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End‑to‑end deep learning 
framework for printed circuit board 
manufacturing defect classification
Abhiroop Bhattacharya & Sylvain G. Cloutier*

We report a complete deep-learning framework using a single-step object detection model in order 
to quickly and accurately detect and classify the types of manufacturing defects present on Printed 
Circuit Board (PCBs). We describe the complete model architecture and compare with the current 
state-of-the-art using the same PCB defect dataset. These benchmark methods include the Faster 
Region Based Convolutional Neural Network (FRCNN) with ResNet50, RetinaNet, and You-Only-
Look-Once (YOLO) for defect detection and identification. Results show that our method achieves a 
98.1% mean average precision(mAP[IoU = 0.5]) on the test samples using low-resolution images. This 
is 3.2% better than the state-of-the-art using low-resolution images (YOLO V5m) and 1.4% better 
than the state-of-the-art using high-resolution images (FRCNN-ResNet FPN). While achieving better 
accuracies, our model also requires roughly 3× fewer model parameters (7.02M) compared with the 
state-of-the-art FRCNN-ResNet FPN (23.59M) and YOLO V5m (20.08M). In most cases, the major 
bottleneck of the PCB manufacturing chain is quality control, reliability testing and manual rework 
of defective PCBs. Based on the initial results, we firmly believe that implementing this model on 
a PCB manufacturing line could significantly increase the production yield and throughput, while 
dramatically reducing manufacturing costs.

The Printed Circuit Boards (PCBs) are the foundation supporting most electronic products. They are usually 
made of fibreglass and composite epoxies with laminated materials1. Any fabrication defect at the PCB level can 
lead to fatal flaws at the product level. Thus, PCBs must be manufactured with the highest degree of precision to 
ensure optimal operation and product reliability. With the growing worldwide demand for electronic products, it 
is essential to detect fabrication defects both efficiently and accurately. As part of the Industry 4.0 revolution, new 
data- and machine learning-driven technologies can be implemented to improve product and process quality2. 
The Zero Defect Manufacturing (ZDM) paradigm also aims to improve the manufacturing sustainability by lever-
aging data-driven methods to ensure no defective products pass through the production process3. The approach 
combines detection, repair, prediction and prevention4. While traditional quality improvement (QI) methods 
focus on the detection-repair, manufacturing industries now migrate towards a prediction-prevention paradigm 
using data-driven methods to predict manufacturing defects5. The PCB industry invests massively to train and 
maintain a large workforce dedicated to quality inspection using traditional inspection tools6. This process often 
leads to an unwanted latency in the manufacturing process. Moreover, physically inspecting parts is expensive 
and arduous. Thus, most manufacturing companies rely on batch inspection. However, batch inspection does 
not enable the manufacturers to comply with the ZDM principle of zero defects at the end of the manufacturing 
process. With the growing importance of product customization, there is an increase in defect rates due to smaller 
production batch sizes7. In Virtual Metrology(VM), a sub-field of ZDM, data-driven methods help estimate 
and predict the quality of a product8. These methods leverage low-cost quality metrics to derive more complex 
metrics to achieve a significant improvement in cost efficiency8. Emerging machine learning-based computer 
vision techniques have helped researchers apply Virtual Metrology to quality inspection9

PCB manufacturing defect types.  Different types of defects in the copper pattern can afflict the PCBs. 
They can be fatal defects, immediately rendering the device non-functional. They can also be potential defects, 
hindering the performance of the device and reducing its operating lifetime10. During the etching and plating 
processes, anomalies may result in excess copper or missing copper. Also, an incomplete process can result in the 
unwanted deposition of conductive materials and form defects like shorts or spurs. On the other hand, excessive 
processing can lead to missing holes, open circuits and mouse bites. Faulty tooling can also produce missing 
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holes. Incorrect timing can lead to mechanical mis-registrations, dirt contamination, or air bubbles from the 
electrolysis present in bare PCB boards. The literature gives an extensive summary of the most common PCB 
manufacturing defects and their origins11.

Inspection techniques.  The PCB defect detection techniques can be broadly divided into contact and non-
contact methods11. Contact methods usually rely on flying probes to detect defects causing electrical shortages 
and open circuits. They can be expensive to implement and maintain. They also have certain limitations which 
may allow defective products to pass10. Defects like spurious copper or burs, which can cause a slower degrada-
tion and failure of the board are often missed by electrical contact methods10.

The non-contact inspection methods uses several techniques such as X-ray imaging, Scanned Beam Lithog-
raphy, Ultra-sonic imaging, thermal imaging and Automatic Optical Inspection (AOI)10. As the circuits become 
denser and more complex, the detection of manufacturing defects also becomes increasingly challenging and 
costly. This prevents the manufacturing process from complying with ZDM standards4.

In this work, we seek to improve AOI systems for defect detection in bare-board PCBs using emerging 
deep-learning techniques. AOI systems can detect defects on bare boards, missing components, soldering and 
padding defects. They can also detect potential defects such as burs, spurious copper and mouse-bites, which 
may be missed by contact methods. Moreover, AOI systems avoid mechanical damage and can easily scale with 
the increase in production capacity.

This paper presents a complete framework to improve PCB defect identification using AOI tools. The main 
contributions of this paper are as follows: 

1.	 Proposing an improved object detection model for PCB defect detection.
2.	 Benchmarking its performances against several state-of-the-art object detection models.
3.	 Increasing the overall accuracy (mAP[IoU = 0.5]) by 3.2%, reaching up-to a 5.6% improvement for the spur-

defect class.
4.	 All this while using only 7 million (7M) (35%) of the more-than 20M parameters used by the current state-

of-the-art methods (YOLO V5m for low-resolution images and FRCNN-ResNet FPN for high-resolution 
images).

In time, we firmly believe such real-time machine learning-assisted monitoring will help rapidly identify and 
locate manufacturing defects, accurately pinpoint their origin, and provide timely adjustments to the manufac-
turing processes.

The paper is organized as follows: in “Related work”, we survey the literature with particular attention to the 
implementation of deep learning for defect detection. In “Overview of objection detection models” the relevant 
deep learning models are explained. This section also introduces the reader to our proposed model architecture 
and how it differs from the state-of-the-art. In “Experimentation”, we describe the dataset and the testing meth-
odology. In “Results”, we present the experimental results and ablation studies. The “Discussion” section compares 
the results using our model and the state-of-the-art, while the “Conclusion” summarizes the key findings and 
introduces future research directions.

Related work
Here, we present a brief, yet representative, overview of the field. Zero Defect Manufacturing is a key part of 
Industry 4.0. The zero-defect concept was introduced in 1965 as a quality and reliability program implemented 
by the US Army12. Researchers have explored different techniques to make manufacturing processes compliant 
with ZDM. In this work, we primarily focus on the application of deep learning for defect detection. Two years 
ago, researchers implemented an Extended Deep Belief Network (EDBN)-based fault classifier for chemical 
processes using a combination of raw data and hidden features13. However, such an architecture is complex and 
requires a longer time to process the data. Others proposed a Stacked Quality-Driven Autoencoder (SQAE), 
which captures quality-relevant features and neglects the irrelevant ones for soft-sensing applications14. Transfer 
convolutional neural networks (CNNs) combine online CNNs and smaller offline shallow CNN networks15. 
This approach shows that pre-training the shallow networks and transferring the knowledge to the online net-
work can significantly improve the accuracy of the models15. However, such transfer learning methods tend 
to introduce unwanted biases in the models, which prevents generalizing across different samples16. A central 
assumption with deep learning-based methods is that the test data and the training data are taken from the 
same distribution17. Concretely, this assumes no change in environmental conditions. As such, deep Transfer 
Network can achieve better domain adaptation18. Indeed, such CNN-based networks were previously used for 
crack detection on surfaces19.

In 2018, Vafeidas et al. performed a comparative analysis of the performance of classical machine learning 
algorithms to detect faulty component placement on PCB boards20. A combination of computer vision algo-
rithms was used to extract the features. At the time, Support Vector Machines achieved the highest classification 
accuracy20. In 2020, an architecture based on 3D convolutional neural networks (3DCNN) was used to simulate 
the changes in shape and volume of glue drops deposited on Liquid Cystal Polymer substrates before the attach-
ment of integrated circuits21.

Virtual Metrology exploits available information from sensors or visual inputs to assess parameters which 
are difficult or expensive to measure8,9. Based on the same paradigm, Autoencoders were trained on defect-free 
semiconductor chips and, then used for anomaly detection22. A similar approach was also used for wafer fault 
monitoring23. The authors showed that the model is able to extract noise tolerant features. However, this process 
also detects any anomalous sample as a defected sample.
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In recent years, researchers used multiple methods to streamline and automate the detection of defects in bare 
PCBs. Wavelet-based algorithms were first implemented for defect detection24. The major limitations with these 
methods is their poor generalization25. Classical machine learning algorithms such as support vector machines 
and decision trees have been implemented to classify defect types26,27. These methods require extensive feature 
engineering to process the raw data and identify meaningful features for the model. In turn, this leads to unin-
tentional expert-induced bias in the results16. This approach requires additional pre-processing steps, increasing 
the processing time and reducing the scalability. Our proposed deep-learning model seeks to extract the features 
directly from the images themselves. Indeed, several researchers have used a combination of computer vision 
methods and deep learning for detecting and classifying defects28–31. This also creates pre-processing pipelines, 
leading to delays and scalability issues. Last year, DETR models removed the need for many hand-designed 
components for PCB defect detection32. Moreover, the use of transfer learning is a popular technique for apply-
ing complex deep learning models to small datasets. Recently, a few groups have implemented transfer learning 
for defect detection33–35. However, these models tend to incorporate biases from the pre-training16. This year, 
Generative Adversarial Networks (GANs) were first implemented to improve the quality of data, which in-turn 
improves the accuracy of the models36.

Object detection models can simultaneously perform multiple tasks on a single image, including: (i) Multiple 
object detection, (ii) Classifying the defects and (iii) Localization37. This makes them the ideal deep learning 
models for application in fault diagnostics. Several research teams are currently exploring object detection models 
to detect small objects38,39. Two-stage object detection models such as FRCNN combine two networks and, thus, 
have a large number of parameters and require higher image-processing delays. This makes it very difficult to 
apply them in a high-speed manufacturing line. Single-stage object detectors are faster and thus, more suitable 
candidates for near real-time deployment. Only last year, researchers started using one-stage object detection 
models for localization and classification of defects40,41. Also, optical inspection requires high resolution images 
and equipments42. This makes it difficult for small scale productions to adopt such technologies. To the best of 
our knowledge, this is the first extensive study to examine and improve the performances of such models on 
low-resolution images.

Overview of objection detection models
This section gives a brief overview of the various models used in the paper. The literature gives a comprehensive 
overview of the various deep learning methods used for object detection37. In this work, we will focus on state-
of-art You-Only-Look-Once(YOLO), RetinaNet and Faster R-CNN models for comparison.

You‑only‑look‑once(YOLO).  You-Only-Look-Once(YOLO)43 is a single-stage object detection model. It 
contains three main components, namely the backbone, the neck and the head. The backbone is a convolutional 
neural network that takes images of different sizes as input and forms the overall features of the images. The 
neck represents a series of network layers that can fuse the features to enrich the information. The processed 
features are fed to the prediction layer, where the classifier obtains the class of the objects and generates the final 
coordinates of the bounding box.

The network divides the image into grid regions and predicts rectangular bounding boxes in each region. 
The base model for YOLO is similar to GoogLeNet44 with the inception module replaced by 1 × 1 and 3 × 3 
convolutional layers. The final prediction is produced by two fully connected layers over the whole convolutional 
feature map. The block diagram in Fig. 1 captures the network structure of YOLO.

The loss function for the network consists of two parts, the localization loss for the prediction of the bound-
ing box offsets and the classification loss for conditional class probabilities. The losses are computed as the sum 
of the squared errors. Most of the bounding boxes have no instance of the object, thus it is important to down-
weight the loss from the background boxes. Two weight parameters are used to balance between bounding box 
coordinates and confidence score prediction for boxes without objects.

Figure 1.   Structure of the YOLO network.
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YOLO v545 is built on a similar structure as YOLO. As such, it runs detection directly over dense location 
sites. The backbone first extracts the dominant features from the input images. In YOLO v5, the Cross Stage 
Partial(CSP) Network is used for the backbone. The neck is then used to generate feature pyramid filters. They 
help the model recognize the same object at different scales and sizes. YOLO v5 uses PANet as the neck46. Finally, 
the head performs the detection part. It applies anchor boxes on the extracted features and produces output 
vectors with class probabilities, object scores and bounding boxes. YOLO v5 uses Leaky-ReLU for the hidden 
layers and Sigmoid activation for the output layer. For large models, the stochastic gradient(SGD) optimizer 
is preferred with a Binary Cross Entropy (BCE) loss47. Earlier this year, researchers have applied YOLO-based 
object detection methods for fault diagnostic48,49.

Faster region based convolutional neural network (FRCNN).  Faster R-CNNs(FRCNNs) combine 
two networks50. First, a Region Proposal Network(RPN) generates region proposals. In turn, a detector network 
relies on these proposals for object detection. The Faster R-CNN is a significant improvement over it’s prede-
cessor the Fast R-CNN model51, as it uses the RPN instead of a selective search method to generate the region 
proposals. The RPN ranks the region box anchors and proposes the most likely to contain the objects. These 
anchors play a vital role in the Faster R-CNN models. Typical FRCNNs use nine anchors at each position of 
an image. The RPN outputs a set of proposals to be further examined by a classifier and regressor to check the 
object occurrences. Thus, the RPN predicts the probability of an anchor being a meaningful object or being part 
of the background and then refines the anchor. It then labels as foreground the anchors with the greater overlap 
with the ground-truth boxes. In contrast, the anchors with low overlaps are labelled as background. The regres-
sor calculates the L1 loss using the position of the bounding box and positive anchors. The default configuration 
uses the center position, height and width as the input. However, we observed that using the top left and bottom 
right coordinates gives a marginally better result. After the RPN, the model proposes regions with different sizes. 
A Region of Interest(ROI) pooling layer then splits the input feature map into a fixed number of equally sized 
regions and then applies max pooling on each region to ensure the same region sizes irrespective of the input. 
We have used ResNet 50 with Feature pyramid networks as the background. The SGD optimizer with a decaying 
learning rate gives the best results.

RetinaNet.  RetinaNet52 is a composite network using a backbone, classification and regression subnet. The 
typical backbone uses a ResNet with Feature Pyramid Network (FPN)53, using two laterally-interconnected 
pathways. The bottom-up pathway uses the output of the final feature map from a set of consecutive convolu-
tional layers. The top-down pathway uses nearest neighbour up-sampling to expand the last feature map to the 
same size as the preceding penultimate layer. These layers are merged by element-wise addition. It then iterates 
until feature maps from the bottom-up pathway find a corresponding feature map through the lateral connec-
tions. This process renders the model scale-invariant. The classification subnet uses a convolutional network 
(CNN) attached to each FPN. It typically uses four 3 × 3 convolution layers with 256 filters, followed by a ReLU 
activation. Then, another 3 × 3 convolution layer is followed by sigmoid activation. The classification loss used 
is a variant of the focal loss52. The regression subnet is attached to the FPN’s feature maps in parallel to the clas-
sification subnet, akin to a classification network architecture. The RetinaNet typically picks the 1k anchor boxes 
with the highest confidence score from each FPN level. To prevent redundancy, non-maximum-suppression 
(NMS) can be applied independently to each class, then choosing the anchor box with the highest confidence 
score and removing overlapping anchor boxes using Intersection-over-Union (IoU) greater than 0.554. Finally, 
the regressor performs an offset prediction to refine the anchor selection and return a bounding box prediction.

Proposed network structure.  The proposed model is a variation of YOLO v5. Our proposed network, is 
a combination of CNNs and Transformers. Figure 2 shows the model structure, which includes the three main 
blocks, namely—the backbone, the neck and the head. The transformer module is included at the junction of the 
neck and the backbone. It provides multi-level features with global information for detection. This enhances the 
field of reception of the convolutional network. The CNN network extracts the underlying geometrical features 
of the images. These feature maps usually constitute the key points, lines and some basic geometrical patterns55. 
Both global dependence and locality modelling are important for a better representation of the image56. Unlike 
standard transformer networks used for data sequences, our model directly processes feature maps generated by 
the convolutional network. As such, our model can benefit from the merits of both CNN and transformers to 
model long dependencies and, to learn scale combined with shift-invariant locality representations48,57.

We present a comparison between the different models analyzed in this paper in the supplementary informa-
tion section.

Data augmentation.  Data augmentation is an umbrella of techniques that can be used to generate addi-
tional training samples by slightly modifying the existing training data or creating synthetic data. It prevents 
over-fitting and helps the model generalise58. Shorten provide a comprehensive survey of different data augmen-
tation techniques used for computer vision59. YOLOv5 model uses a combination of Mosaic, Mixup, HSV and 
classical methods for data augmentation. Classical methods primarily involve rotation, re-scaling, vertical and 
horizontal flipping, translation, adding noise, cropping and zooming.

The mosaic data augmentation technique combines four training images into one single image. This technique 
was introduced in YOLOv460. This enables the model to learn to identify objects at different scales. The CutMix 
technique combines images by cutting parts and pasting them onto the augmented images. This improves the 
robustness of the model by changing a part of the input image61. On similar lines, Image Occlusion replaces 
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regions of the images with random values. This behaves like a regularization technique. Another common method 
is to increase the Saturation (S) & Value (V) components of the HSV color space.

Experimentation
We have used a Tesla T4 graphics processing unit (GPU) to run our experiments. The framework was imple-
mented using the PyTorch library version62 and the ultralytics YOLOv545 implementation.

The overall architecture involves an AOI camera, an image capture device for storing the images and a pro-
cessing unit with our proposed model to accurately detect, classify and localise multiple defects in the bare board 
PCB in real time. Figure 3 presents a high level schematic of the overall architecture.

HRIPCB dataset.  For this project, we use the public HRIPCB dataset to train, test and validate the object 
detection model29. The dataset contains 1386 labeled images with six different families of manufacturing defects 
(missing hole, mouse bite, open circuit, short, spur, spurious copper). It is based on 10 different PCB board 
images augmented using six different defect types29. The dataset provides “XML” files with the labels of defects 
and types. Due to the requirements of the experimental model, the files are converted to “TXT”. Figure 4 shows 
the different defect types in the dataset.

Evaluation metrics.  In the object detection task, the model will output the possible defect positions in 
terms of the prediction boxes. To determine whether the prediction box and the ground truth are the same, the 
metric Intersection over Union(IoU) is used in literature. The definition of IoU is given in Eq. (1):

Figure 2.   Structure of the proposed model. The structure combines the merits of both transformer and 
convolutional networks As such, it can exploit global dependencies and locality informations.

Figure 3.   Overall architecture of the model.
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Most researchers set the threshold of IoU to 0.5. This means that when the overlap ratio reaches 0.5, the predic-
tion box is correct. In addition, average Precision and Recall are used to evaluate the results of image classifica-
tion. Precision is defined in equation 2 and Recall is defined in equation 3.

The Precision value indicates the model’s positive predictive value (or the ability to avoid false positives). Mean-
while, the Recall value indicates the model’s true positive rate or sensitivity (or the ability to avoid false negatives). 
Balancing the Precision and Recall in the context of a specific application is one of the main challenges facing 
any machine-learning developer.

Methodology.  We first divide the dataset into three training (70%), validation (20%) and test (10%) sets. 
We used bi-cubic downsampling63 to generate the low-resolution images. The high resolution images were also 
generated using the same method. Bi-cubic sampling does not require any additional learnable parameters. 
Thus, it does not increase the complexity of the system. The stochastic gradient descent (SGD) optimizer was 
used for most of the experiments. Additional experiments were performed using the Adam and AdamW opti-
mizers. However, we found that SGD consistently produced the best results. The same behaviour has been previ-
ously reported in the literature47. The hyperparameters were fine-tuned for each model and the detailed list of 
hyperparameters associated with each model is provided in the supplementary information. For fine-tuning the 
hyperparameters of our proposed model, we have used a genetic algorithm-based approach64.

The YOLO v5 algorithm uses a combination of different methods for data augmentation. Our proposed 
model uses a combination of image HSV augmentation, translation, rotation, mixup and mosaic. The detailed 
description of each augmentation method is provided in the section “Data augmentation”. The Faster R-CNN 
model is trained using a ResNet50 and a MobileNetv265 backbone for extracting the features. The RetinaNet 
model is trained using a ResNet50 feature extractor. We experimented with ResNet50 and GhostNet backbone 
models for YOLOv5s. However, we find that Cross Stage Partial Networks (CSP) Backbone gives the optimal 
results. For the Neck, we ran experiments with BIFPN, FPN and PANet models. The outcome of the experiments 
are presented in the section “Results”.

The key improvement in our model is the addition of the transformer model. The network structure is 
described in the section “Proposed network structure”. We also ran additional experiments using different activa-
tion functions. We found that the Swish activation function performs better than Mish, ReLU and Leaky-ReLU. 
Figure 5 shows the training and validation curves for our model. It demonstrates that our model is able to con-
verge within 100 epochs for low-resolution images.

Results
Experimental results.  Object detection performance is evaluated with the mean Average Precision (mAP) 
between ground truth and predicted bounding box (IoU). To validate the performance of our proposed network, 
multiple experiments are performed in this study. To benchmark the performance of different object detection 
models against our proposed model, we coded the models as per the respective references and then ran the 
experiments on the HRIPCB dataset.

(1)IoU =
Area of overlap

Area of union

(2)Precision =
True Positives

True Positives + False Positives

(3)Recall =
True Positives

True Positives + False Negatives

Figure 4.   Annotated extracted defect contours (EDCs)29.
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Figure 5 shows that the performance of the model is the same across training and validation, which suggests 
that the model does not over-fit the data. We observe that the box loss and the classification loss decrease sharply 
for the first 50 epochs before saturation. Also, we observe that the model has a high precision and a high recall, 
which suggests that the model has low false negatives.

Experiment results reported in the Table 1 are the average of multiple experiments.We performed two sets 
of experiments to compare model performances: one using high-resolution images and the other using low-
resolution images. We use bi-cubic sampling63 to generate the low resolution images. The results in Table-1 show 
that our method can achieve an overall Mean Average Precision (mAP[IoU = 0.5]) of 98.1% on low-resolution 
images. We observe that the two-stage object detection FRCNN model with ResNet back bone is able to achieve a 
high performance. However, the model has a large number of parameters and is significantly slower than single-
stage object detectors38. Amongst the single-stage models, we observe that the YOLOv5 models outperform 
RetinaNet and YOLOv3. As expected, we observe that the medium YOLOv5m model performs better than the 
smaller YOLOv5s model. We also observe our model outperforms the state-of-art YOLOv5m medium model 
by 3.2% in the overall mAP[IoU = 0.5]. The mAP for IoU = 0.5:0.95 is also higher for our model compared to all 
other models. This means that the model is able to accurately detect defects for different IoU thresholds, from 
0.5 to 0.95 with a step of 0.05.

To be useful, a detection system should be able to generalize and accurately detect all types of defects. Indeed, 
we observe that other YOLO-based models are ill-suited for the spur, mousebite and open circuit defects detec-
tion. The smaller YOLOv5s model achieves only 88.5% mAP for spur and 97.4% for open circuit. The state-of-art 

Figure 5.   The training and validation curves for our model using low-resolution images. Plots (a–c) show the 
box loss, object loss and classification loss for the training sample. Figures (f–h) capture the same metrics for 
the validation dataset. The figures (d) and (e) show the precision and recall of the model. The figures (i) and (j) 
capture the mAP at IoU = 0.5 and IoU = 0.5:0.95 respectively. For each figure, the x-axis represents the number 
of epochs.

Table 1.   Mean average precision (mAP) for PCB defect classification across models. The values in bold 
represent the results of the proposed model.

Method Resolution Epochs Parameters (M) mAP [IoU = 0.5] (%) mAP [IoU = 0.5:0.95] (%)

FRCNN-ResNet FPN High 10 23.59 96.7 51.5

FRCNN MobileNetv2 High 10 2.26 41.8 12.4

RetinaNet High 10 36.4 93.1 44.7

YOLO V3 Low 100 61.5 92.5 44.2

YOLO V5m Low 200 20.8 94.9 48.5

YOLO V5s Low 100 7.02 94.5 48.1

Our model BIFPN Low 100 7.06 98.3 54.1

Our model PANet High 100 7.02 96.8 49.5

Our model PANet Low 100 7.02 98.1 53.8
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YOLO v5m medium model achieves only 91.3% mAP for the spur defect detection and 91.6% mAP for open 
circuit. Our model outperforms the YOLO v5m model to achieve 96.9% mAP on spur defects and 99.5% on open 
circuit defects. While achieving significantly better performances, our model uses roughly 3× fewer parameters 
(7.02M) compared with the state-of-the-art FRCNN-ResNet FPN (23.59M) and YOLO V5m (20.08M).

Table 2 presents a comparative overview of the results achieved using the state-of-the-art YOLO 5-based 
models and our model.

In the example shown in Fig. 6, we observe that the bare board PCB has 2 spur defects. YOLOv3 fails to 
identify the presence of both the spur defects while the YOLOv5s model predicts an additional false positive. 
Our proposed model is able to correctly identify both the spurs.

Now, the next section will present a complete ablation study for the different components of the model.

Ablation studies.  Data augmentation.  The YOLOv5 model uses a combination of augmentation methods 
for improving its generalization. These methods are discussed in the section “Data augmentation”. We observe 
that removing the mosaic method does not impact the overall precision. However, it slightly reduces the preci-
sion for the spurs and spurious copper defects. If we remove the HSV augmentation, we observe a significant 
decrease (7%) in the detection precision for spur defects. Furthermore, removing the scale augmentation only 
has a marginal effect on the overall precision. However, removing all data augmentation drastically reduces the 
overall mAP to 84.7% and the average precision for detecting spur defects to 73.6%. Thus, we see that data aug-
mentation has a significant impact on the performance of the model.

Neck.  We have removed the Path Aggregation module and used a BiFPN model for comparison. We observe 
that the BiFPN model yields similar results. The overall accuracy increases by 0.2% and we observe an increase 
of 1.4% for the spur defects. Thus, we observe that BiFPN marginally improves the performance of the system at 
the cost of a slight increase in compute parameters. The waterfall chart in Fig. 7 captures the effect of each model 
change on the average precision.

Activation functions.  We have also compared the performances of the model using different activation func-
tions. We have changed the activation function for the convolutional layer. We observe that using a ReLU activa-
tion function reduces the accuracy, as the ReLU function cannot recover after getting stuck in a negative region. 
The Leaky ReLU performs slightly better. However, we see that the Swish activation function outperforms the 
other activation functions. The waterfall chart presented in Fig. 8 captures the effect of using the different activa-
tion functions on the model’s mean average precision (mAP).

Regression loss functions.  The regression loss function is a key factor in the training and optimization process 
of object detection. The most widely used regression loss function is the Smooth Ln-norm66. There are some 
limitations associated with the Ln-norm loss. For example, they cannot combine the parameters of the bounding 
box67. The IoU loss offers significant improvement over the Ln norm loss68. It is based on the cross-union ratio 
between the bounding box and ground truth. Thus, it is scale invariant. However, for certain instances when the 

Table 2.   Mean average precision (mAP) achieved with IoU = 0.50 for PCB manufacturing defect classification 
across defect types. The values in bold represent the results of the proposed model.

Method Missing hole (%) Mouse bite (%) Open circuit (%) Short (%) Spur (%) Spurious copper (%)

YOLO V3 99.1 91.2 92.1 97.3 81.4 93.8

YOLO V5m 99.5 92.3 91.6 97.4 91.3 97.1

YOLO V5s 98.8 95.1 97.4 96.3 88.5 90.5

Our model BIFPN 98.9 97.5 99.5 99.5 98.3 95.9

Our model PANet 98.4 97.2 99.5 99.5 96.9 96.8

Figure 6.   We detected the defects on the bare board PCB using three different models. The studied PCB has 2 
spur defects. We observe that YOLOv3 fails to identify the presence of both the spur defects while, YOLOv5s 
predicts an additional incorrect defect. Our proposed model is able to identify the two correct spurs.
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IoU score of the ground truth and the bounding box is zero, the loss suffers from a problem of vanishing gradi-
ent. Silvio et al. proposed Generalized IoU(GIoU) loss to address the limitations in IoU69. GIoU uses a penalty 
term to prevent the IoU loss to keep expanding the size of the predicted box until it overlaps with the target 
box. However, GIoU can suffer from slow convergence. As such, Zheng et al. show that directly minimizing the 
normalized distance between the predicted box and the target box helps the algorithm to converge much faster67. 
Moreover, it also considers the vertical and horizontal orientations. This new loss function is referred-to as Dis-
tance Intersection over Union(DIoU) loss. However, DIoU is unable to capture the consistency of aspect ratios 
for bounding boxes. Complete IoU (CIoU)67 regression loss incorporates all geometric factors. CIoU works by 
adding a penalty factor = α · V  to DIoU, where V represents the aspect ratio consistency. We have compared the 
effect of those different regression loss functions to find that CIoU significantly outperforms all other loss func-
tions. Figure 9 compares the model’s performance (mAP) using the different loss functions.

In addition to comparing the mainstream loss functions, we also propose a new loss function named AIoU 
which enables the model to optimise the height and width of the bounding box and the ground truth. We present 
a detailed analysis of this loss function in the supplementary information.

Figure 7.   Mean average precision (mAP) waterfall chart showing that we find a significant improvement when 
we change in the model architecture. The maximum improvement can be attributed to the transformer module. 
Our model in the chart refers to the proposed model with BIFPN neck.

Figure 8.   Mean average precision (mAP) waterfall chart showing the effect of changing the activation functions 
on the model. We find a significant improvement when we use the Mish activation function. The Swish 
activation function yields the best improvement in our model.
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Transformer.  Finally, we can run another ablation study by removing the transformer module from the archi-
tecture. We observe an overall reduction in accuracy of around 3.4%. However, the deterioration in performance 
is much more drastic for certain defect types. Compared to the YOLOv5s model, we observe a deterioration of 
around 9.8% in the mAP for the spur defects detection and a deterioration of 5.4% percent for spurious copper. 
The waterfall chart in Fig. 7 captures the effect of each model change on the average precision. It confirms that 
the transformer module is a key component of the framework.

Discussion
In this section we discuss the results from multiple perspectives. The results show that our model is able to 
accurately detect, localize and classify multiple occurrence of defects in images of bare board PCBs. The model 
accurately predicts the location of each defect, classifies the type of defect and provides a probability score.

To understand the potential impact of this work, one must understand how the testing and rework process is 
performed in most traditional industrial PCB manufacturing lines. A direct-contact (flying probe) test station 
provides a pass/fail diagnostic on each individual PCB. When it fails, a PCB is sent to the rework station, where 
a technician will first look for defects under a digital microscope and perform manual rework if possible. If the 
reworked PCB still fails, it will be sent for a more advanced diagnostic (using tools like X-ray tomography imag-
ing). Some randomly-selected PCB samples with a pass diagnostic will also be sent to rework inspection and 
advanced diagnostic for quality control. This is done to detect those non-fatal potential defects, which can impact 
the long-term device operation and lifetime. With a high-performance and trustworthy model such as the one 
described in this work, the rework technician could receive a faulty PCB knowing exactly what are the defects and 
where they can be found on the PCB. Using more advanced analysis methods, one could also potentially pinpoint 
the origin of those defects in the manufacturing process. As such, a high probability score validated in the field 
could help manufacturing companies bolster their confidence in the machine learning-enhanced diagnostic tool.

Firstly, we would like to emphasize that the FRCNN with the ResNet backbone can achieve reasonable per-
formances. However, it is a two stage object detector which takes a much longer time to process the images and 
uses around 23.5M parameters38. Thus, we believe it might be difficult to implement this network in high-speed 
manufacturing lines. While achieving higher precision, the proposed model uses only 7.02M parameters. This 
is roughly 3× less than the 23.5M parameters used with a two-stage detector or the 20.8M parameters used by 
the state-of-the-art YOLO5m model.

Secondly, we would like to highlight that the proposed model maintains high detection and identification 
accuracy with low-resolution images. This allows the technology to be easily adopted across multiple industries 
as it does not require expensive imaging technology. Moreover, our model yields a 3.2% overall improvement in 
the mAP[IoU = 0.5] compared to the standard YOLOv5m model for the same duration of training.

Most importantly, the YOLO v5m model achieves only 91.3% mAP for the spur defect detection. Meanwhile, 
our model achieves 96.9% mAP on spur defects. We believe that this shows that our model is able to accurately 
predict defects which are difficult to classify. This might be attributed to the ability of our model to exploit both 
global dependence and shift/scale invariance in extracted features.

The ablation studies show that the combination of data augmentation techniques helps the model generalize 
and improves the mAP of the model. This prevents the model from over-fitting to the data. The ability to work 
in high-speed environments with a small datasets is crucial for large scale deployment of the technology. Thus, 
we prefer the model with PANet, even though it has marginally lower overall performance compared to BiFPN. 
Furthermore, the model with BiFPN has lower accuracy than PANet for spurious copper, which is a common 
defect during the etching process. The ablation studies also sheds light on the importance of using the correct 

Figure 9.   Regression loss comparison (RLC) showing the model’s precision (mAP) using the different 
regression loss functions. The CIoU loss clearly outperforms the others.
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activation and loss functions to maximize the performance of the model for accurate defect detection. Table 3 
presents a comparative overview of the models.

Conclusion
In this paper, we propose an end-to-end framework to detect manufacturing defects in PCB boards. In an opti-
mal manufacturing process, quality should be integrated into the process. While most fabrication defects stem 
from the manufacturing process itself, traditional pass/fail methods focus on reworking those defects on the 
failing PCBs instead of identifying their precise origins in order to rapidly correct the process. Our proposed 
framework will enable the fabrication units to make in-operando adjustments to the manufacturing process and 
move closer to a zero defect manufacturing paradigm. Our network uses a combination of current techniques 
in deep learning- transformers, multi-level feature fusion, data augmentation and object detection. The results 
show that our model is able to successfully detect, classify and localize multiple defects in low resolution bare 
board PCB images. Our model is lightweight, low- resolution compatible and provides a 3.2% overall improve-
ment in the mAP[IoU = 0.5] compared to the standard YOLOv5m model. Based on the initial results, we believe 
integrating deep learning-based models into fully-automated optical inspection (AOI) tools is crucial for early 
detection of PCB manufacturing defects and could potentially lead to important productivity gains coupled with 
significant cost reductions.

The presented approach has a strong assumption that the test and the training data are sampled from the 
same distribution. An interesting area of future work could be to investigate the performance of the method for 
off distribution samples. In the current work, we have only considered single layer bare board PCBs. Another 
interesting area of development could be extending the analysis for detecting defects in multi-layered PCBs.

Data availability
The datasets generated and/or analysed during the current study are available in the PKU-Market-PCB repository, 
http://​robot​ics.​pkusz.​edu.​cn/​resou​rces/​datas​et/.
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