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Cognitive motor dissociation describes a subset of patients with disorders of consciousness who show neuroimaging evidence of

consciousness but no detectable command-following behaviours. Although essential for family counselling, decision-making, and

the design of rehabilitation programmes, the prognosis for patients with cognitive motor dissociation remains under-investigated.

The current study included 78 patients with disorders of consciousness who showed no detectable command-following behaviours.

These patients included 45 patients with unresponsive wakefulness syndrome and 33 patients in a minimally conscious state, as

diagnosed using the Coma Recovery Scale-Revised. Each patient underwent an EEG-based brain-computer interface experiment, in

which he or she was instructed to perform an item-selection task (i.e. select a photograph or a number from two candidates).

Patients who achieved statistically significant brain-computer interface accuracies were identified as cognitive motor dissociation.

Two evaluations using the Coma Recovery Scale-Revised, one before the experiment and the other 3 months later, were carried

out to measure the patients’ behavioural improvements. Among the 78 patients with disorders of consciousness, our results showed

that within the unresponsive wakefulness syndrome patient group, 15 of 18 patients with cognitive motor dissociation (83.33%)

regained consciousness, while only five of the other 27 unresponsive wakefulness syndrome patients without significant brain-com-

puter interface accuracies (18.52%) regained consciousness. Furthermore, within the minimally conscious state patient group, 14

of 16 patients with cognitive motor dissociation (87.5%) showed improvements in their Coma Recovery Scale-Revised scores,

whereas only four of the other 17 minimally conscious state patients without significant brain-computer interface accuracies

(23.53%) had improved Coma Recovery Scale-Revised scores. Our results suggest that patients with cognitive motor dissociation

have a better outcome than other patients. Our findings extend current knowledge of the prognosis for patients with cognitive

motor dissociation and have important implications for brain-computer interface-based clinical diagnosis and prognosis for

patients with disorders of consciousness.
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Introduction
Much effort has been made over the past decade to detect

residual brain function in patients with disorders of con-

sciousness such as unresponsive wakefulness syndrome

(UWS, also known as vegetative state) and minimally con-

scious state (MCS) (Fernandez-Espejo and Owen, 2013;

Giacino et al., 2014; Noirhomme et al., 2017). Patients with

UWS have no consciousness of the environment or them-

selves, while patients with MCS show inconsistent but repro-

ducible signs of awareness through their behavioural

responses (Giacino et al., 2004). In 2006, Owen and col-

leagues identified one UWS patient with clear consciousness

by demonstrating command-following brain activation

(Owen et al., 2006). Subsequent studies by that team

showed that 20% of UWS patients had clear brain activa-

tion patterns in response to specific active tasks (Monti

et al., 2010; Cruse et al., 2011). These findings led to a new

clinical entity named cognitive motor dissociation (CMD),

also known as functional locked-in syndrome; in this condi-

tion, patients show no detectable command-following behav-

iours, but there is clear neuroimaging evidence of command-

following brain activities (Schiff, 2015; Boly and Laureys,

2018). More importantly, one recent study showed that

there may be more patients with CMD in disorders of con-

sciousness (21 of 28) than are currently recognized (Curley

et al., 2018). With the detection of more CMD patients, the

prognosis of these patients has drawn increasing interest be-

cause of its crucial impact on family counselling, decision-

making and the design of rehabilitation programmes (Curley

et al., 2018). However, the prognosis for CMD patients

remains to be investigated.

Two methods are usually adopted to identify patients with

CMD. One involves mental imagery tasks in which patients

with disorders of consciousness are instructed to imagine

playing tennis or other activities (Owen et al., 2006; Cruse

et al., 2011; Goldfine et al., 2012; Claassen et al., 2019).

The datasets are subjected to offline analysis to discover

command-following brain activation patterns in patients

with disorders of consciousness, from which patients with

CMD are then identified. The other method is through a

brain-computer interface (BCI) (Lulé et al., 2013; Gibson

et al., 2016; Guger et al., 2018; Pan et al., 2018). BCIs are

designed to restore the communication ability of patients;

these tools involve real-time analysis and classification of

brain responses to command-following tasks that could re-

flect the user’s intention (Luaute et al., 2015). The com-

mand-following activation patterns are used to drive

computer interfaces to enable communication without be-

havioural responses (Chatelle et al., 2012). EEG-based BCIs,

which may rely on sensorimotor rhythms, P300, steady-state

evoked potentials, or slow cortical potentials, have been

used to detect command-following brain activation patterns

in patients with severe brain injuries, and can effectively

identify CMD patients (Gibson et al., 2016; Guger et al.,

2018; Pan et al., 2018). Compared with offline EEG data

analysis of mental imagery tasks, the online analysis-based

feedback of a BCI has the advantage of allowing the patients

to engage more directly with the tasks if they maintain

awareness (Gibson et al., 2016).

To explore the prognosis of CMD patients, EEG-based

BCIs were adopted in the current study to identify CMD

patients from 78 patients with disorders of consciousness

(45 UWS patients and 33 MCS patients). All patients were

assessed using the Coma Recovery Revised-Scale (CRS-R)

during the week before the experiment. None of the 78

patients showed detectable behavioural command-following

abilities. Regarding the definition of CMD, the underlying

assumption was that if the patients could follow the com-

mands to perform a cognitive task (e.g. recognize and select

a photograph) with significant accuracies using the BCI sys-

tem, they were considered to be conscious and thus defined

as CMD patients. Three BCI paradigms were carried out,

including photograph, number and audiovisual tasks (see

Fig. 1 for schemas of the experimental procedures). Each pa-

tient was enrolled in one experimental paradigm. A second
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CRS-R assessment was performed for each patient 3 months

after admission as an index of the patient’s outcome.

Finally, the outcomes of the CMD patients were compared

with those of the other patients. Patients with CMD were

hypothesized to show better recovery than non-CMD

patients, given that they are likely to have more preserved

high cognitive brain function and that such function is asso-

ciated with better recovery (Giacino and Whyte, 2005).

Materials and methods

Subjects

This study involved 78 patients with disorders of consciousness
(51 males and 27 females; 45 UWS and 33 MCS; mean age
37.87±14.28 years; Supplementary Table 1) at the General
Hospital of Guangzhou Military Command of People’s
Liberation Army, China, between October 2014 and August
2018. The following inclusion criteria were used: (i) a diagnosis
of UWS or MCS, with no detectable command-following behav-
iours observed during the week of admission (Bruno et al.,
2011); (ii) more than 1 month since a traumatic brain injury
(TBI), anoxic brain injury, or cerebrovascular disease; (iii) no
history of impaired visual acuity before brain injury; and (iv)
presence of a visual startle response according to the CRS-R
scale, or intact visual evoked potentials when a visual startle re-
sponse was not detected.

In addition, eight healthy volunteers with no history of
neurological disease [seven males; mean age ± standard devi-
ation (SD), 29.13 ±4.67 years] were included to verify the
performance of the BCIs (Chae et al., 2012). The present
study was approved by the Ethics Committee of the General
Hospital of Guangzhou Military Command in Guangzhou
and complied with the Code of Ethics of the World Medical
Association (Declaration of Helsinki). Written informed con-
sent was provided by each patient’s legal surrogate for the
experiments and for publication of the patient’s individual
details in this study.

Clinical evaluation

All patients were subjected to two CRS-R assessment periods:
one during the week before the experiment and another 3
months later. For each patient, a minimum of two CRS-R
assessments were performed by two experienced doctors
(blinded to the BCI results) in each assessment period. No sed-
ation was administered in the 24 h prior to CRS-R assessment
and the BCI experiment. In general, increasing CRS-R scores in-
dicate a trend towards an improvement in the level of conscious-
ness (Bagnato et al., 2015). CRS-R scores (Supplementary Table
1) at each period were based on the patient’s best responses dur-
ing the repeated CRS-R assessments. Considering the outcome
of the patients, UWS patients with an upgrade in their level of
consciousness (i.e. from UWS to MCS) were classified as ‘im-
provement’, while those without any upgrade were classified as
‘no improvement’. For MCS patients, patients with an increase
in their CRS-R scores were classified as ‘improvement’, while
those without an increase in their CRS-R scores were classified
as ‘no improvement’.

Brain-computer interface
experiments

BCI experiments were performed by several researchers who
were blinded to the patients’ CRS-R scores. In these BCI experi-
ments, the participants were instructed to focus on the target
stimulus and perform simple tasks. The BCI system was
designed to detect the target stimulus based on EEG signal
changes when participants performed the tasks. Patients with a
BCI accuracy significantly higher than the chance level were op-
erationally defined as CMD patients. Note that non-significant
BCI accuracy could not be used as definitive evidence for a non-
CMD state because false-negative findings in BCI experiments
are possible in some patients with disorders of consciousness,
and even in healthy subjects (Guger et al., 2009; Allison et al.,
2010). Thus, patients without significant BCI accuracies could
potentially be either non-CMD patients or CMD patients who
were not detected with our BCI method; for this reason, they
were labelled potential non-CMD patients. For BCI experi-
ments, we used a NuAmps device (Compumedics, Neuroscan,
Inc.) to collect EEG signals via a 30-channel cap (LT 37). EEG
signals from all electrodes were referenced to the right mastoid
and digitized at a sampling rate of 250 Hz. Electrode impedan-
ces were kept below 5 kX.

For each patient, the BCI experiment included a calibration
session and an online evaluation session. In the calibration ses-
sion, the patient performed 10 trials using the graphical user
interface (GUI) shown in Fig. 1. An initial support vector ma-
chine (SVM) classifier for P300 detection was trained on these
data. SVM models have been successfully applied for classifica-
tion in various domains of pattern recognition (Lotte et al.,
2007), including EEG classification in disorders of consciousness
(Goldfine et al., 2012; Henriques et al., 2014; Noirhomme
et al., 2017; Claassen et al., 2019). In an SVM, an optimal
hyperplane is found to separate two classes by maximizing the
margin from the nearest training points (Kaper et al., 2004;
Salvaris and Sepulveda, 2009). SVMs often show an advantage
over other classifier algorithms in generalization performance
and in cases where only small training datasets are available
(Yin and Hou, 2016). In the training data, a label of 1 was
assigned to the photograph-related P300 feature vector of the
target photograph, and a label of –1 was assigned to the feature
vector of the non-target. These P300 feature vectors and labels
were used to train a linear kernel SVM classifier implemented in
the LibSVM toolbox. All parameters were set to their default
values (Varoquaux et al., 2016). Note that the steady-state vis-
ual evoked potential (SSVEP) detection did not require a calibra-
tion process.

The online evaluation session contained five blocks of 10
trials. The initial classification model was updated after each
online evaluation block based on the data from the calibra-
tion session and the data collected online. Different blocks
were conducted on separate days because the patients were
easily fatigued and had a limited attention span. Each patient
performed five blocks of the experiment in approximately 1
week. During each trial, the patient was carefully monitored
by the researchers to ensure task engagement, as they would
sometimes fall asleep (close their eyes). Trials in which the
patient fell asleep were discarded, and the next trial started
after the patient awoke. On average, 0.74 trials were dis-
carded for each patient. Each patient completed 50 trials
while awake.
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After the online session, classification accuracy was calculated
as the ratio of the number of correct responses (hits) to the num-
ber of total trials. Statistical significance was assessed using v2

statistics. For a significance level of P = 0.05, we obtained a v2

value of 3.84, corresponding to 32 hits in 50 trials or a binary
choice accuracy of 64%.

Three hybrid BCIs were used in this study, including a hybrid
P300 and SSVEP BCI based on photograph stimuli (photograph
paradigm), a hybrid P300 and SSVEP BCI based on visual num-
ber stimuli (number paradigm), and an audiovisual BCI based
on audiovisual number stimuli (audiovisual paradigm). The ra-
tionale for using the three BCIs was 2-fold. First, the GUI for
each of these BCIs was similar, in which the patients were
instructed to focus on one of the two stimuli while ignoring the

other, therefore producing the same chance level (50%). Second,
using different stimuli may be beneficial to assess the prognostic
value of the BCI method for different patients with disorders of
consciousness. Some patients may be more interested in photo-
graphs, whereas numbers may be more attractive for other
patients. Furthermore, audiovisual stimuli may be suitable for
patients who have somewhat intact auditory and visual func-
tion, whereas single-modality visual stimuli may be more suit-
able for patients who lack auditory function but retain their
visual abilities.

Each patient participated in the visual photograph paradigm,
the number paradigm, or the audiovisual paradigm, as selected
by their family members. Note that for the audiovisual para-
digm, the patients also needed to show an auditory startle

Figure 1 Illustration of the experimental design and procedure. (A) Experimental design. In this study, each patient participated in the

BCI experiment based on the visual photograph paradigm, number paradigm, or audiovisual paradigm, as selected by his or her family members.

To qualify for the audiovisual paradigm, patients needed to have both audition and vision. Before the online experiment, each patient performed a

calibration run of 10 trials, from which we used the EEG data to train an initial P300 classification model. An online evaluation run contained five

blocks, and each block was composed of 10 trials. Different blocks were conducted on separate days because the patients were easily fatigued

and had limited attention span. The initial P300 classification model was updated after each block of online evaluation based on the online data.

(B) Experimental procedure for the photograph paradigm in one trial, including the instructions (0–8 s), stimuli (8–18 s), feedback of classification

results (18–22 s), and rest period (e.g. 22–32 s). Specifically, the patients were asked to focus on their own photographs or the photographs of

strangers in a random order. Each trial started with audiovisual instructions in Chinese: ‘Focus on your own photograph (or the stranger’s photo-

graph) and count the flashes of the photo frame’, which lasted for 8 s and indicated the target photograph. Next, the two photographs appeared,

one of which had a flashing frame. The flashing frame was chosen randomly and flashed five times. After 10 s, one of the two photographs identi-

fied by the BCI algorithm appeared in the centre of the GUI as feedback. If the result was correct, then a tick symbol, a positive audio feedback

clip of applause, and the detected photograph were given for 4 s to encourage the patient; otherwise, an ‘� ’ symbol and the detected photo-

graph were presented for 4 s. A short break of at least 10 s was provided between two adjacent trials, where the length of the break depended

on the patient’s level of arousal, i.e. the next trial began only when the patient was in a high level of arousal. (C) The experimental procedure for

the number paradigm was similar to that for the photograph paradigm except that the photographs were replaced by two numbers. (D) The ex-

perimental procedure for the audiovisual paradigm was similar to that for the photograph paradigm except that audiovisual stimuli were used.
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response according to the CRS-R scale or brainstem auditory
evoked potentials when an auditory startle response was not
detected. Thirty-five patients participated in the experiment
based on the photograph paradigm, 13 in the experiment based
on the number paradigm, and 30 in the experiment based on
the audiovisual paradigm. The eight healthy subjects partici-
pated in all three of the experiments.

Photograph paradigm

The GUI and the experimental procedure of the photograph
paradigm are illustrated in Fig. 1B. In each trial, two frontal-
view facial photographs were presented, including a photograph
of the patient’s own face and a photograph of an age- and sex-
matched stranger. One of the two photographs would be ran-
domly chosen as the target in each trial.

Each trial started with audiovisual instructions along with the
two photographs, each embedded in a static photo-frame.
Instructions were shown in Chinese characters for 8 s: ‘Focus
on your own photograph (or the stranger’s photograph) and
count the flashes of the photo frame’. Following the instructions
panel, a 10-s stimulation period started, with two photographs
appearing on the screen at the same time. The two photographs
continued flickering at different frequencies (6.0 Hz and 7.5 Hz
for the left and right photographs, respectively) to evoke the
left/right photograph-related SSVEP. A total of 10 flashes
(appearing and disappearing) of the two photo frames would
occur simultaneously with the flickering of the photographs,
with only one frame appearing at a time. The order of the
flashes was pseudorandom, with each frame flashing a total of
five times. Each flash had a duration of 200 ms, and there was
an 800-ms interval between flashes. These flashes of the left/
right photo frame would evoke the corresponding left/right
photograph-related P300.

A feedback period followed the stimulation, during which the
BCI algorithm selected one of the two photographs as the pre-
dicted target by comparing the left and right photograph-related
P300 and SSVEP patterns. If the photograph selected was the
same as the target, then that photograph and a tick symbol
would be presented in the output panel as positive visual feed-
back, along with a sound clip of applause, and a success was
counted; otherwise, the selected photograph and an ‘� ’ symbol
of would appear in the output panel as a negative visual feed-
back. Feedback in the output panel would last for 4 s. A break
of at least 10 s was provided between two adjacent trials, where
the length of the break depended on the patient’s level of
arousal; i.e. the next trial began only when the patient displayed
a high level of arousal. After 50 trials for each patient, the BCI
accuracy was calculated as the ratio of the number of successes
to the total number of trials.

Photograph experiment processing algorithm

Attended stimuli have been found to evoke a stronger P300 and
SSVEP than unattended stimuli (Bernat et al., 2001; Chatelle et
al., 2012). Based on this, the BCI system was designed to detect
the attended photograph by comparing the left and right photo-
graph-related P300 and SSVEP patterns. The P300 and SSVEP
detectors were designed separately, and the EEG data were fed
into the two detectors simultaneously.

An example of the data processing procedure for a photo-
graph paradigm trial can be seen in Fig. 2. For the left photo-
graph-related P300, EEG signals were first filtered from 0.1 to

10 Hz. For each flash of the frame surrounding the left photo-
graph, we obtained a segment of the EEG signal from each
channel (0–600 ms after the frame flash) and down-sampled
this segment by a rate of five. We then concatenated the down-
sampled segments of 10 channels (Fz, Cz, P7, P3, Pz, P4, P8,
O1, Oz and O2), to obtain a data vector per flash. These were
then averaged to give a final left photograph-related P300 fea-
ture vector for each trial. The SVM classifier was then applied
to the left photograph-related P300 feature vector, and an SVM
score, called a P300 score in Fig. 2, was obtained for the left
photograph. The same procedures were performed for the right
photograph-related P300, except that the right photograph-
related P300 feature vector was constructed based on the EEG
segments of the five right photo-frame flashes.

For the left photograph-related SSVEP, EEG signals were first
filtered from 4 to 20 Hz. Eight EEG signal segments were
extracted from eight electrodes (P7, P3, Pz, P4, P8, O1, Oz and
O2) during a 10-s period from the initial stimulus onset. A
weighted sum of the eight segments was then calculated, where
the weights were obtained using the minimum energy combin-
ation method designed to enhance EEG information and reduce
nuisance signals (Pan et al., 2013). The power spectrum of the
weighted EEG signal was obtained through a discrete Fourier
transform. An SSVEP feature vector composed of two mean
power values was obtained based on the flickering frequency (6
Hz) of the left photograph. One mean power value was calcu-
lated from a narrow band with a width of 0.1 Hz and a centre
frequency of 6 Hz, and the other from a wide band with a
width of 1 Hz and a centre frequency of 6 Hz. The ratio of the
mean power from the narrow band to that from the wide band
was calculated to give an SSVEP score for the left photograph.
The same procedures were performed for the right photograph-
related SSVEP, except that the right photograph-related SSVEP
feature vector was constructed based on the flicker frequency
(7.5 Hz) of the right photograph.

Joint scores for the left (Score 1) and right (Score 2) photo-
graphs were calculated by computing the sum of the respective
P300 and SSVEP scores. A classification decision was made
based on the following criterion: if Score 1 was higher than
Score 2, then the left photograph was selected as the predicted
target by the BCI system; otherwise, the right photograph was
determined as the predicted target. Finally, the corresponding
output was presented as the feedback.

Number paradigm

The GUI and the experimental procedure for the number para-
digm (Fig. 1C) were similar to those of the photograph para-
digm except that the two photographs were replaced by two
randomly selected single-digit Arabic numerals from 0 to 9 (e.g.
8 and 3 in Fig. 1C). Patients were instructed to focus on the tar-
get number in each trial (e.g. 8) and count the number of flashes
of the corresponding button frame. The detection algorithm was
the same as that for the photograph paradigm described above.

Audiovisual paradigm

The GUI and the experimental procedure of the audiovisual
paradigm are shown in Fig. 1D. Specifically, two buttons were
located on the left and right sides of the GUI, on which two dif-
ferent randomly selected single-digit Arabic numbers from 0 to
9 (e.g. 6 and 8 in Fig. 1D) were displayed. The two number but-
tons flashed in an alternating pattern, where the colour of the
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flashing button changed from green to black and the colour of
the corresponding number changed simultaneously from black
to white. The corresponding number was simultaneously read
out from a speaker located on the ipsilateral side of the monitor.
In this way, the subject was presented with temporally, spatially
and semantically congruent audiovisual stimuli, each of which
lasted for 300 ms, to evoke a P300 response. The P300 detec-
tion algorithm was similar to that for the photograph paradigm
described above except that the EEG data of all 30 channels
were used. The predicted target number was the number corre-
sponding to the higher SVM score.

Offline event-related potential and
spectral analyses

For each healthy subject and each patient, we calculated the
event-related potential (ERP) waveforms using the EEG data
from the online BCI experiment. Specifically, for each stimulus,
after bandpass filtering (0.1–20 Hz), an EEG epoch of each
channel was obtained from 50 ms prestimulus to 600 ms post-
stimulus and was baseline-corrected based on the data from the
50-ms prestimulus interval. All epochs with voltage changes
exceeding ±50 lV were automatically rejected. For each chan-
nel, we averaged the EEG epochs across all target stimuli and
non-target stimuli to obtain two ERP waveforms.

Power spectrum analysis was performed on the EEG data col-
lected from each healthy subject and patient who participated in
the photograph or number paradigm-based BCI experiment. A
spectrum was obtained for each trial using 10 s of EEG data
from the eight electrodes (P7, P3, Pz, P4, P8, O1, Oz and O2)
used for SSVEP detection. Averaged power spectrum curves
across the trials with the target stimuli appearing on the left side
(6 Hz) and right side (7.5 Hz) of the GUI were calculated.

Statistical analysis

Patients were first divided into two groups according to their
BCI accuracies: patients with significant BCI accuracies (CMD
patients) versus those without (potential non-CMD patients).
The patients’ demographic data were assessed using Student’s t-
test or the v2 test. Specifically, for the continuous variables of
age and time since brain injury, Student’s t-test was used to
compare the two groups. Categorical variables, i.e. gender, aeti-
ology, and clinical outcome (based on level upgrades of con-
sciousness for UWS patients or CRS-R scores for MCS
patients), were expressed as the numbers of patients, and the v2

test was applied to the data for the two groups (Bagnato et al.,
2016). All tests were two-sided, and a P-value 5 0.05 [false dis-
covery rate (FDR) corrected] was considered statistically signifi-
cant (Benjamini and Yekutieli, 2001). Furthermore, we
calculated the sensitivity and specificity to explore the

Figure 2 The data processing and decision-making procedure of a trial for the photograph paradigm. The patients were asked to

selectively attend to the stimuli associated with one of the two photographs according to the audiovisual instructions/cues (i.e. voice in the head-

phone and sentence on the screen simultaneously; e.g. the left photograph is the target here), whereas the BCI system determined whether the

patients were focusing on the target by detecting and comparing the left photograph-related and right photograph-related P300 and SSVEP

patterns.
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prognostic value of the BCI accuracy index for clinical outcome
based on level upgrades of consciousness or improvement of
CRS-R scores at 3 months of follow-up.

Data availability

The data that support the findings of the current study are avail-
able from the corresponding author on request from qualified
researchers for non-commercial research purposes. A material
transfer agreement may be required.

Results

Healthy subjects

The average online accuracies of the eight healthy subjects

for the photograph, number, and audiovisual paradigms

were 96.0± 3.85%, 95.25± 4.13%, and 97.25± 3.99%, re-

spectively. Each healthy subject achieved an online accuracy

greater than the significance level of 64% (P5 0.01, v2 test)

for all three paradigms.

Demographic information

Demographic information, clinical data and BCI accuracies

for the patients with disorders of consciousness are presented

in Supplementary Table 1. BCI accuracies were significant in

34 patients (CMD patients) and not significant in 44

patients (potential non-CMD patients). The average age or

the average time since brain injury of the CMD patients was

not significantly different from that of the potential non-

CMD patients (Student’s t-test, P40.05, FDR corrected).

Considering gender and aetiology, there was no significant

difference between the CMD patients and the potential non-

CMD patients (v2 test, P4 0.05, FDR corrected).

Cognitive motor dissociation in
unresponsive wakefulness syndrome

For the UWS patients, the criterion of consciousness recov-

ery was based on an upgrade of consciousness from UWS to

MCS. As shown in Fig. 3A, of the 20 UWS patients who

regained consciousness, 15 of them belonged to the CMD

group (sensitivity = 15/20 = 75%). By contrast, of the 25

UWS patients who remained at an unchanged level of con-

sciousness, 22 of them belonged to the potential non-CMD

group (specificity = 22/25 = 88%). For the UWS patients,

those defined as CMD had better outcomes than potential

non-CMD patients (v2 test, P = 0.004, FDR corrected). This

observation still held for UWS patients who participated in

the photograph paradigm (v2 test, P = 0.008, FDR cor-

rected) or in the audiovisual paradigm (v2 test, P = 0.03,

FDR corrected) but did not hold for the UWS patients who

participated in the number paradigm (v2 test, P = 0.08, FDR

corrected).

Cognitive motor dissociation in
minimally conscious state

For the MCS patients, the criterion of consciousness im-

provement was based on an increase in CRS-R scores. As

shown in Fig. 3B, of the 18 MCS patients who showed an

improvement in CRS-R scores, 14 belonged to the CMD

group (sensitivity = 14/18 = 77.78%). By contrast, of the 15

Figure 3 The behavioural improvement of patients. The

comparison of the numbers of CMD patients with improvement

(CMD-WI), CMD patients without improvement (CMD-WOI),

potential non-CMD patients with improvement (PNCMD-WI),

and potential non-CMD patients without improvement (PNCMD-

WOI) for the UWS (A) and MCS patient groups (B). *P5 0.05,

FDR corrected. **P5 0.01, FDR corrected. For UWS, patients

with and without an upgrade in their level of consciousness were

classified as ‘improvement’ and ‘no improvement’, respectively.

For MCS, patients with and without an increase in their CRS-R

scores were classified as ‘improvement’ and ‘no improvement’,

respectively.
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MCS patients who showed no CRS-R score improvement,

13 belonged to the potential non-CMD group (specificity =

13/15 = 86.67%). Statistically, the CMD patients had a bet-

ter outcome than potential non-CMD patients (v2 test,

P = 0.004, FDR corrected). This observation still held for

MCS patients who participated in the photograph paradigm

(v2 test, P = 0.009, FDR corrected); however, this observa-

tion did not hold for the MCS patients who completed the

number paradigm (v2 test, P = 0.094, FDR corrected) or the

audiovisual paradigm (v2 test, P = 0.095, FDR corrected).

Offline data analysis

To illustrate the effectiveness of our BCI detection approach

further, we performed offline ERP and spectral analyses.

P300-like components were clearly visible in the target

curves for all the photograph, number, and audiovisual

paradigms in healthy subjects and CMD patients, while no

P300 responses were observed in either target or non-target

curves for potential non-CMD patients (Fig. 4). Higher aver-

age spectral powers were obtained for target frequencies

than for non-target frequencies for both the photograph and

number paradigms in healthy subjects and CMD patients,

but the same was not true in potential non-CMD patients

(Fig. 5).

Discussion
Three EEG-based BCI paradigms were applied in the cur-

rent study to detect patients with CMD and then investi-

gate their clinical outcomes. We found a significant

correlation between BCI accuracies and subsequent con-

sciousness recovery. Specifically, within the UWS patient

group, 15 of 18 CMD patients regained consciousness

(based on their CRS-R scores) 3 months later, while only 5

of 27 potential non-CMD patients recovered conscious-

ness. Furthermore, within the MCS patient group, 14 of

16 CMD patients showed improvements in their CRS-R

scores, whereas 4 of 17 potential non-CMD patients

showed improved CRS-R scores. Taken together, our

results suggest that CMD patients have better outcomes

than other patients.

Cognitive motor dissociation
patient outcomes

The most important finding of the current study is that

patients with CMD identified by BCI showed better recov-

ery than other patients with disorders of consciousness.

Although a few previous studies have investigated the out-

comes of CMD patients (Owen et al., 2006; Curley et al.,

2018), the current study is the first to show a statistically

significant relationship between behaviourally defined

consciousness recovery and the condition of CMD. To

perform the BCI tasks, a patient needs many cognitive

functions, including language comprehension (to under-

stand the experimental instructions), working memory,

object recognition, selective attention (to selectively attend

to a photograph or number), and sustained attention (to

focus on the target for a period of time). To verify this

range of required processes, we performed a BCI experi-

ment involving 10 healthy subjects. The details of this ex-

periment are given in the Supplementary material. The

results of the supplementary experiment indicated that if

participants could not understand the instructions or did

not pay selective attention, then their BCI accuracies were

not different from chance level (Supplementary Table 2).

Positive BCI results (i.e. BCI accuracies significantly

higher than chance level) indicate that cognitive functions

and residual awareness exist in these CMD patients. Such

brain functions may indicate that CMD patients have a

high chance of consciousness recovery (Giacino and

Whyte, 2005). Our results enhance the value of BCI in re-

habilitation programmes for patients without behavioural

communication ability and are consistent with other stud-

ies suggesting that greater retained cognitive function may

be associated with better clinical outcomes in disorders of

consciousness (Faugeras et al., 2018).

A significant BCI accuracy in the UWS group predicted

the recovery of consciousness with 82% accuracy, 75% sen-

sitivity and 88% specificity, according to behavioural

responses. This finding indicates that our BCI is a good

prognostic index relative to other potential indexes based on

behaviour (Kavusipur et al., 2013), functional MRI (Li

et al., 2015a; Qin et al., 2015b), EEG (Logi et al., 2011;

Claassen et al., 2019), and GABAA binding potential (Qin

et al., 2015a). More specifically, a previous study showed

that an EEG-based index had a sensitivity of 68.7% and a

specificity of 88.9% for consciousness improvement in coma

and UWS patients (Logi et al., 2011). For UWS patients, our

previous study showed that two UWS patients with high

GABAA binding potential regained consciousness, while five

UWS patients with low GABAA binding potential remained

unconscious as defined by behavioural responses (Qin et al.,

2015a). Combining UWS and MCS, a study based on a be-

havioural scale reported a sensitivity of 72% and a specifi-

city of 50% for consciousness improvement (Kavusipur

et al., 2013). Li et al. (2015a) showed that the combination

of functional MRI and EEG responses achieved a sensitivity

of 70% and a specificity of 90.9% for consciousness im-

provement according to the behavioural response from

patients with disorders of consciousness (UWS and MCS).

Finally, a recent study (Claassen et al., 2019) adopted motor

imagery tasks and offline EEG data analysis to detect CMD

patients. The results of that study showed that 8 of 16

CMD patients identified from 104 patients with disorders of

consciousness and 23 of the remaining 88 patients without

EEG activation improved before discharge. In conclusion,

the current results strongly suggest the potential usage of

BCI accuracy in predicting clinical outcomes for UWS

patients.
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Figure 4 Average ERP waveforms at electrode ‘Pz’ across healthy subjects, across CMD patients, and across potential non-

CMD patients. (A) Photograph paradigm. (B) Number paradigm. (C) Audiovisual paradigm. The solid red curves correspond to the target

stimuli, and the dashed green curves correspond to the non-target stimuli. P300-like components are included in the target curves for patients

with significant BCI accuracies.
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Proportion of cognitive motor
dissociation patients among patients
with disorders of consciousness

The current results showed that �44% of the 78 patients

with disorders of consciousness were CMD patients as

defined by significant BCI accuracy. Two prior studies

showed a higher proportion of CMD patients within disor-

ders of consciousness patients than what we observed.

Specifically, Curley et al. (2018) showed that 13 CMD

patients were identified within 20 patients with disorders of

consciousness (two of three UWS patients, 11 of 17 MCS

patients) using motor imagery tasks. Schnakers et al. (2008)

found nine CMD patients within 14 MCS patients using a

name counting task. The main reason for the discrepancy

between these studies and the current study may be that

most of the patients in these two studies were MCS patients,

while the current study included more UWS patients (45

Figure 5 Average power spectrum curves of EEG signals across healthy subjects, across CMD patients, and across potential

non-CMD patients. (A) Photograph paradigm. (B) Number paradigm. The blue and green points indicate flicker frequencies of the target and

non-target buttons, respectively. The top and bottom rows in A and B refer to cases in which target buttons with a flicker frequency of 6 Hz/7.5

Hz appeared on the left/right sides of the GUI, respectively.
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UWS patients and 33 MCS patients, respectively). Another

study showed a higher detection ratio of CMD within UWS

patients (eight CMD patients of 12 UWS patients) than

what we observed, which may be due to their relatively

small sample size (Guger et al., 2018). Meanwhile, several

previous studies showed a lower proportion of CMD

patients within disorders of consciousness patients than the

current study (Naci et al., 2012). Using functional MRI-

based motor imaging tasks, Monti et al. (2010) found four

CMD of 23 UWS patients, and another study observed four

CMD patients of 26 patients with disorders of consciousness

(Forgacs et al., 2014). One possible reason is that the EEG

methodology adopted in the current study may be more sen-

sitive than functional MRI in detecting CMD patients

(Curley et al., 2018). However, several EEG studies adopting

motor imagery tasks, a breath-controlling task, and other

tasks showed low sensitivity to command-following brain

activity (Cruse et al., 2011; Lulé et al., 2013; Charland-

Verville et al., 2014; Horki et al., 2016; Claassen et al.,
2019). For example, using a ‘yes/no’-induced brain activity

pattern to test command following, only one CMD patient

was identified among 16 patients with disorders of con-

sciousness (13 MCS patients and three UWS patients) (Lulé

et al., 2013). This variability highlights the challenge of iden-

tifying a reliable technique for detecting CMD patients.

Clinical implications

The clinical significance of the current results lies in the fact

that BCI accuracy could be used to effectively detect covert

consciousness in CMD patients and to predict consciousness

recovery. Many patients with disorders of consciousness

may survive for years in either a chronic vegetative state or

MCS. The proposed BCI method would allow carers and

clinicians to predict the likelihood of improvement in these

patients and to optimize their treatments. More importantly,

a BCI could produce a tailor-made command-following

brain activity template that could accommodate individual

differences in brain activation patterns and brain injury se-

verity (Bardin et al., 2011; Curley et al., 2018).

Furthermore, a BCI provides easy-to-use real-time analysis

where experimenters need only provide stimulus informa-

tion; the data analysis is then performed automatically.

These features support the usage of BCIs for future clinical

application, where a standardized, automated and integra-

tive BCI system for awareness detection and effective diagno-

sis of patients with CMD will be established and clinically

tested across a large population.

None of the patients with UWS in this study showed vis-

ual fixation according to the first CRS-R assessment con-

ducted before the BCI experiment. Several studies have

presented gaze-independent P300- or SSVEP-based BCIs

(Brunner et al., 2010; Treder et al., 2011; Lesenfants et al.,

2014). Generally, classification accuracies are lower for

gaze-independent BCIs than for the gaze-dependent variety.

In the GUI in this study, we used two large visual buttons

containing photographs or numbers to facilitate the patients’

employment of covert attention and to improve visual acuity

in peripheral vision. Therefore, the BCIs in this study could

be considered gaze-independent BCIs, and their effectiveness

was demonstrated in the supplementary experiment (see

Run 4 in Supplementary Table 2). Although our patients

could not gaze at the target stimuli, the CMD patients could

covertly attend to them and perform the experimental task

using our BCIs.

Methodological limitations

The limitations of this study are as follows. First, we did not

consider the various types of brain injuries among the

patients or the different types of concurrent medical condi-

tions (seizures, infections, metabolic disorders, etc.). Second,

we did not consider the administration of specific therapeut-

ic interventions for disorders of consciousness, such as psy-

choactive medications or neural stimulation. Future studies

should seek to identify the effects of the above factors on the

prognosis of CMD patients. Third, we performed only a

3-month follow-up in this study. Longer-term outcomes will

be recorded and reported in the future. Fourth, the BCI clas-

sification accuracy needs to be further improved. In this

study, 17 of 33 MCS patients showed no significant BCI

accuracies. Based on the current accuracies, some of these

patients might represent false negatives. Possible reasons for

these false negatives are: (i) the paradigm and algorithm of a

BCI may affect the user’s performance; (ii) even among

healthy users, a subset known as ‘BCI illiterates’ cannot use

a BCI system (Guger et al., 2009; Allison et al., 2010); and

(iii) the arousal level and brain functions might vary from

moment to moment in patients with disorders of conscious-

ness, which may lead to variable command-following abil-

ities (Pokorny et al., 2013). The limited brain functions of

patients could also contribute to the phenomenon that none

of the patients in our study achieved more than 80% accura-

cies, where accuracies are generally higher than 90% for

healthy subjects. Further work is thus required to improve

BCIs for use with patients with disorders of consciousness.

In conclusion, we used EEG-based BCIs to identify CMD

in patients with disorders of consciousness. Our results

showed that the hybrid BCIs could effectively identify CMD

patients. More interestingly, our results showed that, among

both UWS patients and MCS patients, those with CMD had

a better chance of regaining consciousness on a behavioural

level. Our findings extend the current knowledge regarding

the outcomes of CMD patients and have important implica-

tions for BCI-based clinical diagnosis and prognosis in

patients with disorders of consciousness.
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