameters came from a

uniform distribution U[0.75, 1.25]. We then assigned a likelihood weight to the transformed

curve based on how closely the curve approximated observed ILI up to the current week of the

season. We lastly injected noise to the transformed curve, where the noise terms were drawn

from a normal distribution N ð0; s2
s Þ with σs being a noise level derived from the trajectory f s.

The EB prediction of ILI visits ℓ weeks from week t, ŷEBtþ‘, was the weighted median of

N = 105 random samples of transformed trajectories, with the likelihood weights w described

above. A prediction interval was also constructed from percentiles of the N weighted samples.

For the weighted median point prediction, we ranked the forecast ILI at period t+ ℓ from the

N samples from smallest to largest, ~f 1;tþ‘ <
~f 2;tþ‘ . . . ~f N;tþ‘ and computed:

ŷEBtþ‘ ¼ ~f k;tþ‘; where k is such that

Xk� 1

i¼1

wi <¼ 0:5 and
XN

i¼kþ1

wi <¼ 0:5:

ð2Þ

Autoregressive integrated moving average. The Autoregressive integrated moving aver-

age (ARIMA) model estimates future periods’ ILI positive visit counts as a function of previous

observations and forecast errors. An ARIMA(p, d, q) model is specified by three parameters:

an autoregressive order term p, a degree of differencing d for making the time series stationary,

and, the order of the moving average q. We used seasonal and trend decomposition using

locally estimated scatterplot smoothing (STL) to remove seasonality from the raw weekly ILI

counts before fitting an ARIMA(2,0,1) model. The analysis was implemented via the stlm
method of the forecast R package [12]. Determination of the number of time lags p = 2, degree

of differencing d = 0, and order of moving average q = 1 was based on optimization of the

Akaike Information Criterion (AIC) [13].

Upon seasonally adjusting the ILI data with STL, the ARIMA(2,0,1) prediction of ILI posi-

tive visits ℓ weeks from week t, ŷARIMA
tþ‘jt , is given by the forecasting equation:

ŷARIMA
tþ‘jt ¼ bþ �̂1yt� 1 þ �̂2yt� 2 þ ŷ1et� 1 þ Stþ‘; ð3Þ

where �̂1; �̂2; ŷ1 are the estimated model parameters and St+ℓ is the seasonal component which

was computed using STL and removed before fitting the model. The prediction interval is

given by ŷtþ‘jt � cŝ‘ where ŝ‘ is an estimate of the standard error of the ℓ weeks ahead predic-

tion distribution and c comes from the interval coverage probability assuming a normal

distribution of forecast errors. Note that the prediction intervals are estimated from the sea-

sonally-adjusted data but may be too narrow as they ignore uncertainty associated with the

STL estimation of the seasonal components.

Quantile regression forest. Random forests are collections of bagged regression trees

[14]. Upon sampling a random set of predictors, each tree generates one prediction for the

next period’s count of ILI positive visits. A random forest forecast consists of the average of the

predictions of all trees.
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We implemented an extension to random forests, called quantile regression forest (QRF),

using the quantregForest R package [15]. QRF generalizes the usual random forest prediction

by estimating conditional quantiles, useful when constructing prediction intervals. The predic-

tors included in the QRF model were: lags of weekly ILI counts; current epi-week (for epi-

week definition, see [16]); lags of weekly minimum and maximum temperature; lags of weekly

flu immunization rate; and city population. Other predictors were considered but were

excluded by recursive feature elimination using the rfe method of the R caret package [17].

These included weekly counts of diagnosed cases of the most common strain types, which are

influenza A H1N1 and H3, influenza B, rhino/enterovirus, and respiratory syncytial virus.

Information on patient age, sex, and location within city were also excluded since they ren-

dered the model computationally expensive and yielded no performance gains. To illustrate

the impact of these additional covariates on performance, S1 Fig shows the effect of adding

patient sex, age, sex and age together, location within city, or strain types on the performance

of the “baseline” QRF. The RMSE performance metric in this S1 and S2 Figs is described in the

analysis section of the paper.

Our implemented QRF used n = 2000 decision trees, sampling m = 4 of the available predic-

tors each time. The parameter m was chosen using the conventional heuristic
ffiffiffi
P
p

, where P rep-

resents the number of predictors. The QRF prediction of ILI positive visits ℓ weeks from week

t, ŷQRFtþ‘ , is given by:

ŷQRFtþ‘ ðxtÞ ¼
1

n

Xn

b¼1

TbðxtÞ; ð4Þ

where each Tb is one of the n decision trees resulting from a bootstrapped sample of the train-

ing data with m randomly selected predictors and xt are the values of the model predictors at

week t. The prediction interval of the QRF stems from conditional quantiles computed by the

quantregForest method in R. [18].

Linear regression. We fitted a standard linear regression (LR) model with the following

predictor variables: current week’s ILI positive visit count, weekly-averaged minimum and

maximum temperature, city population, immunization rate, year trend, epi-week fixed effects,

slope of the ILI curve at current period, and a categorical variable counting upward move-

ments in weekly ILI positive visits over the preceding three weeks. The ILI slope and count

of upward movements helped on detecting sharp increases in recent ILI positive visits and

improved the prediction near the peak. The model’s prediction of ILI positive visits ℓ weeks

from week t is given by:

ŷLRtþ‘ ¼ â þ Xtβ̂; ð5Þ

where Xt is a row vector of the values for the predictors at week t, β̂ is a column vector with

the estimated marginal effect of each predictor on the ℓ weeks ahead count of ILI positive

visits and â is the intercept estimate. The prediction interval is ŷtþ‘ � cŝðXtÞ where ŝðXtÞ is

the standard error of the prediction given observed values Xt and c once again comes from the

amount of coverage for the prediction interval under the assumption that errors are normally

distributed.

Stacked ensemble. The stacked ensemble (SE) computes a weighted-average prediction

ŷSEtþ‘ based on the predictions of M contributing models {EB, QRF, ARIMA, LR} described
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above:

ŷSEtþ‘ ¼
XM

m¼1

wmŷ
m
tþ‘; with

XM

m¼1

wm ¼ 1 and wm >¼ 0 8 m: ð6Þ

We used stacking, a data-driven approach, to find a set of weights wm for combining the

predictions of individual models in a manner that minimized prediction error in a held-out

data set. Specifically, we found the weights:

arg min
fwmg

M
m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

H

XH

t¼1

yt �
XM

m¼1

wmf̂
mðXt j ŷ � tÞ

 !2
v
u
u
t ;

s:t:
XM

m¼1

wm ¼ 1 ; wm � 0 8 m;

ð7Þ

where H is the size of the hold-out data and f̂ mðXt j ŷ � tÞ is the prediction at period t of model

m trained without data from the flu season encompassing period t. In practice, the algorithm

for deriving the SE weights is as follows:

1. Train each individual model to the dataset holding out all weeks comprising an flu season;

2. Obtain fitted values for the weeks in the hold-out data;

3. Repeat steps 1 and 2 using every other flu season as hold-out data;

4. Compute the weights using Eq 7 with the H weeks of predictions obtained in steps above.

The rationale for ensembling is its potential to reduce prediction error by reducing predic-

tion variance and, in some cases, bias [19]. The benefits of ensembling are typically smaller as

the predictions of individual models become more positively correlated. Furthermore, as

shown by Claeskens et al [20], estimation of averaging weights introduces additional random-

ness to the ensembled prediction. As such, we also show results for a “naïve” ensemble using

equal weights on each individual model, i.e. the case where wm ¼
1

M for each of the M models

contributing to the ensembled prediction.

Deriving the sampling distribution of ŷSEtþ‘ is nontrivial as ensembling mixes the distribu-

tions of each contributing model and some individual models are non-parametric to begin

with. The literature on model averaged prediction intervals is scarce, and even in simpler con-

texts with parametric models the constructed intervals perform poorly in terms of coverage

rate on validation exercises [21]. We report a weighted average of quantiles of the distribution

of each individual model prediction as the ensembles’ own distributions. In our analysis, we

show the coverage rate of this back-of-the-envelope ensemble prediction interval, as well as the

coverage rate of intervals constructed from each individual model.

Analysis

Each model was trained on a partition of the available data and subsequently evaluated against

held-out data. The model evaluation used a leave-one-out approach: each flu season was held

out once and used as a test set, with the model being trained on the remaining seasons. In each

instance, the test set was removed before executing the algorithm for the ensemble methods to

ensure that test data did not contribute to the construction of the ensemble weights. We con-

sidered four commonly used metrics for comparing model performance: mean absolute error
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(MAE); root mean square error (RMSE); mean absolute percentage error (MAPE); and log

scoring. These are described below.

Mean absolute error & root mean square error. Our forecasting targets were the ℓ 2 {1,

2, 3, 4} weeks ahead ILI positive visit counts. We summarized model performance for each tar-

get using standard measures of prediction error: MAE and RMSE. These are given by:

MAEðmÞ ¼
1

T � ‘

XT� ‘

t¼1

jytþ‘ � ŷmtþ‘j; and ð8Þ

RMSEðmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T � ‘

XT� ‘

t¼1

ðytþ‘ � ŷmtþ‘Þ
2

s

; ð9Þ

where yt+ℓ is the realized weekly ILI positive count at period t + ℓ and ŷmtþ‘ is model m’s gener-

ated ℓ weeks ahead prediction made at period t. MAE and RMSE express an average prediction

error over the T − ℓ point forecasts performed in the sample. Both metrics are increasing with

the average error, meaning the models with best accuracy in the test set are the ones with the

lowest MAE and RMSE. Squaring of the error implies the RMSE imposes a greater penalty for

larger deviations between predicted and observed values relative to the MAE. As such, a deci-

sion maker assigning higher importance to prediction accuracy near the flu season peak may

prefer a model with lower RMSE.

Mean absolute percentage error. For the sake of interpretability, we also present each

model’s MAPE, which expresses the average percentage deviation between forecast and real-

ized outcomes. The MAPE formula is given by:

MAPEðmÞ ¼
1

T � ‘

XT� ‘

t¼1

ytþ‘ � ŷmtþ‘
ytþ‘

�
�
�
�

�
�
�
�: ð10Þ

MAPE is known to produce infinite or undefined values when the denominator of any

summation term in Eq 10 approaches zero [22]. This disadvantage did not apply to our analy-

sis since we had a minimum of 52 weekly ILI visits to the ED during the sample period.

Log score. The last performance metric in our analysis is a variant of the log score mea-

sure used to rank participants on the United States Centers for Disease Control (US CDC) flu

forecasting challenge [23]. The log score of a forecast measures how much probability our

model assigns to an “acceptable” prediction range. While MAE, RMSE, and MAPE relate to a

model’s prediction accuracy, log scoring assesses the confidence that the model’s probabilistic

forecast falls within a tolerance level.

We defined a prediction as acceptable if it fell within ± 25 visits of the realized weekly ILI

positive weekly count. Since we compare a mix of parametric and non-parametric models, we

approximate the probability assigned to the acceptable range by the count of centiles of the

forecast inside the range. That is, the log score of a ℓ weeks ahead prediction from model m at

week t is computed as follows:

log scoreðŷmtþ‘Þ ¼ log
1

98

X98

c¼1

1ðytþ‘ þ 25 � ŷmc;tþ‘ � ytþ‘ � 25Þ

 !

; ð11Þ

where ŷmc;tþ‘ is the c centile of the (probabilistic) forecast generated by model m. In the event

the observed ILI visits fell below the first centile or above the 99th centile, we assigned the

value −5 to the log score, which is slightly lower than log(0.01)� − 4.6.
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Descriptive statistics

Table 1 summarizes key variables used in the analysis. The high visit volume ED at ACH

received on average 208 ILI positive visits per week during the sample period. This average

increased almost 60% to 332 ILI positive visit counts during high visit volume weeks—i.e.

those on the top 25% of ILI visit counts—within each season. This increased pattern was also

visible for lab confirmed cases of different virus strains, except for rhino/enteroviruses which

varied less predictably throughout the flu season. The last column of Table 1 shows the t statis-

tic for the difference in means between high and low visit volume weeks—i.e. weeks on the

bottom 75% of ILI visit counts—within each season. In addition to the mechanical increase in

ILI during high volume weeks, we see as expected lower temperatures during high volume

weeks, but little evidence of differences in patient demographic characteristics and flu immu-

nization rates by visit volume.

Results

Stacked ensemble weights

Table 2 shows the optimal weights derived from the data through Eq 7. In all flu seasons and

all forecast targets, the ensemble draws information from at least three of the individual mod-

els for its prediction. While the principle of ensembling is combining rather than selecting

models, the weights obtained suggest ARIMA offers little contribution to the SE forecast.

Overall comparison

We compared each model’s performance metrics over all prediction targets. Figs 1 and 2 show

the MAE and RMSE of all models for the 1 to 4 weeks ahead predictions. These figures

Table 1. Descriptive statistics.

Sample!

# Variable

All weeks (N = 348) High volume (N = 89) Low volume (N = 259) High-Low Volume

Mean Sd Mean Sd Mean Sd t stat

ILI-related variables
ILI count 208.42 107.06 332.90 103.02 165.65 67.94 17.37���

Influenza A H1N1 count 9.36 28.68 28.71 50.85 2.71 7.12 8.02���

Influenza A H3 count 13.74 34.71 42.09 58.51 4.00 8.95 10.16���

Influenza B count 8.07 17.05 18.10 27.34 4.63 9.47 6.84���

Rhino/Enterovirus count 23.82 12.01 20.65 8.54 24.90 12.83 -2.91���

RSV count 13.44 20.05 33.65 25.40 6.49 11.47 13.65���

Environmental variables
Minimum temperature -5.86 11.24 -15.56 8.59 -2.53 10.05 -10.94���

Maximum temperature 17.01 9.94 9.20 7.08 19.70 9.35 -9.68���

Female rate 0.43 0.04 0.44 0.03 0.43 0.04 2.18��

Age 0-1 rate 0.42 0.06 0.41 0.07 0.43 0.06 -1.76�

Age 2-4 rate 0.32 0.04 0.33 0.03 0.32 0.05 3.55���

Age 5-8 rate 0.16 0.04 0.17 0.05 0.16 0.04 1.98��

Age 9-17 rate 0.09 0.03 0.08 0.03 0.10 0.03 -4.30���

Immunization rate 0.23 0.05 0.22 0.05 0.23 0.05 -0.96

Notes. (1) � p<.1, �� p<.05, ��� p<.001. (2) Except for temperature information, all data is derived from visits screened ILI positive at the ACH ED. (3) The label “high

volume” applies to weeks on the top 25% of ILI counts within each season. (4) Weekly counts of virus strains/subtypes represent the subset of ILI positive visits with lab

confirmed diagnostics. (5) Each minimum/maximum temperature observation is a weekly average of daily temperature records. (6) Immunization rates represent the

fraction of ILI positive visits of patients who received flu immunization within the last 365 days.

https://doi.org/10.1371/journal.pone.0241725.t001
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illustrate how predictions worsen as we look further into the future. Both MAE and RMSE

yield the same ordering of model performance, except for a higher RMSE on the 3 and 4 weeks

forecast of the EB model. This suggests EB predictions are farther from the truth on the longer

forecast horizons. Figs 1 and 2 also highlight the fact that predictions which draw information

solely on the trajectory of ILI (EB and ARIMA forecasts) perform considerably worse than pre-

dictions which additionally model the relationship between ILI and environmental factors

such as temperature and immunization rates. Fig 3 shows the best performing model’s (SE)

predictions deviate from the observed ILI count by an average of 12% for 1 week ahead and

19% for 4 weeks ahead predictions, in absolute terms.

This overall comparison of models suggests the SE was competitive across all performance

metrics and all prediction targets. Predicted counts generated by this approach deviated, on

average, by 30 and 50 weekly ILI visits in the nearest 1 week and farthest 4 weeks ahead targets,

respectively. In fact, forecasts generated by combining predictions from various models are

gaining traction as they tend to be on average more accurate than the individual models they

combine.

Flu season breakdowns

The results presented in the overall comparison subsection paint a general picture about each

model’s ability to predict future ILI weekly counts. Table 3 provides a more granular perspec-

tive by examining model performance separately for each season. Table columns alternately

report the models’ mean log score for each season. The SE outperforms individual models for

the 1 and 2 weeks ahead forecast, falling slightly behind the QRF on the more distant forecasts.

Table 2. Stacked ensemble weights.

Flu Season!

#Model

2012-2013 2013-2014 2014-2015 2015-2016 2016-2017 2017-2018 2018-2019

1-wk forecast
Empirical Bayes 0.47 0.25 0.20 0.14 0.54 0.33 0.29

ARIMA 0.08 0.00 0.00 0.00 0.08 0.01 0.00

Quantile Regression Forest 0.16 0.28 0.49 0.64 0.15 0.23 0.39

Linear Regression 0.29 0.47 0.32 0.22 0.23 0.42 0.32

2-wks forecast
Empirical Bayes 0.22 0.48 0.28 0.22 0.15 0.38 0.18

ARIMA 0.00 0.01 0.00 0.00 0.00 0.10 0.04

Quantile Regression Forest 0.56 0.17 0.25 0.48 0.64 0.11 0.25

Linear Regression 0.23 0.34 0.47 0.30 0.21 0.40 0.53

3-wks forecast
Empirical Bayes 0.17 0.14 0.47 0.27 0.20 0.15 0.48

ARIMA 0.03 0.01 0.09 0.04 0.02 0.00 0.10

Quantile Regression Forest 0.46 0.62 0.15 0.25 0.44 0.57 0.13

Linear Regression 0.34 0.24 0.29 0.44 0.34 0.28 0.30

4-wks forecast
Empirical Bayes 0.28 0.18 0.08 0.38 0.25 0.23 0.19

ARIMA 0.04 0.01 0.00 0.25 0.20 0.16 0.10

Quantile Regression Forest 0.24 0.50 0.68 0.25 0.22 0.34 0.44

Linear Regression 0.43 0.32 0.24 0.12 0.33 0.27 0.27

Notes. Reported values are rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0241725.t002
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Table 4 reports for each model and flu season the percentage of predictions that fall within

20% of the observed weekly counts on short-term, 1 week ahead, forecasts. Each column repre-

sents a prediction target for a specific flu season. The SE method produced the highest percent-

age of predictions within 20% of observed visit counts in more seasons than any other model,

also ranking highest on the last two columns aggregating predictions over all seasons.

Prediction interval coverage rate

Each model uses a different approach when characterizing the uncertainty of the predictions.

Constructing prediction intervals for the ARIMA and LR models is straightforward and fol-

lows from estimates of the standard error of the prediction. Meanwhile the EB estimates have a

prediction interval computed from quantiles of the posterior distribution and the QRF predic-

tion interval stems from quantiles of the output from individual regression trees. Lastly the

interval around the SE estimate (as well as naive ensemble) is a back-of-the-envelope calcula-

tion from weighting the quantiles of the predictions from individual models.

We assessed the coverage of each model’s prediction interval on the complete test seasons

from 2012-13 to 2017-18. Fig 4 shows, for each model and flu season, the 1 week ahead predic-

tion against the realized ILI visit counts in that week. The shaded region corresponds to a 90%

prediction interval generated by the model and the coverage rate refers to the percentage of

Fig 1. MAE comparison for test seasons 2012-2018.

https://doi.org/10.1371/journal.pone.0241725.g001
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observed weekly ILI visits that falls inside the model’s prediction interval. The figures show

ARIMA prediction intervals had the lowest coverage, potentially since uncertainty associated

with the STL decomposition was ignored. Except for ARIMA and the EB model, the coverage

rates of models were slightly higher than 90% and as such the intervals on our most competi-

tive models can be viewed as conservative estimates.

Alternative data set

We evaluated whether our findings were robust to using data from the lower visit volume ED

at FMC hospital, located in the vicinity of ACH in Calgary, Alberta. S2 Fig shows the RMSE of

each model when trained and evaluated on data from the FMC ED. Results were qualitatively

consistent with those in the main dataset, with the SE still outperforming the individual mod-

els. In addition to lower visit volumes, the FMC ED caters to an adult population, in contrast

to the children’s hospital used in the main analysis.

Discussion

We tested the performance of multiple models for predicting ILI visits at the ED level. Our

findings promote stacked ensembling—a data-driven model averaging method—as a viable

Fig 2. RMSE comparison for test seasons 2012-2018.

https://doi.org/10.1371/journal.pone.0241725.g002
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approach for short term forecasts of weekly ILI visits. We show, through various exercises

comparing model performance, that our SE prediction leverages the strength of individual

models and therefore provides a robust estimate on both short-term (1 week) and longer-term

(4 weeks) forecast horizons.

Previous research on forecasting ILI have discussed potential improvements of incorporat-

ing demographic and spatial information into the statistical models. We found no evidence of

such improvements in our research design, possibly due to small sample size and the potential

for overfitting when including additional predictors. Instead, our preferred model required

only ED-level weekly data on ILI positive patient counts, the rate of these patients who were

immunized in the past and current season, and temperature and population data which are

typically available in urban areas. In addition, the tested models are easily implementable with

free software for statistical computing.

We found that the predictions from our SE outperformed those of individual models in two

distinct EDs located in Calgary, Alberta. Future work should seek refinements in the ensem-

bling methodology. For instance, as the relative performance of each model may vary within

a flu season, the SE can be refined by allowing weights to vary throughout the weeks. Other

improvements may be achieved by including a larger sample of hospitals in the province and

attempting to model cross effects of ILI visits in an ED on the prediction of ILI for neighboring

Fig 3. MAPE comparison for test seasons 2012-2018.

https://doi.org/10.1371/journal.pone.0241725.g003
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Table 3. Mean log score of each model, by flu season and forecast horizon.

Flu Season!

#Model

2012-13 2013-14 2014-15 2015-16 2016-17 2017-18 2018-19 All Seasons

1 week ahead forecast

Empirical Bayes -1.13 -1.01 -1.31 -1.54 -1.11 -1.12 -2.47 -1.27

ARIMA -2.10 -1.81 -1.77 -1.59 -1.66 -1.46 -4.42 -1.88

Quantile Regression Forest -1.10 -0.94 -1.14 -1.11 -1.21 -1.26 -2.87 -1.22

Linear Regression -1.17 -0.95 -1.18 -1.53 -1.08 -1.06 -2.63 -1.24

Stacked Ensemble -0.96 -0.89 -1.06 -1.10 -1.02 -0.99 -2.24 -1.07

Naive Ensemble -1.02 -0.92 -1.05 -1.10 -1.03 -0.98 -2.58 -1.10

2 weeks ahead forecast

Empirical Bayes -1.39 -1.18 -1.39 -1.58 -1.52 -1.37 -2.77 -1.48

ARIMA -2.66 -2.62 -1.53 -1.97 -2.27 -1.56 -5.84 -2.31

Quantile Regression Forest -1.20 -1.10 -1.27 -1.26 -1.32 -1.41 -3.51 -1.38

Linear Regression -1.24 -1.20 -1.41 -1.63 -1.43 -1.20 -3.83 -1.49

Stacked Ensemble -1.15 -1.10 -1.18 -1.26 -1.22 -1.12 -3.35 -1.29

Naive Ensemble -1.21 -1.18 -1.14 -1.21 -1.21 -1.08 -3.39 -1.29

3 weeks ahead forecast

Empirical Bayes -1.60 -1.42 -1.95 -1.83 -1.72 -1.35 -3.42 -1.74

ARIMA -3.28 -3.26 -1.93 -2.32 -2.86 -1.57 -5.71 -2.71

Quantile Regression Forest -1.19 -1.14 -1.34 -1.36 -1.32 -1.47 -3.19 -1.41

Linear Regression -1.41 -1.38 -1.38 -1.80 -1.67 -1.33 -5.07 -1.69

Stacked Ensemble -1.24 -1.11 -1.38 -1.46 -1.38 -1.26 -3.57 -1.43

Naive Ensemble -1.37 -1.32 -1.27 -1.39 -1.39 -1.19 -4.00 -1.47

4 weeks ahead forecast

Empirical Bayes -1.78 -1.58 -1.84 -1.97 -1.84 -1.52 -3.62 -1.86

ARIMA -3.95 -3.82 -1.94 -2.55 -3.05 -1.81 -6.66 -3.06

Quantile Regression Forest -1.24 -1.14 -1.29 -1.44 -1.34 -1.41 -3.02 -1.41

Linear Regression -1.54 -1.45 -1.43 -1.77 -1.78 -1.43 -5.04 -1.76

Stacked Ensemble -1.40 -1.21 -1.25 -1.53 -1.53 -1.27 -3.59 -1.49

Naive Ensemble -1.45 -1.38 -1.27 -1.51 -1.53 -1.27 -4.18 -1.55

Notes. Due to data availability, the 2018 season uses only 14 weeks of data, starting from epiweek 37 or approximately mid September.

https://doi.org/10.1371/journal.pone.0241725.t003

Table 4. Percentage of 1 week ahead predicted ILI visits within 20% of observed visits, by flu season.

Flu Season!

#Model

2012-13 2013-14 2014-15 2015-16 2016-17 2017-18 2018-19 All Seasons

All weeks in sample

Empirical Bayes 76.7 76.7 69.8 67.4 79.1 88.4 80.0 76.6

ARIMA 48.8 58.1 74.4 79.1 76.7 86.0 66.7 70.3

Quantile Regression Forest 60.5 88.4 69.8 79.1 86.0 90.7 60.0 78.0

Linear Regression 67.4 83.7 74.4 74.4 81.4 93.0 66.7 78.4

Stacked Ensemble 79.1 83.7 79.1 72.1 86.0 95.3 80.0 82.4

Naive Ensemble 72.1 83.7 74.4 69.8 83.7 95.3 73.3 79.5

High volume weeks

Empirical Bayes 63.6 83.3 90.9 81.8 81.8 90.9 100.0 83.1

ARIMA 54.5 58.3 81.8 81.8 72.7 90.9 75.0 73.2

Quantile Regression Forest 72.7 83.3 90.9 90.9 81.8 100.0 25.0 83.1

Linear Regression 63.6 100.0 72.7 81.8 90.9 100.0 75.0 84.5

Stacked Ensemble 81.8 83.3 90.9 90.9 90.9 100.0 75.0 88.7

Naive Ensemble 81.8 91.7 90.9 81.8 81.8 100.0 75.0 87.3

Notes. (1) Due to data availability, the 2018 season uses only 14 weeks of data, starting from epiweek 37 or approximately mid September.

https://doi.org/10.1371/journal.pone.0241725.t004
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Fig 4. Predicted vs observed ILI visits for 1 week forecast. A: Empirical Bayes. B: Quantile Regression Forest. C: Linear Regression. D: ARIMA. E:

Stacked Ensemble. F: Naive Ensemble.

https://doi.org/10.1371/journal.pone.0241725.g004
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EDs. This could potentially improve predictive power at lower visit volume EDs where out-

break detection could be of relevance.

Supporting information

S1 Fig. RMSE comparison for quantile regression forests with added features. Notes. (1)

Data from weekly ILI visits at the ACH. (2) The Baseline QRF is described in section 2.2; the

other QRF specifications build on the Baseline. E.g., Sex means we disaggregate weekly ILI

counts by male and female patients. (3) Calculation of RMSE uses 42 weeks on each test season

of the ACH data, starting from epiweek 37 or approximately mid September. (4) Due to data

availability, the 2018 season uses only 14 weeks of data, also starting from epiweek 37.

(TIF)

S2 Fig. RMSE comparison for test seasons 2012-2018 (FMC hospital).

(TIF)

S1 Data.

(ZIP)
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3. Viboud C, Boëlle PY, Carrat F, Valleron AJ, Flahault A. Prediction of the spread of influenza epidemics

by the method of analogues. American Journal of Epidemiology. 2003; 158(10):996–1006. https://doi.

org/10.1093/aje/kwg239

4. Kandula S, Yamana T, Pei S, Yang W, Morita H, Shaman J. Evaluation of mechanistic and statistical

methods in forecasting influenza-like illness. Journal of The Royal Society Interface. 2018; 15

(144):20180174. https://doi.org/10.1098/rsif.2018.0174

5. Ward MA, Stanley A, Deeth LE, Deardon R, Feng Z, Trotz-Williams LA. Methods for detecting seasonal

influenza epidemics using a school absenteeism surveillance system. BMC public health. 2019; 19

(1):1232. https://doi.org/10.1186/s12889-019-7521-7

PLOS ONE An ensemble method for forecasting influenza-like illness activity in hospitals

PLOS ONE | https://doi.org/10.1371/journal.pone.0241725 March 22, 2021 14 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0241725.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0241725.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0241725.s003
https://doi.org/10.1016/j.vaccine.2007.03.046
http://www.ncbi.nlm.nih.gov/pubmed/17544181
https://doi.org/10.1093/aje/kwg239
https://doi.org/10.1093/aje/kwg239
https://doi.org/10.1098/rsif.2018.0174
https://doi.org/10.1186/s12889-019-7521-7
https://doi.org/10.1371/journal.pone.0241725


6. Yang W, Olson DR, Shaman J. Forecasting influenza outbreaks in boroughs and neighborhoods of

New York City. PLoS computational biology. 2016; 12(11). https://doi.org/10.1371/journal.pcbi.

1005201 PMID: 27855155

7. Krishnamurti TN, Kishtawal CM, Zhang Z, LaRow T, Bachiochi D, Williford E, et al. Multimodel ensem-

ble forecasts for weather and seasonal climate. Journal of Climate. 2000; 13(23):4196–4216. https://

doi.org/10.1175/1520-0442(2000)013%3C4196:MEFFWA%3E2.0.CO;2

8. Ray EL, Reich NG. Prediction of infectious disease epidemics via weighted density ensembles. PLoS

computational biology. 2018; 14(2):e1005910. https://doi.org/10.1371/journal.pcbi.1005910

9. Brooks LC, Farrow DC, Hyun S, Tibshirani RJ, Rosenfeld R. Flexible modeling of epidemics with an

empirical Bayes framework. PLoS computational biology. 2015; 11(8):e1004382. https://doi.org/10.

1371/journal.pcbi.1004382

10. Farrow D. Modeling the past, present, and future of influenza. Phd thesis. 2016;.

11. Arnold TB, Tibshirani RJ. Path algorithm for generalized lasso problems; 2020.

12. Hyndman RJ, Athanasopoulos G, Bergmeir C, Caceres G, Chhay L, O’Hara-Wild M, et al. Forecasting

functions for time series and linear models; 2020.

13. Hyndman RJ, Khandakar Y. Automatic time series for forecasting: the forecast package for R. Monash

University, Department of Econometrics and Business Statistics; 2007.

14. Breiman L. Random forests. Machine learning. 2001; 45(1):5–32. https://doi.org/10.1023/

A:1010933404324

15. Meinshausen N. Quantile regression forests; 2016.

16. Grolemund G, Wickham H. Dates and times made easy with lubridate. Journal of statistical software.

2011; 40(3):1–25. https://doi.org/10.18637/jss.v040.i03

17. Kuhn M. Building predictive models in R using the caret package. Journal of statistical software. 2008;

28(5):1–26. https://doi.org/10.18637/jss.v028.i05

18. Meinshausen N. Quantile regression forests. Journal of Machine Learning Research. 2006; 7

(Jun):983–999.

19. Dormann CF, Calabrese JM, Guillera-Arroita G, Matechou E, Bahn V, Bartoń K, et al. Model averaging

in ecology: A review of Bayesian, information-theoretic, and tactical approaches for predictive inference.

Ecological Monographs. 2018; 88(4):485–504. https://doi.org/10.1002/ecm.1309

20. Claeskens G, Magnus JR, Vasnev AL, Wang W. The forecast combination puzzle: A simple theoretical

explanation. International Journal of Forecasting. 2016; 32(3):754–762. https://doi.org/10.1016/j.

ijforecast.2015.12.005

21. Claeskens G, Hjort NL. Model selection and model averaging. Cambridge Books. 2008;.

22. Kim S, Kim H. A new metric of absolute percentage error for intermittent demand forecasts. Interna-

tional Journal of Forecasting. 2016; 32(3):669–679. https://doi.org/10.1016/j.ijforecast.2015.12.003

23. Gneiting T, Raftery AE. Strictly proper scoring rules, prediction, and estimation. Journal of the American

statistical Association. 2007; 102(477):359–378. https://doi.org/10.1198/016214506000001437

PLOS ONE An ensemble method for forecasting influenza-like illness activity in hospitals

PLOS ONE | https://doi.org/10.1371/journal.pone.0241725 March 22, 2021 15 / 15

https://doi.org/10.1371/journal.pcbi.1005201
https://doi.org/10.1371/journal.pcbi.1005201
http://www.ncbi.nlm.nih.gov/pubmed/27855155
https://doi.org/10.1175/1520-0442(2000)013%3C4196:MEFFWA%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013%3C4196:MEFFWA%3E2.0.CO;2
https://doi.org/10.1371/journal.pcbi.1005910
https://doi.org/10.1371/journal.pcbi.1004382
https://doi.org/10.1371/journal.pcbi.1004382
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.18637/jss.v040.i03
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1002/ecm.1309
https://doi.org/10.1016/j.ijforecast.2015.12.005
https://doi.org/10.1016/j.ijforecast.2015.12.005
https://doi.org/10.1016/j.ijforecast.2015.12.003
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1371/journal.pone.0241725

