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Postoperative cognitive dysfunction (POCD), a long-lasting cognitive decline after surgery, is currently a major clinical problem
with no clear pathophysiological mechanism or effective therapy. Accumulating evidence suggests that neuroinflammation plays
a critical role in POCD. After surgery, alarmins are leaked from the injury sites and proinflammatory cytokines are increased in
the peripheral circulation. Neurons in the hippocampus, which is responsible for learning and memory, can be damaged by
cytokines transmitted to the brain parenchyma. Microglia, bone marrow-derived macrophages, mast cells, and T cells in the
central nervous system (CNS) can be activated to secrete more cytokines, further aggravating neuroinflammation after surgery.
Conversely, blocking the inflammation network between these immune cells and related cytokines alleviates POCD in
experimental animals. Thus, a deeper understanding of the roles of immune cells and the crosstalk between them in POCD may
uncover promising therapeutic targets for POCD treatment and prevention. Here, we reviewed several major immune cells and
discussed their functional roles in POCD.

1. Introduction

Postoperative cognitive dysfunction (POCD) refers to a long-
lasting cognitive decline after surgery, characterized by
impaired concentration, memory, and learning, which can
be detected by a battery of neuropsychological tests [1]. The
incidence of POCD is 7 to 26% after major noncardiac sur-
gery and even higher in patients older than 60 years [1, 2].
POCD not only diminishes the patient’s quality of life and
imposes a serious burden on healthcare costs but also
increases mortality [3]. Although several risk factors for
POCD have been identified, the pathophysiological mecha-
nism underlying POCD remains unclear and no effective
therapies have been developed to date.

A large number of studies conducted in patients have
revealed thatPOCDisassociatedwithelevated levels ofplasma
inflammatory cytokines, including tumor necrosis factor-
(TNF-) α and interleukin- (IL-) 6 [4–7]. IL-1β and IL-6 levels
in the cerebrospinal fluid (CSF) of patients with POCD are
higher than those of patients with normal cognitive function

after surgery [8, 9]. The learning and memory function was
also impaired by surgery and anesthesia in experimental ani-
mals, accompanied by the upregulation of proinflammatory
cytokine levels inboth thebloodand thebrain [10–13].Neuro-
inflammation, particularly in the hippocampus, has been
proved to be one of the main causes of POCD [14–17]. The
activation of microglia and other blood-derived immune cells
orchestrates neuroinflammation and subsequent neuronal
damage [14–17]. In this review, we discuss the main types of
immune cells involved in POCD and their possible roles. We
describe their functions in neuroinflammation, put forth a
possiblemechanism of their involvement in POCD, and point
out the fields that need further exploration.

2. Immune Cells in POCD

2.1. Microglia. Microglia are highly specialized tissue-
resident macrophages in the central nervous system (CNS)
and the major resident immune cells of the brain [18].
Microglia are the only CNS cells originating from
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hematopoiesis. Primitive macrophage progenitors in the yolk
sac colonize the CNS and differentiate into mature microglia,
confined behind the blood-brain barrier (BBB) [19]. Unlike
other tissue macrophages, such as Kupffer cells in the hepatic
sinusoids, which need to be renewed from bone marrow
progenitors, microglia are capable of local expansion and
maintenance throughout life without reconstitution from
the bone marrow [20].

In healthy brains, microglia are ramified and in a resting
state, monitoring the local microenvironment and detecting
CNS damage [21]. Danger signals, including pathogen
invasion, injury, and abnormal protein accumulation, can
trigger microglia transformation into an activated amoeboid
shape. Activated microglia are both neuroprotective and
neurotoxic. Studies in adult and neonatal hypoxic-ischemic
injury models have shown that a complete blockade of
microglial activity exacerbates brain damage [22, 23]. How-
ever, activated microglia can also produce excessive proin-
flammatory cytokines, leading to neuronal dysfunction and
death. Several neurodegenerative diseases, including Alzhei-
mer’s, Huntington’s, and Parkinson’s diseases, have been
proved to be associated with the hyperactivation of microglia
[24–26]. As a specific type of macrophages, activated microg-
lia can have one of the two different phenotypes: classically
activated M1 and alternatively activated M2 microglia. M1
microglia promote inflammation by secreting proinflamma-
tory cytokines such as IL-1α, IL-1β, and TNF. M2 microglia
elicit neuroprotective effects through the release of vascular
endothelial growth factor and extracellular matrix proteins
[27]. In Alzheimer’s disease (AD), amyloid β (Aβ) sensitizes
microglia to subsequent cytokine stimulation and M1 activa-
tion [28], whereas the induction of the M2 polarization of
microglia by drugs or adeno-associated viral vectors can
reduce Aβ deposition and relieve AD symptoms [29, 30].
In other neurological diseases, such as Parkinson’s disease
(PD), chronic cerebral hypoperfusion, traumatic brain
injury, and hepatic encephalopathy, the priming of micro-
glial polarization towards the M1 phenotype plays a pivotal
role in neuroinflammation [31–34].

After peripheral surgery, an immune challenge is trans-
mitted to the brain via multiple humoral and neural routes.
The integrity of the BBB can be disrupted by a systemic
inflammatory response or anesthesia during and after sur-
gery [11, 35, 36]. Adenosine triphosphate (ATP), alarmins,
and cytokines, which are leaked from an injury site or
increase in response to systemic inflammation, enter the
brain and activate microglia [11, 36–38]. Activated microglia
may impair learning and memory via the release of proin-
flammatory cytokines, among which IL-1β and TNF-α are
particularly important [38, 39]. Mild repeated stress or
systemic endotoxin challenge can trigger microglia to secrete
IL-1β and TNF-α [38, 40–42]. After surgery, aged rats and
mice demonstrated significant deficits in memory and learn-
ing, concurrent with the activation of microglia and
increased expression of TNF-α and IL-1β in the hippocam-
pus [43, 44]. Preemptively depleting microglia reduced
surgery-induced hippocampal inflammatory cytokine secre-
tion and attenuated the cognitive decline in mice [14]. IL-
1β and TNF-α can cause neuronal cell death, reduction of

acetylcholine release, and attenuation of glutamatergic
transmission, resulting in learning and memory deficits
[38, 40–42]. Neuroinflammation and POCD were mitigated
in IL-1R knockout mice or mice pretreated with an IL-1
receptor (IL-1R) antagonist compared with control mice
[10]. Furthermore, microglia can be activated by peripheral
TNF-α [38]. Preemptive treatment of anti-TNF antibody is
able to limit the release of IL-1 in the hippocampus and pre-
vent cognitive decline in a mouse model of POCD [11].
Therefore, microglia may respond to peripheral TNF-α,
secrete more TNF-α and IL-1β in the hippocampus, and
amplify neuroinflammation in POCD. Additionally, a study
also reported reduced infiltration of bone marrow-derived
monocytes into the hippocampus after microglial depletion,
suggesting crosstalk between microglia and bone marrow-
derived macrophages (BMDMs) in POCD [14].

No studies to date have reported the polarization of
microglia in POCD. However, the main cytokines
secreted by activated microglia in POCD are IL-1 and
TNF-α [14, 43, 44], suggesting the predominance of the
M1 state of microglia in POCD. Furthermore, the M2
response of microglia was impaired after brain ischemia
in aged mice [45]. Because older patients are particularly
susceptible to POCD, we speculate that the M1 pheno-
type of microglia plays a central role in neuroinflamma-
tion in POCD. Pharmacological approaches that have
been successfully used to modulate microglia polarization
in other neurological diseases may hold promise for
developing POCD treatments [32, 34].

In a synthesis of the existing microglia and POCD
research, we can draw a picture of howmicroglia may orches-
trate postoperative neuroinflammation in POCD. As the res-
ident immune cells of the brain parenchyma, microglia are
activated by proteins and other signals leaked from the injury
sites. The cytokines secreted from the microglia can directly
damage neurons and also recruit more immune cells from
the blood penetrating into the brain parenchyma, further
accelerating neuronal injury.

2.2. Bone Marrow-Derived Macrophages. Macrophages are
present in virtually all tissues. They differentiate from circu-
lating peripheral-blood mononuclear cells, which migrate
into tissues constitutively or in response to inflammation
[46]. In a healthy CNS, BMDMs are divided into three
classes according to their location: choroid plexus, menin-
geal, and perivascular macrophages [20]. These macro-
phages are exterior to the brain parenchyma, and their
population homeostasis is achieved by replacement from
blood-born monocytes. In disease states, BMDMs respond
to inflammation and migrate into the brain parenchyma
from the circulation.

BMDMs are a major component of the inflammatory
immune response to CNS diseases. Similar to microglia,
BMDMs have a proinflammatory M1 phenotype and an
anti-inflammatory M2 phenotype. M2 macrophages can be
beneficial for the healing of sterilized wounds, clearing
necrotic debris or abnormal proteins. In a spinal cord injury
model, macrophages played an anti-inflammatory role
during recovery [47]. Furthermore, numerous studies have
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suggested that BMDMs can infiltrate the brain, reduce the
Aβ plaque burden, and alleviate the cognitive decline in AD
[48, 49]. In a clinical study, transplantation of autologous
M2macrophages significantly improved motor and cognitive
activities in patients with severe cerebral palsy [50]. Other
reports, however, have indicated that macrophages mainly
play a detrimental role in CNS pathology. Penetration of
macrophages into the brain impaired spatial learning and
memory after traumatic brain injury in mice [51, 52]. In a
model of intracerebral hemorrhage, mice exhibited improved
motor function after the depletion of inflammatory mono-
cytes [53]. In addition, circulating monocytes or macro-
phages have been implicated in the exacerbation and
relapses of experimental autoimmune encephalitis (EAE) in
mice [54, 55].

BMDMs were found in the hippocampi of mice with
POCD [56]. Depletion of BMDMs attenuated surgery-
induced increases of the IL-6 levels in serum and the hippo-
campus, reduced hippocampal macrophage infiltration, and
prevented surgery-induced memory dysfunction [15]. Inhi-
biting the proinflammatory signaling pathway in BMDMs
or preserving the integrity of the BBB can also reduce the
infiltration of BMDMs in the hippocampus and prevent
POCD [56]. Furthermore, mice deficient in IL-6 exhibited
less IL-1β and TNF-α expression in the hippocampus and
better working memory [57]. These findings indicate that,
with the BBB integrity disrupted, BMDMs infiltrate into
the hippocampus and secrete proinflammatory cytokines,
exacerbating neuroinflammation in POCD.

The depletion of microglia has also been shown to pre-
vent BMDMs infiltrating the hippocampus without
impairing the capacity of monocytes to penetrate into
the brain [14]. Monocyte chemotactic protein-1 (MCP-1),
also known as CCL2, is a major chemoattractant to recruit
BMDMs [58]. Postoperative hippocampal MCP-1 levels
were reduced by the depletion of microglia [14] but not
BMDMs [15], indicating that microglia are the major
source of secreted MCP-1. Taken together, these studies
show that microglia attract BMDMs into the brain via
MCP-1 secretion after injury.

High-mobility group box 1 protein (HMGB1), a ubiqui-
tous nucleosomal protein, is passively released into the circu-
lation from damaged necrotic cells, and circulating HMGB1
levels increase after surgery [36, 59]. Blocking the HMGB1
function with a monoclonal antibody reduced the hippocam-
pal expression of MCP-1 and postoperative memory decline
in mice [60]. Furthermore, the depletion of BMDMs pre-
vented an HMGB1-mediated memory decline after surgery
[60]. Together with the previous studies, these results indi-
cate that HMGB1 may stimulate hippocampal microglia to
secrete MCP-1, enabling monocyte recruitment. Similar to
HMGB1, many cytokines can simulate microglia. In a model
of peripheral organ inflammation, microglia were stimulated
by peripheral TNF-α and attracted circulating monocytes
into the brain [61]. Moreover, plasma TNF-α levels were
upregulated early after aseptic surgery, and a blockade of
TNF-α prevented POCD in mice [11]. However, whether
the TNF-α/microglia/BMDM pathway is essential in the
pathogenesis of POCD is still unknown.

In summary, the activation of microglia and BMDM
recruitment play important roles in POCD. However, the
relationship between microglia and BMDMs in POCD needs
further investigation. The possibility of BMDM infiltration
into the CNS after surgery through other microglia-
independent pathways also needs exploration.

2.3. Mast Cells.Mast cells (MCs) are myeloid cells originating
from CD34+/CD117+ pluripotent progenitor cells [62]. MCs
contain many cytoplasmic granules, which store a number of
preformed mediators, including histamine, heparin, seroto-
nin, chymase, tryptase, prostaglandins, and leukotrienes.
MCs are best known for their roles in allergic disease and
host defense. Crosslinking immunoglobulin E (IgE) receptors
of MCs triggers the release of many allergic and inflamma-
tory mediators [63]. MCs are abundant within tissues
exposed to the external environment, such as the skin, gut,
and the respiratory tract. MCs are also present in the
CNS, mainly located in the perivascular spaces and along
the leptomeninges [64, 65]. Upon activation, MCs can
release the mediators and infiltrate into the brain paren-
chyma, participating in the pathophysiological processes
of various neurological diseases.

It is well established that MCs contribute to general vas-
cular permeability through the production of vasodilators,
such as histamine and serotonin. Ample evidence also exists
that the vasodilatory and proinflammatory mediators
released by MCs contribute to the impairment of the BBB
integrity (reviewed in [66]). For instance, histamine can open
the tight junctions between the endothelia in the BBB [67].
Proteinases secreted by MCs, including tryptase and gelati-
nase, can degrade protein constituents of the neurovascular
matrix, thus damaging the BBB [67]. In recent decades, stud-
ies have demonstrated that MCs play critical roles in the
disruption of the BBB and associated neurological diseases.
Acute stress increased the permeability of BBB through the
activation of MCs [68]. Furthermore, compared with wild-
type mice, MC-deficient mice showed decreased BBB perme-
ability, reduced T cell infiltration, and, consequently, less
severe EAE [69]. In addition, in a mouse model of brain
ischemia, animals that were deficient in MCs or treated with
the MC stabilizer Cromolyn exhibited improved BBB integ-
rity and reduced brain edema [70].

Studies have suggested that MCs are the predominant
cells that initiate glial activation. In a model of perinatal hyp-
oxia-ischemia, MCs were found to be the “first responders,”
with their activation preceding that of microglia [71]. In
addition, the clinical conditions of depression and mild neu-
rocognitive disorders are closely related to the malfunction of
the MC-glia crosstalk [72]. Microglia express a large variety
of proteins/receptors that can be activated by MC-secreted
mediators. For instance, tryptase can trigger microglia
activation through the proteinase-activated receptor 2
(PAR2) [73]. Furthermore, microglia express all four hista-
mine receptors (HRs) and can be activated by MCs via HRs
[74, 75]. Astrocytes also express PAR2 and HRs and can be
activated by MCs [76, 77]. The interactions between MCs
and glial cells are not restricted to the receptors mentioned
above (reviewed in [78]), and accumulating evidence
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Figure 1: Schematic diagram of immune cells in POCD. (a) Under a normal condition, neurons are normally functioning. Microglia are
ramified and in a resting state. The BBB is intact. Monocytes, mast cells, and T cells are restricted outside the brain parenchyma. (b) After
surgery, many cytokines are released from the injured sites and damage the BBB. Microglia are triggered by these cytokines and turned
into an activated, amoeboid shape. Microglia-secreted cytokines can damage neurons and also recruit BMDMs and other inflammatory
cells from the blood. BMDMs and MCs infiltrate into the brain parenchyma and release more cytokines, which can directly damage
neurons and also activate microglia. Cytokines secreted by T cells also participate in neuroinflammation in POCD. The immune cells and
cytokines compose an inflammation network that aggravates neural damage, leading to POCD. POCD: postoperative cognitive
dysfunction; BBB: blood-brain barrier; BMDM: bone marrow-derived macrophage; MC: mast cell.
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indicates that MCs and glial cells work in concert to promote
neuroinflammation [78].

While numerous studies in rodents have explored the role
of MCs in neurological diseases, relatively few have focused
on MC function in POCD. Surgery was found to induce
MC degranulation in mice [79]. Rats treated with theMC sta-
bilizer Cromolyn showed less severe cognitive deficits after
surgery, accompanied by increased BBB stability [16] and
reduced microglia and astrocyte activation [79, 80]. There-
fore, via disrupting BBB and activating microglia, MCs pro-
mote neuroinflammation in POCD. In the studies of MCs
in POCD, Cromolyn was administered intracerebroventricu-
larly [16, 79, 80]; the therapeutic efficacy of Cromolyn admin-
istered via other routes remains to be established. Masitinib,
an oral selective tyrosine-kinase inhibitor, can effectively
inhibit the survival, migration, and activity of MCs. In a clin-
ical trial, masitinib slowed the cognitive decline in patients
with AD [81]. The effectiveness of masitinib in the treatment
and prevention of POCD also needs further investigation.

2.4. T Cells. The thymus-derived T cells constitute key players
in antigen-specific immune responses. T cells are divided
into three main functional subsets: CD8 cells, also known
as cytotoxic T cells; helper CD4 cells (Th cells); and regula-
tory CD4 cells (Treg cells). In healthy noninflamed CSF,
90% of the total cells are T cells, predominantly CD4 cells
[82]. In a pathological state, T cells can penetrate into the
brain parenchyma. Multiple studies have shown the impor-
tance of T cells in autoimmune and virus infectious neuro-
logical diseases, such as multiple sclerosis and herpes
simplex virus encephalitis [83]. Recently, the roles of T cells
in neurodegenerative diseases have also received much atten-
tion. The activation of Th cells enhances the loss of dopami-
nergic neurons in a mouse model of PD [84], while Treg cells
provide neuroprotection through the attenuation of micro-
glial activation in this disorder [85].

There is no direct evidence of T cells participating in the
pathological process of POCD. One study demonstrated that
surgery-induced cognitive impairment in mice was accompa-
nied by upregulation of IL-17 and downregulation of IL-10
expression,mainly inTh17 (a subset ofThcells) andTreg cells,
respectively [17]. This study proposed the possibility that a T
cell-subtype imbalance may contribute to POCD. More
evidence is needed to uncover the role of T cells in POCD.

3. Conclusion

While a plethora of studies have suggested that immune cells
trigger neuroinflammation in response to surgery leading to
POCD, the neurobiological basis of POCD remains
unknown (Figure 1). As the major resident immune cells in
the CNS, microglia are activated by proteins released from
the injury sites and circulating cytokines upregulated by sur-
gery. The activation of microglia results in neuronal damage
via the release of proinflammatory cytokines. Circulating
BMDMs are recruited into the brain in response to surgery,
a process that may be initiated by microglia-secreted MCP-
1. The degranulation of MCs contributes to BBB disruption

and the activation of microglia, further aggravating POCD.
T cells may also be involved in POCD.

These immune cells interact with one another in the
pathogenesis of POCD. Different elements of the resulting
network of neuroinflammation may serve as targets in the
prevention and treatment of POCD. First, cytokines leaking
from the injury site are the primary trigger of the immune
response in the CNS. Thus, approaches that inhibit cytokine
release may prevent POCD. Second, microglia occupy the
central position of the inflammatory network; hence, drugs
that stabilize microglia or promote their transition to the
M2 state may have beneficial effects. Third, other circulating
immune cells penetrating into the brain parenchyma and
secreting inflammatory cytokines exacerbate neuroinflam-
mation. Therefore, therapies that reduce cytokine secretion
by these immune cells may also be effective for treating
POCD. Studies in rodents using blocking antibodies and
other agents interfering with the neuroinflammation net-
work have provided proof of concept for these strategies as
POCD treatments [10, 11, 15, 17, 56, 60, 79, 80]. However,
their feasibility in humans still needs to be validated. Further
research on the mechanisms of immune cell involvement in
POCD is urgently required to identify other potential targets
for POCD treatment and prophylaxis.
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