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ABSTRACT
Conventionally, Rho guanine nucleotide exchange factors (GEFs) are known activators of Rho guano
sine triphosphatases (GTPases) that promote tumorigenesis. However, the role of Rho GEFs in non- 
small cell lung cancer (NSCLC) remains largely unknown. Through the screening of 81 Rho GEFs for 
their expression profiles and correlations with survival, four of them were identified with strong 
significance for predicting the prognosis of NSCLC patients. The four Rho GEFs, namely ABR, PREX1, 
DOCK2 and DOCK4, were downregulated in NSCLC tissues compared to normal tissues. The down
regulation of ABR, PREX1, DOCK2 and DOCK4, which can be attributfed to promoter methylation, is 
correlated with poor prognosis. The underexpression of the four key Rho GEFs might be related to the 
upregulation of MYC signaling and DNA repair pathways, leading to carcinogenesis and poor prog
nosis. Moreover, overexpression of ABR was shown to have a tumor-suppressive effect in PC9 and 
H1703 cells. In conclusion, the data reveal the unprecedented role of ABR as tumor suppressor in 
NSCLC. The previously unnoticed functions of Rho GEFs in NSCLC will inspire researchers to investi
gate the distinct roles of Rho GEFs in cancers, in order to provide critical strategies in clinical practice.
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1. Introduction

Lung cancer is one of the most common malignancies 
and a leading cause of cancer deaths (>1 million 
annually) worldwide [1,2]. Despite therapeutic 
advances, the prognosis of lung cancer remains poor, 
and more than half of the patients diagnosed with lung 
cancer die within one year [3]. Non-small cell lung 
cancer (NSCLC) constitutes approximately 85% of all 
lung cancers, of which lung adenocarcinoma (LUAD) 
and lung squamous cell carcinoma (LUSC) are the 
most common subtypes [3,4]. A comprehensive 
understanding of genetic alterations and associated 
mechanisms in the development of NSCLC is required 
to more effectively predict the prognosis of patients 
and identify druggable targets in cancer therapeutics.

Rho guanosine triphosphatases (GTPases) are 
essential molecular switches involved in the regulation 
of numerous downstream pathways in various types 
of cancer [5,6]. The cycling between guanosine 

triphosphate (GTP)-bound (active) state and guano
sine diphosphate (GDP)-bound (inactive) state con
tributes to the activation or inactivation of 
downstream effectors [7]. In the ‘on’ state (GTP- 
bound) of Rho GTPases, target proteins are recog
nized and subsequently a response is generated until 
the Rho GTPases are turned to ‘off’ state (GDP- 
bound) [5]. Ras-related C3 botulinum toxin substrate 
1 (RAC1), Ras homolog family member A (RHOA) 
and cell division control protein 42 homolog 
(CDC42), which are the most important and exten
sively studied members of Rho GTPases, have been 
identified to regulate actin cytoskeleton reorganiza
tion, migration, and metastasis and promote the 
development of lung cancer [8–11].

Rho GTPases activity is principally regulated by 
three types of regulatory proteins, including gua
nine nucleotide exchange factors (GEFs) for acti
vation, GTPase-activating proteins (GAPs) for 
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inactivation and GDP-dissociation inhibitors 
(GDIs) for GDP-bound form stabilization [12]. 
GEFs catalyze GDP release and subsequently assist 
in its binding to GTP, converting inactive Rho 
GTPases to their active states for further function
ing [13]. As activators of Rho GTPases, Rho GEFs 
have attracted the attention of researchers in 
recent years. Rho GEFs can be divided into two 
distinct families: the diffuse B-cell lymphoma 
(DBL) family and the dedicator of cytokinesis 
(DOCK) family [14]. There are 70 members of 
the DBL family GEFs and 11 members of the 
DOCK family GEFs [14,15]. The altered expres
sion or mutation of Rho GEFs has been identified 
in human cancers [16]. However, compared to the 
roles of Rho GTPase family members, the roles of 
Rho GEF family members in NSCLC remain lar
gely unclear. Consequently, exploring the altered 
expression and relevant mechanisms of Rho GEFs 
leading to NSCLC development is significant.

Herein, we hypothesize that Rho GEFs can exert 
functions in addition to Rho GTPase activation in 
NSCLC. The aim of our study was to analyze the 
expression of Rho GEFs and their functions in 
NSCLC. Certain Rho GEFs will be selected for 
their observably altered expression and significant 
predictive value for prognosis in NSCLC patients. 
Moreover, methylation and mutation profiles were 
analyzed to interpret the observed altered expres
sion of the selected members. The potential 
mechanisms related to the selected Rho GTPases 
in NSCLC development were investigated. In vitro 
experiments were performed to confirm the role of 
the selected Rho GTPase in NSCLC.

2. Materials and methods

2.1 Phylogenetic and protein-protein interaction 
(PPI) analysis

The protein sequences of human DBL family Rho 
GEFs (70 members) and human DOCK family 
Rho GEFs (11 members) were obtained from 
UniProt (https://www.uniprot.org/). The phyloge
netic tree was constructed by MEGA7.0 software 
using neighbor-joining method with default para
meters and 1000 bootstrap replicates [17]. The 
final tree containing the information of the 
domain organization was visualized by the online 

tool Evolview [18]. PPI networks were created by 
Search Tool for the Retrieval of Interacting Genes 
(STRING) (correlation score > 0.4) [19].

2.2 Oncomine database analysis

Oncomine (https://www.oncomine.org/) is an 
online mining platform by which the expression 
analyses on comparing the transcriptome data in 
most types of cancer with their corresponding nor
mal tissues can be performed [20,21]. The mRNA 
expression levels of genes encoding Rho GEFS in 
NSCLC tissues, represented by LUAD and LUSC, as 
well as normal lung tissues were analyzed by 
Oncomine. In this study, P-value < 0.05, fold 
change > 2.0 and top 5% gene rank were selected 
as the thresholds. The resulting data were input into 
and visualized by Microsoft Office Excel 16.0 soft
ware (Microsoft Corporation, Redmond, CA).

2.3 Gene Expression Profiling Interactive 
Analysis (GEPIA) database analysis

GEPIA (http://gepia.cancer-pku.cn/) is an online tool 
that contains differential expression analysis between 
tumors and normal tissues based on The Cancer 
Genome Atlas (TCGA) and Genotype-Tissue 
Expression (GTEx) data [22]. To date, TCGA has 
produced RNA-Seq data including 9736 tumor sam
ples across 33 cancer types, as well as data containing 
726 adjacent normal tissues. The GTEx project con
tains RNA-Seq data for more than 8000 normal sam
ples from unrelated donors. GEPIA integrates the 
information from cancer genomics big data for end 
users. The GEPIA database was used to validate the 
transcriptional profiles of Rho GEFs in patients with 
NSCLC.

2.4 UALCAN database analysis

UALCAN (http://ualcan.path.uab.edu/) is a web 
server that uses TCGA RNA-seq and clinical data 
from 31 cancer types [23]. This database provides 
a platform for identifying candidate biomarkers
specific for tumor sub-groups. The UALCAN 
database was utilized to analyze the mRNA expres
sion of normal tissues and NSCLC specimens from 
different sub-groups based on nodal metastasis 
status and tumor stages.
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2.5 Kaplan–Meier Plotter database analysis

Kaplan–Meier Plotter (https://kmplot.com/) is an 
online database capable of assessing the effects of 
54,000 genes on survival in 21 types of cancer. This 
system includes gene chip and RNA-seq data from 
the Gene Expression Omnibus (GEO), European 
Genome-Phenome Archive (EGA), and TCGA data
base. In this database, data of lung cancer are avail
able [24]. The patient specimens were divided into 
high expression and low expression groups using the 
JetSet best probe set and auto-selected best cutoff 
[25]. Outlier arrays were excluded to control the 
array quality [26]. Overall survival (OS) and first 
progression (FP) were analyzed in patients with 
NSCLC. Log-rank P-value and hazard ratio (HR) 
with 95% confidence interval (CI) were calculated 
and displayed on the web server. The Kaplan–Meier 
Plotter database was used to evaluate the prognostic 
value of genes encoding Rho GEFs in NSCLC.

2.6 MEXPRESS database analysis

MEXPRESS (https://mexpress.be/) is an online data 
visualization tool for the visualization and integra
tion of TCGA expression, DNA methylation and 
clinical data [27,28]. The MEXPRESS database was 
employed to investigate the promoter methylation 
status of selected genes in NSCLC specimens com
pared to normal tissues, and only CpG sites with 
statistically significant results were reported.

2.7 cBioPortal for Cancer Genomics 
(cBioPortal) database analysis

cBioPortal (http://cbioportal.org) is a web resource 
for the exploration, visualization and analysis of 
cancer genomics data [29]. The datasets selected in 
our study were LUAD (TCGA, Firehose Legacy, 
containing 580 samples) and LUSC (TCGA, 
Firehose Legacy, containing 503 samples). The 
platform for methylation sequencing information 
was the Illumina Human Methylation 450 
(HM450). The correlation between the expression 
of the selected genes and DNA methylation in 
LUAD and LUSC was determined by cBioPortal. 
Moreover, the mutations of the selected genes and 
their relationship with gene expression were inves
tigated using cBioPortal.

2.8 Gene Set Enrichment Analysis (GSEA)

GSEA was used to determine whether a defined 
gene set was expressed with significant differences 
under two different biological conditions [30]. The 
TCGA data regarding LUAD (n = 479) and LUSC 
(n = 501) patients were downloaded from the 
Genomic Data Commons (GDC) Data Portal web
site (https://portal.gdc.cancer.gov/). Subsequently, 
the patients were classified into two groups (high 
vs. low expression) for each selected gene, and the 
cutoffs were determined as medians. GSEA was 
conducted on the mRNA expression data of the 
selected genes using GSEA 4.0.3 software (http:// 
software.broadinstitute.org/gsea/). A list of pro
tein-coding genes of hallmark gene sets (H) from 
the Molecular Signatures Database (MSigDB) 
(https://www.gsea-msigdb.org/gsea/msigdb/) was 
obtained for GSEA analysis [31], with 1,000 per
mutations to calculate the normalized enrichment 
score (NES) and P values. Gene sets with a false 
discovery rate (FDR) of < 0.25 and P < 0.05 were 
regarded as significantly enriched gene sets.

2.9 Cell lines and cell culture

293 T cells, adenocarcinoma cell PC9 and squa
mous cell H1703 in human NSCLC were used in 
this study to verify the tumor-suppressive effect of 
ABR. The 293 T cells were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM) with high glu
cose (Hyclone; GE Healthcare Life Sciences, 
Logan, UT, USA). PC9 and H1703 cells were cul
tured in Roswell Park Memorial Institute (RPMI) 
1640 medium (Gibco; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA). All media were supple
mented with 10% fetal bovine serum (FBS Gibco; 
Thermo Fisher Scientific, Inc., Waltham, MA, 
USA), 100 U/mL penicillin and 100 mg/L
streptomycin. All cell lines were incubated in a 
5% CO2, 95% humidity incubator at 37°C.

2.10 Plasmid and stable-overexpression cell 
lines construction

The full-length sequences of ABR CF1: CCGCTCG 
AGGCCACCATGGAGCCGCTCAGCCACCGG 
and ABR CR1:GGAATTCCACGTCGGTGGAGA 
AGTACAG were amplified from 293 T cells with 

BIOENGINEERED 11171

https://kmplot.com/
https://mexpress.be/
http://cbioportal.org
https://portal.gdc.cancer.gov/
http://software.broadinstitute.org/gsea/
http://software.broadinstitute.org/gsea/
https://www.gsea-msigdb.org/gsea/msigdb/


primers (NM_ 021962.5). Then ABR sequences were 
connected to pcDNA3.1 with a flag tag and subcloned 
into the pBOBI-IRES-EGFP-T2A-Puro vector. After 
the virus was packaged in 293 T cells using 
Lipofectamine 3000 (Life Invitrogen, USA), ABR and 
an empty vector were transfected into the target cell 
line lung cancer cells for overexpression. According to 
the fluorescence expression, the cells were screened 
with puromycin (1 μg/mL) for 4 to 6 days.

2.11 Protein extraction and Western blotting

Total protein was extracted from all cell lines with 
RIPA buffer including 100X Thermo Cocktail 
Protease inhibitor (Thermo Fisher Scientific, Inc., 
Waltham, MA, USA). The cell lysates were subjected 
to SDS-PAGE and transferred to a polyvinylidene 
fluoride (PVDF) membrane. The PVDF membrane 
was blocked with 5% fat-free milk and incubated with 
the primary antibody directed against ABR (Abcam, 
UK) at room temperature for 1 h. Subsequently, the 
PVDF membrane was washed with TBS-Tween 20 
(TBST) for three times, incubated with a horseradish 
peroxidase (HRP) goat anti-Rabbit (IgG) secondary 
antibody (Abcam, UK) at room temperature for 1 h, 
and washed again with TBST for three times. The 
PVDF membrane was imaged using FluorChem M 
(ProteinSimple, CA, USA). After stripping, the PVDF 
membrane was re-probed with β-actin antibody 
(Proteintech Group, USA) and the HRP-conjugated 
Affinipure Goat Anti-Mouse IgG (H + L) (Proteintech 
Group, CA, USA) as the secondary antibody.

2.12 Cell proliferation assay

The cells were seeded into 96 well plates at a 
density of 10,000 cells per well. Cell viability was 
measured at 2h, 24 h, 48 h and 72 h after inocula
tion. The absorbance of 490 nm was measured at 
37°C for 1 h after incubation with Cell Titer 96® 
AQueous One Solution Cell Proliferation Assay 
(MTS) (Promega, WI, USA). Results are represen
tative of three independent experiments.

2.13 Colony formation assay

Cells were seeded at a density of 1,000 cells per well in 
6-well plates and cultured at 37°C for colony forma
tion. After 7 to 14 days, the cells were fixed in 

anhydrous formaldehyde for 15 min and stained 
with 0.1% (w/v) crystal violet at room temperature 
for 15 min. The colonies were photographed using a 
Fluor Chem R Imaging system (Protein Simple) and 
counted by Image J software. Results are representa
tive of three independent experiments.

2.14 Cell migration assay

After starvation in serum-free medium for 12 h, the 
cells were seeded into a Transwell chamber at a den
sity of 50,000 cells per well. The cells were cultured in 
serum-free or 10% FBS medium in a chamber. The 
cells were cultured in a 37°C and 5% CO2 incubator 
for 24 h. Finally, the cells were fixed in anhydrous 
formaldehyde for 15 min, stained with 0.1% (w/v) 
crystal violet for 15 min, and rinsed with PBS. After 
that, the cells were placed under a 200X microscope, 
photographed for 10 fields, and counted by Image J 
software. Results are representative of three indepen
dent experiments.

3. Results

Rho GEFs are conventionally known as activators of 
Rho GTPases, which promote carcinogenesis. To 
date, there is a lack of comprehensive understanding 
of the role of Rho GEFs in NSCLC. The aim of our 
study was to provide a more comprehensive under
standing of Rho GEFs. We hypothesized that Rho 
GEFs can exert functions in addition to Rho GTPase 
activation in NSCLC. Our bioinformatic analysis and
in vitro experiments confirmed our hypothesis for the 
Rho GEF ABR.

3.1 Structure and domains of Rho GEF family 
proteins

The human Rho GEFs are comprised of 81 members, 
which can be mainly divided into two families, namely 
DOCK family (Figure 1a) and DBL family (Figure 1b). 
The structures of Rho GEFs are various, but conserved 
domains have also been identified. Proteins of the 
DBL Rho GEFs were defined by the presence of con
served Dbl-homology (DH) domains. The DBL family 
of Rho GEFs contains 70 members with 72 DH 
domains, among which TRIO and KALIRIN possess 
two DH domains, and the other members all contain 
one DH domain, which is responsible for stimulating 
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guanine nucleotide exchange. In addition to the DH 
domain, most DBL Rho GEFs contain a pleckstrin- 
homology (PH) domain following the DH domain. 
The PH domains are able to bind to phospholipids 
and are essential to properly mediate the localization 
of DBL Rho GEFs to their action sites via lipid binding. 
Proteins of the DOCK Rho GEFs were classified by the 
presence of DOCK-homology region 1 (DHR-1) and 
DOCK-homology region 1 (DHR-2) domains. Similar 
to the DH and PH domains, DHR-2 domains are 
responsible for guanine nucleotide exchange, and 
DHR-1 domains interact with phospholipids, which 
aid in targeting DOCK Rho GEFs to the plasma 
membrane. Apart from the DH, PH, DHR-1, and 
DHR-2 domains, other domains of Rho GEFs, such 
as Src homology 2 (SH2) and Src homology 3 (SH3) 
domains, are important in mediating protein-protein 
interactions, protein-lipid interactions, and messenger 
binding. In order to highlight the highly conserved 
domains of Rho GEFs, the details of the other domains 
displayed in Figure 1 are illustrated in Supplementary 
FigureS1. The PPIs of the Rho GEFs are demonstrated 
in Supplementary Fig. S2,

3.2 The expression levels of Rho GEFs are 
altered in lung cancer.

Oncomine database analysis was performed to inves
tigate the altered mRNA expression in lung cancer. 
There are 43 genes encoding DBL GEFs (Supple- 
mentary FigureS3A) and 7 genes (Supplementary 
FigureS3B) encoding DOCK GEFs showing remark
able alterations of mRNA expression levels in lung 
cancer compared to normal tissues. For the DBL 
family of Rho GEFs, 24 genes were downregulated 
in lung cancer, whereas 13 genes were upregulated, 
and the other 6 genes showed contradictory results of 
aberrant expression in different datasets. For the 
DOCK family of Rho GEFs, 6 genes were underex
pressed in lung cancer, while only 1 gene was identi
fied to be overexpressed. Moreover, GEPIA database 
analysis was used to verify the altered mRNA expres
sion of genes encoding Rho GEFs in NSCLC. Due to 
the fact that gene expression patterns can vary in 
LUAD and LUSC, the following analyses were per
formed independently in LUAD and LUSC [32]. 
Most of the genes encoding DBL Rho GEFs were 
downregulated in LUAD (Figure 2a) and LUSC 
(Figure 2b). For all of the DOCK Rho GEFs except 

DOCK7, the median expression of genes was also 
decreased in LUAD (Figure 2a) and LUSC (Figure 
2b) compared to normal samples. Furthermore, the 
UALCAN and Kaplan Meier Plotter database analyses 
for all genes encoding Rho GEFs were performed 
(data not shown). The genes showing contradictory 
effects within or across different databases were 
excluded. Eventually, ABR and PREX1 in the DBL 
family of Rho GEFs, as well as DOCK2 and DOCK4 
in the DOCK family of Rho GEFs, were selected for 
this study.

3.3 ABR, PREX1, DOCK2 and DOCK4 are 
downregulated in NSCLC.

In order to obtain an overview of the expression 
patterns of ABR in various tumor types and in the 
corresponding normal tissues, a body map was gener
ated by GEPIA (Figure 3a). Compared to normal lung 
tissue, the expression of ABR is lower in lung cancer. 
To further validate the downregulation of ABR in lung 
cancer, specific datasets from Oncomine analysis are 
illustrated (Figure 3a). From the Garber Lung dataset, 
the expression of ABR in LUSC was markedly lower 
than that in normal lung tissue (P < 0.001, fold change 
−2.435), while the datasets of LUAD with statistical 
significance are lacking in the Oncomine database. 
Therefore, the GEPIA database was used
to confirm our results. From the GEPIA database 
analysis of both LUAD and LUSC, ABR was signifi
cantly downregulated in tumors (P < 0.05). The down
regulation of PREX1 (Figure 3b), DOCK2 (Figure 3c), 
and DOCK4 (Figure 3d) was also validated by 
Oncomine and GEPIA database analysis. These results 
imply that ABR, PREX1, DOCK2, and DOCK4 can 
function as tumor suppressors in NSCLC, while more 
specific data on tumor subgroups and the correspond
ing survival data are needed for confirmation. 
Consequently, the expression levels of the selected 
genes in the tumor subgroups divided by nodal metas
tasis status or individual stages were investigated.

From the UALCAN database analysis, ABR 
(Supplementary Figure 4a), PREX1 (Supplementary 
Figure 4c), DOCK2 (Supplementary Figure 4e), and 
DOCK4 (Supplementary Figure 4g) were significantly 
downregulated in each nodal metastasis status (N0, 
N1, N2, and N3) of LUAD and LUSC when compared 
to normal tissues. In addition, the expression of ABR 
(Supplementary Figure 4b), PREX1 (Supplementary 
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Figure 1. The human DBL family and DOCK family of Rho GEFs. (a) The 70 members of DBL family Rho GEFs and (b) 11 members 
of DOCK family Rho GEFs are arranged in phylogenetic tree by MEGA7.0 software, using the protein sequences obtained from 
UniProt. The protein domain architecture is visualized by Evolview. Each color represents one distinct structural domain. The DH, PH 
domains of DBL Rho GEF family and DHR-1, DHR2 domains of DOCK Rho GEF family with the corresponding colors are highlighted in
the left panel. All proteins are visualized in the same scale except OBSCN. For other structural domains, please refer to FigureS1. DH: 

Dbl homology; PH: Pleckstrin homology; DHR-1: DOCK homology region 1; DHR-2: DOCK homology region.
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Figure 4d), DOCK2 (Supplementary figure 4f), and 
DOCK4 (Supplementary Figure 4h) were observably 
lower in each stage (stage 1, stage 2, stage 3 and stage 4) 
of LUAD and LUSC compared to normal samples. 

Although the median expression of the selected genes 
generally decreased as nodal metastasis status or 
tumor stage advanced, the majority of these data 
showed no statistical significance. Taken together, 

Figure 2. Expression of Rho GEFs in NSCLC. The expression levels of Rho GEFs in NSCLC, represented by LUSC and LUAD, are 
analyzed by GEPIA database. (a) The median expression of Rho GEFs in LUAD compared to normal tissues. (b) The median expression 
of Rho GEFs in LUAD compared to normal tissues. The transcripts per million (TPM) of genes are normalized by log10(TPM). Gene 
name with red (higher expression compared to normal tissue) and green (lower expression compared to normal tissue) color 
indicates P < 0.05 for their expressions in tumors compared to normal tissues.
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Figure 3. Expression of ABR, PREX1, DOCK2 and DOCK4 in NSCLC. (a) The body map of various organs (GEPIA), the cohort of 
Garber Lung (Oncomine), and the LUSC and LUAD patient specimens with normal tissues for the expression of ABR (GEPIA) are 
illustrated. (b) The body map (GEPIA), the cohorts of Hou Lung and Okayama Lung (Oncomine), and the LUSC and LUAD patient 
samples with normal tissues for PREX1 expression (GEPIA) are demonstrated. (c) The body map including different organs (GEPIA),
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these consistent results confirm that ABR, PREX1, 
DOCK2, and DOCK4 are notably downregulated in 
NSCLC, and their prognostic values were subse
quently investigated.

3.4 Downregulations of ABR, PREX1, DOCK2 and 
DOCK4 are prognostic factors for NSCLC.

Using the Kaplan–Meier Plotter database, survival 
analysis was performed to determine the prognostic 
value of the selected genes in NSCLC patients. With 
regard to overall survival, ABR (Figure 4a), PREX1 
(Figure 4c), DOCK2 (Figure 4e), and DOCK4 (Figure 
4g) all demonstrated significant values in the prog
nosis of LUAD and LUSC patients, and a lower 
expression of these genes predicted poor OS in 
patients. For LUAD patients, the expression of 
DOCK4 was more significantly correlated with OS 
(HR = 0.33; 95% CI: 0.24–0.44; P = 1.4E-14) compared 
to that of ABR, PREX1, and DOCK2. In LUSC 
patients, DOCK4 expression was also more markedly 
correlated with OS (HR = 0.64; 95% CI: 0.49–0.82; P 
= 0.00055) than ABR, PREX1, and DOCK2 expres
sion. However, for the prognosis of tumor progres
sion, ABR showed no significance in both LUAD and 
LUSC patients (Figure 4b). In addition, lower DOCK4 
expression was associated with earlier FP in LUAD 
patients, but not in LUSC patients (Figure 4h). The 
downregulation of PREX1 (Figure 4d) and DOCK2 
(figure 4f) were significantly correlated with earlier 
tumor progression in LUSC and LUAD patients. 
Among the four Rho GEFs, DOCK4 predicted the 
progression in LUAD patients with a higher signifi
cance (HR = 0.42; 95% CI: 0.29–0.62; P = 5.7E-06), 
while DOCK2 more observably predicted LUSC pro
gression (HR = 0.48; 95% CI: 0.29–0.8; P = 0.0041). 
Collectively, through the analysis using Oncomine, 
GEPIA, UALCAN, and Kaplan–Meier Plotter data
bases, consistent results highlight the downregulation 
of ABR, PREX1, DOCK2, and DOCK4 in NSCLC, 
and they notably predict the poor prognosis of NSCLC 
patients.

3.5 Promoter methylation levels contribute to the 
aberrant expression of ABR, PREX1, DOCK2, and 
DOCK4 in NSCLC
DNA methylation in promoter regions is impor
tant for modulating gene expression by inducing 
stable epigenetic inhibition of gene expression. 
Therefore, whether methylation is correlated 
with the expression of ABR, PREX1, DOCK2, 
and DOCK4 was examined. cBioPortal database 
analysis revealed that the promoter methylation 
levels of ABR (P = 6.91E-20, r = −0.41 for 
LUAD; P = 7.31E-8, r = −0.28 for LUSC)
(Figure 5a), PREX1 (P = 1.786E-5, r = −0.20 
for LUAD; P = 2.689E-3, r = −0.16 for LUSC) 
(Figure 5b), DOCK2 (P = 5.12E-10, r = −0.29 
for LUAD; P = 4.785E-5, r = −0.21 for LUSC) 
(Figure 5c) and DOCK4 (P = 1.638E-6, r 
= −0.22 for LUAD; P = 1.609E-5, r = −0.22 
for LUSC) (Figure 5d) were negatively corre
lated with mRNA expression in NSCLC. 
MEXPRESS database revealed a large number 
of probes that were significantly associated 
with the expressions of ABR, PREX1, DOCK2 
and DOCK4 (Supplementary FigureS5). The 
above results suggest that the hypermethylation 
of ABR, PREX1, DOCK2, and DOCK4 is not 
only identified in NSCLC in comparison to 
normal tissues, but is also negatively correlated 
with their mRNA expression in NSCLC.

3.6 Analysis of ABR, PREX1, DOCK2, and DOCK4 
mutations in NSCLC.

Genetic alterations of ABR, PREX1, DOCK2, and 
DOCK4 were studied by the cBioPortal database. 
The proportion and distribution of TCGA samples 
with genetic alterations in LUAD (Supplementary 
FigureS6A) and LUSC (Supplementary FigureS6B) 
are shown, and DOCK2 possesses the highest pro
portion of genetic alterations in both LUAD (13%) 
and LUSC (10%) among the four selected Rho 
GEFs. The locations of the mutations are further 

the cohorts of Bhattacharjee Lung and Selamat Lung (Oncomine), and the LUSC and LUAD patient samples with normal tissues for 
DOCK2 expression (GEPIA) are shown. (d) The body map (GEPIA), the cohorts of Bhattacharjee Lung, Hou Lung, Wachi Lung, Landi 
Lung, Su Lung and Stearman Lung (Oncomine), and the LUSC and LUAD patient samples with normal tissues for DOCK4 expression 
(GEPIA) are illustrated. Red: tumor tissue. Green: normal tissue. The deeper color in the body map represents higher expression.*P 
< 0.05.
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illustrated in Supplementary FigureS6C and 
Supplementary FigureS6D. The majority of the 
mutations in the four selected Rho GEFs were
missense mutations, and several mutations were 
located in the regions encoding the conserved 

domains of Rho GEFs. However, the mutations 
of the selected genes have no statistically signifi
cant impact on the mRNA expression in LUAD 
(Supplementary FigureS6E) and LUSC (Supplem
entary FigureS6F).

Figure 4. Prognostic value of ABR, PREX1, DOCK2 and DOCK4 expression in NSCLC. (A, C, E, G) Survival curves referring to OS 
are plotted for LUAD and LUSC patients. (B, D, F, H) Survival curves with regard to FP are generated for patients with LUAD and 
LUSC. Log-rank P values and HRs with 95% CIs are displayed. FP: first progression; HR: hazard ratio; OS: overall survival.
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Figure 5. Impact of DNA methylation on ABR, PREX1, DOCK2 and DOCK4 expression in NSCLC. Visualization of TCGA data for 
the promoter region methylation and mRNA expression of (a) ABR, (b) PREX1, (c) DOCK2 and (d) DOCK4 in LUAD and LUSC, 
compared to those in normal tissues using MEXPRESS. The correlation of (e) ABR, (f) PREX1, (g) DOCK2 and (h) DOCK4 expression 
with promoter methylation is analyzed by cBioPortal database. Spearman’s correlation analysis and Pearson’s correlation analysis are 
performed in the database. The regression line is used to illustrate the correlation trend.
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3.7 GSEA identifies potential mechanisms by 
which ABR, PREX1, DOCK2, and DOCK4 regulate 
NSCLC development and progression
Based on the data from multiple analyses, the 
lower expression of ABR, PREX1, DOCK2, and 
DOCK4 can lead to NSCLC development and 
progression, and therefore, GSEA by TCGA data 
was employed to explain the underlying mechan
isms. The expression matrix of NSCLC patients is 

divided into high-expression and low-expression 
groups based on the median expression levels of 
ABR, PREX1, DOCK2, and DOCK4, respectively. 
GSEA revealed that, in LUAD and LUSC, patients 
with lower expression of ABR (nominal P = 0.002, 
FDR = 0.011 for LUAD; nominal P < 0.001, FDR < 
0.001 for LUSC) (Figure 6a), PREX1 (nominal P 
= 0.002, FDR = 0.004 for LUAD; nominal P 
< 0.001, FDR = 0.003 for LUSC) (Figure 6c), 

Figure 6. GSEA analysis between the high-expression group and low-expression group in ABR, PREX1, DOCK2 and 
DOCK4 for NSCLC. The correlation between the enrichment of MYC signaling gene set and (a) ABR, (c) PREX1, (e) DOCK2 
and (g) DOCK4 expression in LUAD and LUSC. The association between the expression of (b) ABR, (d) PREX1, (f) DOCK2 and 
(h) DOCK4 expression with DNA repair gene set enrichment. The barcode plot demonstrates gene positions in each gene 
set. The horizontal bar indicates positive (red) and negative correlation (blue) with gene expression. FDR: false discovery 
rate.
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DOCK2 (nominal P < 0.001, FDR < 0.001 for 
LUAD; nominal P < 0.001, FDR = 0.001 for 
LUSC) (Figure 6e) and DOCK4 (nominal P 
= 0.002, FDR = 0.008 for LUAD; nominal P 
= 0.017, FDR = 0.053 for LUSC) (Figure 6g) have 
a higher expression of genes associated with MYC 
signaling, which are essential for the development 
of lung cancer [33–35]. Moreover, our results also 
revealed that the DNA repair pathway was signifi
cantly enriched under the downregulation of ABR 
(nominal P = 0.024, FDR = 0.056) (Figure 6b), 
PREX1 (nominal P = 0.002, FDR = 0.006) 
(Figure 6d), DOCK2 (nominal P < 0.001, 
FDR = 0.004) (figure 6f), and DOCK4 (nominal 
P = 0.006, FDR = 0.012) in LUAD (Figure 6h). 
Similarly, the DNA repair pathway enrichment 
was identified under ABR (nominal P = 0.008, 
FDR = 0.027) (Figure 6b), DOCK2 (nominal P 
= 0.012, FDR = 0.022) (figure 6f), and DOCK4 
(nominal P = 0.020, FDR = 0.039) (Figure 6h) 
downregulation in LUSC. However, the DNA 
repair pathway was not enriched in the PREX1- 
low-expression group in LUSC (nominal P 
= 0.075, FDR = 0.115) (Figure 6d). The details of 
the data are summarized in Table 1.

3.8 ABR shows tumor suppression effect in 
proliferation, migration, and cloning ability in PC9 
and H1703 cells
In addition to analyzing the tumor-suppressive 
effects of ABR, PREX1, DOCK2, and DOCK4 
through bioinformatics, we further verified the 

role of ABR in proliferation, migration, and clon
ing ability in PC9 and H1703 cells experimentally. 
Cell proliferation experiments of PC9 and H1703 
cell lines with overexpression of NC and ABR1 
showed that overexpression of ABR inhibited cell 
proliferation in both cell types (Figure 7a). The
migration capacity of ABR overexpression was 
measured in PC9 and H1703 cells, which showed 
that ABR presented a tumor-suppressive effect 
when compared to the NC group (Figure 7b). 
Cloning ability was also tested and analyzed, and 
ABR overexpression showed a suppressive effect in 
the number of clones in both PC9 and H1703 cells 
(Figure 7c). The above results suggest that the 
overexpression of ABR, as a representative of 
Rho GEFs, is prone to exert a tumor-suppressive 
effect in NSCLC.

4. Discussions

Rho GEFs are known for their critical roles as 
molecular switches in activating Rho GTPases, 
and therefore function as regulators of various 
diseases not limited to cancer [5,6]. ABR, as indi
cated by its name, was first identified as a break
point cluster region (BCR)-related protein that 
shares high homology with BCR in humans (68% 
amino acid identity) [36]. ABR maintains the nor
mal reactivity of the innate immune system, and 
the altered function of ABR can lead to the devel
opment of leukemia [37,38]. PREX1 was first dis
covered in the cytosol of neutrophils [39]. PREX1 

Table 1. Gene Set Enrichment Analysis (GSEA) of gene sets significantly enriched in LUAD and LUSC.
Tumor Types Genes Encoding GEFs Enriched Gene Sets Size ES NES Nominal p-value FDR q-value FWER p-value

LUAD ABR HALLMARK_MYC_TARGETS_V1 199 −0.73912 −2.03656 0.002016 0.011191 0.027
HALLMARK_DNA_REPAIR 150 −0.53791 −1.77365 0.023762 0.056209 0.191

PREX1 HALLMARK_MYC_TARGETS_V1 199 −0.75718 −2.15914 0.001957 0.00364 0.007
HALLMARK_DNA_REPAIR 150 −0.61628 −2.06687 0.00198 0.00618 0.022

DOCK2 HALLMARK_MYC_TARGETS_V1 199 −0.7828 −2.27298 0 7.28E-04 0.002
HALLMARK_DNA_REPAIR 150 −0.63067 −2.13108 0 0.004392 0.016

DOCK4 HALLMARK_MYC_TARGETS_V1 199 −0.73671 −2.02493 0.001938 0.008172 0.032
HALLMARK_DNA_REPAIR 150 −0.57858 −1.94703 0.005725 0.012478 0.056

LUSC ABR HALLMARK_MYC_TARGETS_V1 199 −0.7608 −2.25999 0 7.39E-04 0.003
HALLMARK_DNA_REPAIR 150 −0.54108 −1.88272 0.008403 0.02707 0.116

PREX1 HALLMARK_MYC_TARGETS_V1 199 −0.72201 −2.17652 0 0.003185 0.009
HALLMARK_DNA_REPAIR 150 −0.43784 −1.51756 0.075397 0.115496 0.491

DOCK2 HALLMARK_MYC_TARGETS_V1 199 −0.77524 −2.279 0 0.001378 0.002
HALLMARK_DNA_REPAIR 150 −0.54779 −1.92649 0.012097 0.022362 0.091

DOCK4 HALLMARK_MYC_TARGETS_V1 199 −0.63924 −1.9451 0.016736 0.05325 0.077
HALLMARK_DNA_REPAIR 150 −0.49595 −1.81377 0.02004 0.039442 0.183

ES: enrichment score; NES: normalized enrichment score; FDR: false discovery rate; FWER: family-wise error rate. 
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Figure 7. ABR shows tumor suppression effect in proliferation, migration and cloning ability in PC9 and H1703 cells. The cell 
proliferation experiment of PC9 and H1703 cell lines with overexpression of ABR (a). The migration capacity of PC9 and H1703 cells under ABR 
overexpression is shown, and the right panel illustrates tumor cells that invaded the chamber (b). The cloning formation ability of PC9 and 
H1703 cells under ABR overexpression, and the right panel demonstrates the colonies formed in each well (c). NC: control group with 
transfection by empty vector. ABR: ABR overexpressed group. NS: non-significant, * P < 0.05, ** P < 0.01, *** P < 0.001.
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is important in regulating reactive oxygen species 
(ROS) production, migration, and chemotaxis of 
neutrophils [40,41]. Elevated expression of PREX1 
has been associated with the development of mel
anoma, prostate cancer, and breast cancer [42–44]. 
DOCK2 expression was initially deemed to be 
restricted to hematopoietic cells [45]. Although it 
is predominantly expressed in lymphocytes and 
hematopoietic tissues, recent research has revealed 
the tumor-promoting role of DOCK2 in lym
phoma and colorectal cancer [46–48]. Distinct 
from the identification of ABR, PREX1 and 
DOCK2 in non-cancer cells, DOCK4 identification 
was initially reported in osteosarcoma cells, in 
which DOCK4 was deleted during tumor progres
sion [49]. However, DOCK4 has also been 
reported to promote breast cancer development 
and is associated with bone metastasis [50,51]. To 
date, the roles of ABR, PREX1, DOCK2, and 
DOCK4 in lung cancer are largely unknown, and 
the underlying mechanisms remain to be explored.

Through the integration of data from multiple 
databases, our study demonstrated that ABR, 
PREX1, DOCK2, and DOCK4 are downregulated 
in NSCLC. In addition, NSCLC subgroups with 
higher nodal metastasis levels or cancer stages 
generally have lower median expression of ABR, 
PREX1, DOCK2, and DOCK4, whereas statistical 
significance for the comparison among these sub
groups remains to be verified with a larger number 
of samples. Notably, the downregulation of ABR, 
PREX1, DOCK2, and DOCK4 are associated with 
poor overall survival of NSCLC patients, suggest
ing that these four novel Rho GEFs can serve as 
promising biomarkers for predicting the OS of 
patients. For the prognostic value for disease pro
gression, only PREX1 and DOCK2 were statisti
cally significant in both LUAD and LUSC patients. 
Although DOCK4 is not a candidate marker for 
predicting the disease progression in LUSC 
patients, its higher expression is markedly corre
lated with delayed tumor progression in LUAD 
patients. Hence, ABR, PREX1, DOCK2, and 
DOCK4 downregulation are characteristic of 
NSCLC, and they are promising for predicting 
the prognosis of NSCLC patients.

Gene expression and repression within cancer 
cells can be controlled by the epigenetic mechan
isms of DNA methylation, which is the interaction 

between genes and phenotypes without causing 
mutations in the DNA sequence [52,53]. DNA 
methylation involves the covalent addition of 
methyl groups to the C-5 position of cytosine 
rings, especially in a CpG dinucleotide [54]. In 
mammals, approximately 70% of the promoters 
are rich in unmethylated CpG [55]. 
Hypermethylation of CpG sites in promoters is 
typically associated with gene silencing at the tran
scriptional levels [56]. In lung cancer, DNA hyper
methylation of tumor suppressors represents a 
hallmark and an early event in tumorigenesis 
[57]. Our study revealed that NSCLC samples 
from TCGA database contain higher methylation 
levels in the promoters of ABR, PREX1, DOCK2 
and DOCK4 genes compared to the normal
samples. Moreover, in NSCLC specimens, elevated 
levels of promoter methylation were markedly
associated with lower expression of ABR, PREX1, 
DOCK2, and DOCK4. Thus, DNA hypermethyla
tion might contribute to the downregulation of 
ABR, PREX1, DOCK2, and DOCK4 in NSCLC, 
and the methylation profiles of the four key Rho 
GEFs may be novel biomarkers for lung cancer 
screening.

In addition to epigenetic alterations, gene muta
tions can also affect gene expression levels [58]. 
The majority of mutations for ABR, PREX1, 
DOCK2, and DOCK4 in NSCLC are missense 
and truncating mutations, which means a change 
of a single amino acid into another and a change 
in the DNA that can shorten the protein, respec
tively. Our results illustrate that the expression of 
ABR, PREX1, DOCK2, and DOCK4 in NSCLC are 
not correlated with mutations. It should be noted 
that loss-of-function or gain-of-function muta
tions can lead to potential inhibitory or tumori
genic effects [59]. From our analysis, a few 
mutations occurred in the RHOGEF (DH), PH, 
DOCK-C2 (DHR-1) and DHR-2 domains, indicat
ing that the critical functions of Rho GEF can be 
altered by the mutations, and this is yet to be 
confirmed.

Mechanistically, the downregulation of ABR, 
PREX1, DOCK2 and DOCK4 might upregulate 
MYC signaling and DNA repair pathways, as iden
tified by GSEA using TCGA data. The MYC onco
gene encodes a transcription factor that triggers 
gene expression in cancer cells [60]. MYC 
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signaling is implicated in the pathogenesis of most 
human cancers, and its deregulation is correlated 
with poor survival of patients [61]. MYC activa
tion is associated with many features of cancer, 
including protein synthesis, proliferation and 
altered cellular pathways [61,62]. MYC upregula
tion is detected in >40% of NSCLC cases and is 
related to the loss of cell differentiation and tumor 
progression [63,64]. Therefore, ABR, PREX1, 
DOCK2, and DOCK4 downregulation could lead 
to the development of NSCLC via upregulation of 
the MYC protein expression and its downstream 
targets.

In clinical practice, chemotherapy and radiother
apy are the gold standards for the treatment of 
patients with lung cancer, and they have largely 
prolonged the survival of patients [65]. The thera
peutic effects of platinum-based chemotherapeutic 
drugs and ionizing radiation are mediated by DNA 
damage [66–68]. Nevertheless, enhanced DNA 
repair mechanisms counteract the therapeutic ben
efits to patients, thereby leading to poor patient 
survival. Hence, the downregulation of ABR, 
PREX1, DOCK2, and DOCK4 promotes cancer 
development and leads to a poor prognosis by acti
vating MYC and DNA repair signaling pathways in 
NSCLC, and further in vitro and in vivo studies are 
necessary to further confirm their association. 
Moreover, agents targeting DNA damage repair 
mechanisms have shown promise in NSCLC clin
ical models [67]. These four key Rho GEFs are also 
promising as biomarkers for predicting the 
response to DNA-damage regimens.

In spite of the conventional perspective that 
Rho GEFs are activators of Rho GTPases, based 
on comprehensive bioinformatic analysis and in 
vitro validation, our study unexpectedly but rea
sonably revealed that the Rho GEF ABR is a tumor 
suppressor in NSCLC. In addition to the above 
findings, it should be noted that the following 
evidence supports our results. ABR contains a 
Rho GAP domain in addition to its Rho GEF 
domain, functioning as a dual Rho GEF/GAP 
[69]. In addition, the prominent expression of 
ABR suggests its correlation with lymphocyte infil
tration via cytokine secretion in NSCLC tissues. 
Tumor-infiltrating lymphocytes can attack and 
eliminate tumor cells, and therefore contribute to 
a better prognosis in patients with NSCLC [70,71]. 

For future studies, researchers should not simply 
regard all Rho GEFs as tumor promoters because 
of their involvement in activating Rho GTPases. 
Instead, the functions of Rho GEFs, other than the 
activation of Rho GEFs in cancers, should be 
noted.

5. Conclusion

In conclusion, our study identified that ABR, 
PREX1, DOCK2 and DOCK4 can serve as promis
ing biomarkers for predicting the prognosis of 
NSCLC patients. The downregulation of ABR, 
PREX1, DOCK2 and DOCK4 in NSCLC can be 
induced by promoter methylation, and their 
methylation profiles might be potential indicators
for lung cancer screening. The downregulation of 
the four key genes might enhance the tumorigenic 
MYC signaling and the DNA repair pathway. Our 
in vitro studies confirmed the role of ABR as a 
tumor suppressor in NSCLC cells. Future studies 
on methylation, regulation patterns and specific 
mechanisms are required.
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