# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 6-Chloro-2-chloromethyl-4-phenylquinazoline 3-oxide

### Thammarse S. Yamuna,<sup>a</sup> Jerry P. Jasinski,<sup>b\*</sup> Manpreet Kaur,<sup>a</sup> Hemmige S. Yathirajan<sup>a</sup> and Maravanahalli S. Siddegowda<sup>c</sup>

<sup>a</sup>Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, <sup>b</sup>Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and <sup>c</sup>R. L. Fine Chem, Bengaluru, 560 064, India Correspondence e-mail: jjasinski@keene.edu

Received 2 March 2014; accepted 7 March 2014

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.100; data-to-parameter ratio = 25.4.

In the title compound,  $C_{15}H_{10}Cl_2N_2O$ , the dihedral angle between the mean planes of the phenyl ring and the 10membered quinazoline ring is 63.3 (4)°. In the crystal, pairs of weak  $C-H\cdots O$  interactions link the molecules into centrosymmetric dimers, forming  $R_2^2(10)$  graph-set ring motifs. In addition, weak  $\pi-\pi$  stacking interactions [minimum centroid– centroid separation = 3.6810 (8) Å] are observed, which contribute to the formation of a supramolecular assembly in the packing array.

### **Related literature**

For general background and the pharmacological properties of quinazoline derivatives, see: Andries *et al.* (2005); Al-Rashood *et al.* (2006); Ghorab *et al.* (2010*a,b,c*); Harris & Thorarensen (2004); Jantova *et al.* (2004); Rádl *et al.* (2000); Klepser & Klepser (1997). For related structures, see: Brown & Gainsford (1979); El-Brollosy *et al.* (2012); Shi *et al.* (2004); Suguna *et al.* (1982); Xie & Li (2006). For standard bond lengths, see: Allen *et al.* (1987).



### Experimental

Crystal data  $C_{15}H_{10}Cl_2N_2O$  $M_r = 305.15$ 

Monoclinic,  $P2_1/n$ a = 8.2030 (3) Å

| b = 14.3203 (5) Å               |
|---------------------------------|
| c = 11.8477 (4) Å               |
| $\beta = 105.016 \ (4)^{\circ}$ |
| V = 1344.22 (9) Å <sup>3</sup>  |
| Z = 4                           |

# Data collection

| 17250 measured reflections             |
|----------------------------------------|
| 4599 independent reflections           |
| 3778 reflections with $I > 2\sigma(I)$ |
| $R_{\rm int} = 0.033$                  |
|                                        |
|                                        |
|                                        |

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.038$ | 181 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.100$               | H-atom parameters constrained                              |
| S = 1.03                        | $\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$  |
| 4599 reflections                | $\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$ |

### Table 1

Hydrogen-bond geometry (Å, °).

 $\frac{D - H \cdots A}{C15 - H15A \cdots O1^{i}} \frac{D - H}{0.97} \frac{H \cdots A}{2.57} \frac{D \cdots A}{3.4199} (16) \frac{146}{146}$ Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SUPERFLIP* (Palatinus & Chapuis, 2007); program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

TSY thanks the University of Mysore for research facilities and also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2289).

#### References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Al-Rashood, S. T., Aboldahab, I. A., Nagi, M. N., Abouzeid, L. A., Abdel-Aziz, A. A. M., Abdel-hamide, S. G., Youssef, K. M., Al-Obaid, A. M. & El-Subbagh, H. I. (2006). *Bioorg. Med. Chem.* 14, 8608-8621.
- Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. A. (2005). Science, **307**, 223–227.
- Brown, K. L. & Gainsford, G. J. (1979). Acta Cryst. B35, 2276-2278.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- El-Brollosy, N. R., Dege, N., Demirtaş, G., Attia, M. I., El-Emam, A. A. & Büyükgüngör, O. (2012). Acta Cryst. E68, 01866–01867.
- Ghorab, M. M., Ismail, Z. H. & Abdalla, M. (2010a). Arzneim. Forsch. Drug Res. 60, 87–95.
- Ghorab, M. M., Ragab, F. A., Heiba, H. I., Arafa, R. K. & El-Hossary, E. M. (2010b). Eur. J. Med. Chem., 45, 3677–3684.



Mo  $K\alpha$  radiation  $\mu = 0.48 \text{ mm}^{-1}$ 

 $0.22 \times 0.16 \times 0.08 \text{ mm}$ 

T = 173 K

- Ghorab, M. M., Ragab, F. A., Heiba, H. I., Youssef, H. A. & El-Gazzar, M. G. (2010c). Bioorg. Med. Chem. Lett., 20, 6316–6320.
- Harris, C. R. & Thorarensen, A. (2004). Curr. Med. Chem. 11, 2213-2243.
- Jantova, S., Stankovsky, S. & Spirkova, K. (2004). Biologia (Bratislava), 59, 741-752.
- Klepser, M. E. & Klepser, T. B. (1997). Drugs, 53, 40-73.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Rádl, S., Hezky, P., Proska, J. & Krejci, I. (2000). Arch. Pharm. (Weinheim), 333, 381–386.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, D., Li, Z., Shi, C., Wang, X. & Zhang, Y. (2004). Acta Cryst. E60, o2011– o2013.
- Suguna, K., Ramakumar, S. & Rajappa, S. (1982). *Acta Cryst.* B**38**, 1654–1656. Xie, C. & Li, H.-X. (2006). *Acta Cryst.* E**62**, 05632–05633.

# supplementary materials

Acta Cryst. (2014). E70, o440-o441 [doi:10.1107/S1600536814005303]

# 6-Chloro-2-chloromethyl-4-phenylquinazoline 3-oxide

# Thammarse S. Yamuna, Jerry P. Jasinski, Manpreet Kaur, Hemmige S. Yathirajan and Maravanahalli S. Siddegowda

### 1. Comment

Quinazolines have been intensively studied for their interesting pharmacological properties such as anticancer activity (Ghorab *et al.*, 2010*a,b,c*). A number of quinozolines have also been clinically used as antifungal, antibacterial and antiprotozoic drugs (Jantova *et al.*, 2004; Harris & Thorarensen, 2004) and antituberculotic agents (Andries *et al.*, 2005) and have pharmacological properties which include antitumor (Al-Rashood *et al.*, 2006) and analgesic (Rádl *et al.*, 2000) properties. Dihydropyrimidine derivatives (DHPMs) may also be applied as antimicrobial, anti-inflammatory and quinazoline analogs and have showed remarkable activity against the opportunistic infections of some microorganisms proved to be the prinicipal cause of death in patients with immunocompromised diseases such as acquired immune deficiency syndrome (Klepser & Klepser, 1997) and fused quinazoline systems, which are also important pharmacophores. The crystal structures of some related compounds, viz., 2-phenylquinazoline 1,3-dioxide (Brown & Gainsford, 1979), 1-{[(2,3-dihydro-1*H*-inden-2-yl)oxy]methyl}quinazoline-2,4(1*H*, 3*H*)-dione (El-Brollosy *et al.*, 2012), 3-(4-chlorophenyl)-3,4-dihydroquinazolin-2(1*H*)-one (Shi *et al.*, 2004), (4*S*)-2,4-dimethyl-1,2-dihydropyrazino[2,1-b]quinazoline-3(4*H*)- 6-dione (Suguna *et al.*, 1982) and 2-diethylamino-3-phenylquinazolin- 4(3*H*)-one (Xie *et al.*, 2006), have been reported. In view of the importance of the title compound, (I), C<sub>15</sub>H<sub>11</sub>Cl<sub>2</sub>N<sub>2</sub>O, this paper reports its crystal structure.

In the title compound the dihedral angle between the mean planes of the phenyl ring and the 10-membered quinazolin ring is 63.3 (4)° (Fig. 1). Bond lengths are in normal ranges (Allen *et al.*, 1987). In the crystal, a weak C15—H15*A*···O1 intermolecular interaction link the molecules into centrosymmetric dimers forming  $R_2^2(10)$  graph set ring motifs (Fig. 2). In addition, weak Cg1—Cg3 and Cg2—Cg3  $\pi$ — $\pi$  stacking intermolecular interactions are observed which contribute to crystal packing stability (Cg1—Cg3 = 3.6810 (8)Å; x - 1/2, -y + 1/2, z - 1/2; Cg2—Cg3 = 3.8821 (8)Å; x + 1/2, -y + 1/2, z - 1/2; Cg1 = N(1)/C(1)/N(2)/C(2)/C(7)/C(8); Cg2 = C2-C7; Cg3 = C9-C14). No classical hydrogen bonds were found.

### 2. Experimental

6-chloro-2-(chloromethyl)-3,4-dihydro-4-phenylquinazoline (10 g, 0.03434 mol) was dissolved in 40 ml of methanol and stirred for 5 mins at room temperature. To this mixture, 10 g of 50% H<sub>2</sub>O<sub>2</sub> solution (5 g, 0.147 mol) was added dropwise over 30 mins, maintaining the temperature below 313 K, then stirred for 6 hrs in a RB flask, cooled, filtered and dried at 333 K (Fig. 3). The precipitate was dissolved in a (1:1) mixture of toluene and methylene dichloride at 313 K. After a few days, X-ray quality crystals appeared on slow evaporation.

### 3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H bond lengths of 0.93Å (CH) or 0.97Å (CH<sub>2</sub>). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH<sub>2</sub>)

times  $U_{eq}$  of the parent atom.



## Figure 1

ORTEP drawing of (I)  $(C_{15}H_{11}Cl_2N_2O)$  showing the labeling scheme with 30% probability displacement ellipsoids.



### Figure 2

Molecular packing for (I) viewed along the b axis. Dashed lines indicate weak C-H-O intermolecular interactions. H atoms not involved in hydrogen bonding have been removed for clarity.



### Figure 3

Synthesis scheme of (I).

### 6-Chloro-2-chloromethyl-4-phenylquinazoline 3-oxide

| Crystal data                    |
|---------------------------------|
| $C_{15}H_{10}Cl_2N_2O$          |
| $M_r = 305.15$                  |
| Monoclinic, $P2_1/n$            |
| <i>a</i> = 8.2030 (3) Å         |
| <i>b</i> = 14.3203 (5) Å        |
| c = 11.8477 (4)  Å              |
| $\beta = 105.016 \ (4)^{\circ}$ |
| V = 1344.22 (9) Å <sup>3</sup>  |
| Z = 4                           |

F(000) = 624 $D_{\rm x} = 1.508 {\rm Mg} {\rm m}^{-3}$ Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 5430 reflections  $\theta = 3.1 - 32.8^{\circ}$  $\mu = 0.48 \text{ mm}^{-1}$ T = 173 KIrregular, colourless  $0.22 \times 0.16 \times 0.08 \text{ mm}$ 

Data collection

| Agilent Xcalibur (Eos, Gemini)<br>diffractometer<br>Radiation source: Enhance (Mo) X-ray Source<br>Graphite monochromator<br>Detector resolution: 16.0416 pixels mm <sup>-1</sup><br>$\omega$ scans<br>Absorption correction: multi-scan<br>( <i>CrysAlis PRO</i> and <i>CrysAlis RED</i> ; Agilent,<br>2012) | $T_{\min} = 0.829, T_{\max} = 1.000$ $17250 \text{ measured reflections}$ $4599 \text{ independent reflections}$ $3778 \text{ reflections with } I > 2\sigma(I)$ $R_{\text{int}} = 0.033$ $\theta_{\text{max}} = 32.8^{\circ}, \theta_{\text{min}} = 3.1^{\circ}$ $h = -12 \rightarrow 12$ $k = -21 \rightarrow 21$ $l = -17 \rightarrow 17$                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                            |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.038$<br>$wR(F^2) = 0.100$<br>S = 1.03<br>4599 reflections<br>181 parameters<br>0 restraints                                                                                                                                   | Primary atom site location: structure-invariant<br>direct methods<br>Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0411P)^2 + 0.6066P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} < 0.001$<br>$\Delta\rho_{max} = 0.44$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.48$ e Å <sup>-3</sup> |

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|--------------|--------------|-----------------------------|
| Cl1 | 0.80516 (4)  | 0.57556 (2)  | 0.41153 (3)  | 0.02910 (9)                 |
| Cl2 | 1.25299 (5)  | 0.02361 (3)  | 0.52366 (4)  | 0.03835 (10)                |
| 01  | 0.70795 (12) | 0.42471 (7)  | 0.59735 (8)  | 0.0258 (2)                  |
| N1  | 0.77812 (13) | 0.37116 (7)  | 0.53548 (8)  | 0.01880 (19)                |
| N2  | 0.80968 (14) | 0.34057 (8)  | 0.34467 (9)  | 0.0222 (2)                  |
| C1  | 0.75384 (16) | 0.39185 (9)  | 0.41604 (10) | 0.0206 (2)                  |
| C2  | 0.90492 (15) | 0.26388 (9)  | 0.38678 (10) | 0.0202 (2)                  |
| C3  | 0.97031 (17) | 0.20909 (10) | 0.31009 (11) | 0.0255 (3)                  |
| H3  | 0.9429       | 0.2234       | 0.2308       | 0.031*                      |
| C4  | 1.07367 (17) | 0.13503 (10) | 0.35109 (12) | 0.0269 (3)                  |
| H4  | 1.1158       | 0.0984       | 0.3003       | 0.032*                      |
| C5  | 1.11527 (16) | 0.11514 (9)  | 0.47137 (12) | 0.0244 (2)                  |
| C6  | 1.05319 (16) | 0.16552 (9)  | 0.54919 (11) | 0.0222 (2)                  |
| H6  | 1.0832       | 0.1507       | 0.6283       | 0.027*                      |
| C7  | 0.94247 (15) | 0.24056 (8)  | 0.50668 (10) | 0.0188 (2)                  |
| C8  | 0.86931 (15) | 0.29543 (8)  | 0.58051 (10) | 0.0181 (2)                  |
| C9  | 0.88618 (15) | 0.27188 (8)  | 0.70445 (10) | 0.0193 (2)                  |
| C10 | 0.96680 (16) | 0.33233 (9)  | 0.79356 (10) | 0.0229 (2)                  |
| H10 | 1.0080       | 0.3895       | 0.7758       | 0.027*                      |
| C11 | 0.98512 (17) | 0.30648 (10) | 0.90932 (11) | 0.0270 (3)                  |
|     |              |              |              |                             |

| H15B | 0.6151       | 0.4771       | 0.2898       | 0.028*     |  |
|------|--------------|--------------|--------------|------------|--|
| H15A | 0.5686       | 0.4876       | 0.4099       | 0.028*     |  |
| C15  | 0.66120 (17) | 0.47967 (9)  | 0.37389 (11) | 0.0237 (2) |  |
| H14  | 0.7699       | 0.1464       | 0.6720       | 0.028*     |  |
| C14  | 0.82261 (17) | 0.18705 (9)  | 0.73159 (11) | 0.0233 (2) |  |
| H13  | 0.7928       | 0.1069       | 0.8657       | 0.033*     |  |
| C13  | 0.83771 (18) | 0.16286 (10) | 0.84755 (12) | 0.0273 (3) |  |
| H12  | 0.9316       | 0.2063       | 1.0134       | 0.034*     |  |
| C12  | 0.91999 (18) | 0.22262 (10) | 0.93578 (11) | 0.0282 (3) |  |
| H11  | 1.0415       | 0.3458       | 0.9693       | 0.032*     |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$     | $U^{23}$     |
|-----|--------------|--------------|--------------|---------------|--------------|--------------|
| Cl1 | 0.02893 (17) | 0.02459 (16) | 0.03348 (17) | -0.00319 (11) | 0.00757 (13) | 0.00339 (12) |
| Cl2 | 0.0404 (2)   | 0.02622 (17) | 0.0529 (2)   | 0.00878 (14)  | 0.02027 (18) | 0.00153 (15) |
| O1  | 0.0310 (5)   | 0.0258 (5)   | 0.0227 (4)   | 0.0072 (4)    | 0.0109 (4)   | -0.0010 (3)  |
| N1  | 0.0198 (5)   | 0.0202 (5)   | 0.0164 (4)   | 0.0000 (4)    | 0.0047 (4)   | -0.0005 (3)  |
| N2  | 0.0224 (5)   | 0.0271 (5)   | 0.0160 (4)   | -0.0036 (4)   | 0.0032 (4)   | -0.0006 (4)  |
| C1  | 0.0204 (5)   | 0.0232 (6)   | 0.0167 (5)   | -0.0026 (4)   | 0.0021 (4)   | 0.0017 (4)   |
| C2  | 0.0196 (5)   | 0.0242 (6)   | 0.0165 (5)   | -0.0044 (4)   | 0.0041 (4)   | -0.0027 (4)  |
| C3  | 0.0258 (6)   | 0.0326 (7)   | 0.0188 (5)   | -0.0067 (5)   | 0.0071 (5)   | -0.0074 (5)  |
| C4  | 0.0255 (6)   | 0.0295 (6)   | 0.0283 (6)   | -0.0066 (5)   | 0.0116 (5)   | -0.0119 (5)  |
| C5  | 0.0222 (6)   | 0.0205 (6)   | 0.0323 (6)   | -0.0023 (4)   | 0.0102 (5)   | -0.0048 (5)  |
| C6  | 0.0237 (6)   | 0.0212 (5)   | 0.0229 (5)   | -0.0011 (4)   | 0.0084 (5)   | -0.0002 (4)  |
| C7  | 0.0194 (5)   | 0.0205 (5)   | 0.0170 (5)   | -0.0033 (4)   | 0.0055 (4)   | -0.0018 (4)  |
| C8  | 0.0195 (5)   | 0.0196 (5)   | 0.0151 (4)   | -0.0020 (4)   | 0.0044 (4)   | -0.0003 (4)  |
| C9  | 0.0203 (5)   | 0.0223 (5)   | 0.0162 (5)   | 0.0030 (4)    | 0.0062 (4)   | 0.0011 (4)   |
| C10 | 0.0226 (6)   | 0.0269 (6)   | 0.0190 (5)   | -0.0001 (5)   | 0.0052 (4)   | -0.0005 (4)  |
| C11 | 0.0247 (6)   | 0.0378 (7)   | 0.0176 (5)   | 0.0051 (5)    | 0.0042 (5)   | -0.0021 (5)  |
| C12 | 0.0284 (7)   | 0.0389 (7)   | 0.0189 (5)   | 0.0116 (5)    | 0.0089 (5)   | 0.0077 (5)   |
| C13 | 0.0317 (7)   | 0.0270 (6)   | 0.0264 (6)   | 0.0066 (5)    | 0.0135 (5)   | 0.0081 (5)   |
| C14 | 0.0266 (6)   | 0.0228 (6)   | 0.0218 (5)   | 0.0010 (5)    | 0.0087 (5)   | 0.0011 (4)   |
| C15 | 0.0232 (6)   | 0.0238 (6)   | 0.0214 (5)   | -0.0008(4)    | 0.0011 (4)   | 0.0038 (4)   |

Geometric parameters (Å, °)

| Cl1—C15 | 1.7905 (13) | C6—C7   | 1.4128 (17) |
|---------|-------------|---------|-------------|
| Cl2—C5  | 1.7366 (14) | C7—C8   | 1.4194 (16) |
| 01—N1   | 1.2943 (13) | C8—C9   | 1.4778 (15) |
| N1-C1   | 1.4086 (15) | C9—C10  | 1.3926 (17) |
| N1—C8   | 1.3467 (15) | C9—C14  | 1.3921 (17) |
| N2-C1   | 1.2901 (16) | C10—H10 | 0.9300      |
| N2-C2   | 1.3651 (17) | C10—C11 | 1.3906 (17) |
| C1—C15  | 1.4872 (17) | C11—H11 | 0.9300      |
| C2—C3   | 1.4076 (17) | C11—C12 | 1.383 (2)   |
| C2—C7   | 1.4134 (16) | C12—H12 | 0.9300      |
| С3—Н3   | 0.9300      | C12—C13 | 1.384 (2)   |
| C3—C4   | 1.366 (2)   | С13—Н13 | 0.9300      |
| C4—H4   | 0.9300      | C13—C14 | 1.3909 (17) |
|         |             |         |             |

| C4—C5         | 1.4058 (19)  | C14—H14         | 0.9300       |
|---------------|--------------|-----------------|--------------|
| C5—C6         | 1.3686 (17)  | C15—H15A        | 0.9700       |
| С6—Н6         | 0.9300       | C15—H15B        | 0.9700       |
|               |              |                 |              |
| O1—N1—C1      | 118.46 (10)  | N1—C8—C9        | 118.47 (10)  |
| O1—N1—C8      | 122.39 (10)  | C7—C8—C9        | 122.71 (10)  |
| C8—N1—C1      | 119.13 (10)  | C10—C9—C8       | 121.01 (11)  |
| C1—N2—C2      | 119.02 (10)  | C14—C9—C8       | 118.97 (11)  |
| N1—C1—C15     | 116.24 (11)  | C14—C9—C10      | 120.01 (11)  |
| N2—C1—N1      | 123.84 (11)  | C9—C10—H10      | 120.3        |
| N2—C1—C15     | 119.90 (11)  | C11—C10—C9      | 119.40 (12)  |
| N2—C2—C3      | 119.36 (11)  | C11—C10—H10     | 120.3        |
| N2—C2—C7      | 120.83 (11)  | C10-C11-H11     | 119.8        |
| C3—C2—C7      | 119.79 (12)  | C12—C11—C10     | 120.36 (13)  |
| С2—С3—Н3      | 119.7        | C12—C11—H11     | 119.8        |
| C4—C3—C2      | 120.56 (12)  | C11—C12—H12     | 119.8        |
| С4—С3—Н3      | 119.7        | C11—C12—C13     | 120.47 (12)  |
| C3—C4—H4      | 120.6        | C13—C12—H12     | 119.8        |
| C3—C4—C5      | 118.88 (12)  | C12—C13—H13     | 120.2        |
| C5—C4—H4      | 120.6        | C12—C13—C14     | 119.56 (13)  |
| C4—C5—Cl2     | 118.63 (10)  | C14—C13—H13     | 120.2        |
| C6—C5—Cl2     | 118.60 (11)  | C9—C14—H14      | 119.9        |
| C6—C5—C4      | 122.76 (12)  | C13—C14—C9      | 120.18 (12)  |
| С5—С6—Н6      | 120.7        | C13—C14—H14     | 119.9        |
| C5—C6—C7      | 118.54 (12)  | Cl1—C15—H15A    | 110.0        |
| С7—С6—Н6      | 120.7        | Cl1—C15—H15B    | 110.0        |
| C2—C7—C8      | 118.15 (11)  | C1—C15—C11      | 108.56 (9)   |
| C6—C7—C2      | 119.38 (11)  | C1—C15—H15A     | 110.0        |
| C6—C7—C8      | 122.46 (11)  | C1—C15—H15B     | 110.0        |
| N1—C8—C7      | 118.80 (10)  | H15A—C15—H15B   | 108.4        |
|               |              |                 |              |
| Cl2—C5—C6—C7  | 179.38 (9)   | C3—C2—C7—C8     | -177.77 (11) |
| O1—N1—C1—N2   | -176.01 (11) | C3—C4—C5—Cl2    | -177.62 (10) |
| O1—N1—C1—C15  | 5.43 (16)    | C3—C4—C5—C6     | 1.7 (2)      |
| O1—N1—C8—C7   | -179.81 (11) | C4—C5—C6—C7     | 0.10 (19)    |
| O1—N1—C8—C9   | 1.37 (17)    | C5—C6—C7—C2     | -2.69 (18)   |
| N1-C1-C15-Cl1 | 80.38 (12)   | C5—C6—C7—C8     | 178.70 (11)  |
| N1-C8-C9-C10  | -63.17 (16)  | C6—C7—C8—N1     | 173.70 (11)  |
| N1-C8-C9-C14  | 117.95 (13)  | C6—C7—C8—C9     | -7.54 (18)   |
| N2-C1-C15-Cl1 | -98.24 (12)  | C7—C2—C3—C4     | -1.82 (18)   |
| N2—C2—C3—C4   | 176.35 (12)  | C7—C8—C9—C10    | 118.06 (14)  |
| N2—C2—C7—C6   | -174.59 (11) | C7—C8—C9—C14    | -60.81 (16)  |
| N2—C2—C7—C8   | 4.09 (17)    | C8—N1—C1—N2     | 2.29 (18)    |
| C1—N1—C8—C7   | 1.96 (16)    | C8—N1—C1—C15    | -176.27 (11) |
| C1—N1—C8—C9   | -176.85 (11) | C8—C9—C10—C11   | -177.93 (12) |
| C1—N2—C2—C3   | -178.21 (12) | C8—C9—C14—C13   | 179.60 (12)  |
| C1—N2—C2—C7   | -0.05 (18)   | C9-C10-C11-C12  | -1.71 (19)   |
| C2-N2-C1-N1   | -3.24 (18)   | C10-C9-C14-C13  | 0.71 (19)    |
| C2—N2—C1—C15  | 175.27 (11)  | C10-C11-C12-C13 | 0.8 (2)      |
|               |              |                 |              |

| C2—C3—C4—C5 | -0.76 (19)  | C11—C12—C13—C14 | 0.8 (2)   |
|-------------|-------------|-----------------|-----------|
| C2—C7—C8—N1 | -4.93 (17)  | C12—C13—C14—C9  | -1.6 (2)  |
| C2—C7—C8—C9 | 173.83 (11) | C14—C9—C10—C11  | 0.93 (19) |
| C3—C2—C7—C6 | 3.56 (17)   |                 |           |

## Hydrogen-bond geometry (Å, °)

| D—H···A                     | <i>D</i> —Н | H···A | D····A      | <i>D</i> —H… <i>A</i> |
|-----------------------------|-------------|-------|-------------|-----------------------|
| C15—H15A····O1 <sup>i</sup> | 0.97        | 2.57  | 3.4199 (16) | 146                   |

Symmetry code: (i) -x+1, -y+1, -z+1.