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A B S T R A C T

Different virus families, like influenza or corona viruses, exhibit characteristic traits such as typical modes of
transmission and replication as well as specific animal reservoirs in which each family of viruses circulate.
These traits of genetically related groups of viruses influence how easily an animal virus can adapt to infect
humans, how well novel human variants can spread in the population, and the risk of causing a global
pandemic. Relating the traits of virus families to their risk of causing future pandemics, and identification
of the key time scales within which public health interventions can control the spread of a new virus that
could cause a pandemic, are obviously significant. We address these issues using a minimal model whose
parameters are related to characteristic traits of different virus families. A key trait of viruses that ‘‘spillover’’
from animal reservoirs to infect humans is their ability to propagate infection through the human population
(fitness). We find that the risk of pandemics emerging from virus families characterized by a wide distribution
of the fitness of spillover strains is much higher than if such strains were characterized by narrow fitness
distributions around the same mean. The dependences of the risk of a pandemic on various model parameters
exhibit inflection points. We find that these inflection points define informative thresholds. For example, the
inflection point in variation of pandemic risk with time after the spillover represents a threshold time beyond
which global interventions would likely be too late to prevent a pandemic.
1. Introduction

Infectious disease pandemics and epidemics caused by newly emer-
gent pathogens can lead to major health and economic crises and
have been on the rise in recent decades [1–3]. We, the inhabitants of
the twenty-first century, have been cruelly reminded of the negative
impacts of a global pandemic by the ongoing COVID-19 crisis [4,5].

Major infectious disease epidemics and pandemics are often the
result of pathogens that usually circulate in animals becoming capable
of infecting humans [2]. Such jumps of pathogens from animals to
humans are called zoonotic shifts. For viruses, especially those with
RNA genome, such events happen when an animal virus adapts to
human hosts, sometimes via an intermediate animal. Such adaptation
can occur via mutation and/or re-assortment or recombination [6,7].
RNA viruses mutate continuously, and recombination or re-assortment
processes can happen when two or more viral strains infect the same
cell in an animal or a human. If a virus strain that emerges in this
fashion can infect humans, is reasonably contagious and reasonably
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lethal, frightening pandemics can occur. This is because few, if any, hu-
mans have immunity for this new pathogen, which can lead to a rapid
spread of the disease [8], especially in our modern densely populated
and connected world. If a not insignificant fraction of infected people
require hospitalization, the medical system can be overwhelmed, and
deaths and lockdowns exact an enormous human and economic toll.

For effective prevention and control of pandemics it would be help-
ful if one could anticipate future disease outbreaks. Various methods for
prediction of the severity of disease outbreaks have been used [9,10],
but they usually focus on viruses that already circulate in humans,
and therefore, the predictions tend to be rather specific and often
short-term. Predicting the emergence of zoonotic strains more gen-
erally, however, presents major difficulties [11]. These novel strains
are created from complex and often random interactions between
humans, animals and their respective pathogens, via many mutations
and recombinations/re-assortments and this makes the specific evo-
lutionary and transmission paths leading to successful human strains
hard to predict [6,7,12,13]. Additionally there is a lack of data on the
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spectrum of circulating animal viruses as well as on their potential to
cause human disease [12,14]. Finally, most newly emerging viruses do
not cause major outbreaks in humans. Pandemics are thus rare events,
making their prediction from data especially difficult [15].

Even if precise predictions cannot be made regarding the viruses
that are most likely to cause pandemics, and under what circum-
stances, it is important to obtain some mechanistic understanding of
the phenomena that underlie answers to these questions. Specifically,
can we obtain mechanistic insights into the relative risk of pandemics
emerging due to viruses from different families that have different
traits? Genetically related virus families evolve subject to a similar
fitness landscape whose topology is determined by core viral traits
such as genome length, typical mode of infection, replication and
transmission. The traits of the animal host species in which the virus
family circulates and their similarity and contact with humans are also
important [16]. If we can describe a virus family with common traits
and trait distributions as a unit, we can learn about their relative risk
of causing pandemics, and the mechanism underlying these risk factors
without making assumptions about specific evolutionary processes.

Here, we develop a pandemic risk model and employ it to calculate
the probability and frequency for a pandemic to emerge from virus
families with different characteristics. These characteristics include: the
fitness distribution and zoonotic shift frequency of distinct viral types
that circulate in animal hosts; the characteristics of the human host
population in relation to the virus, which influence the growth and
transmission of the disease from a local outbreak to the global human
population. Human traits/behavior in particular influence the nature of
the temporal variation of disease growth rate after initial emergence.

2. Description of the pandemic risk model

A sketch of the key features of our model is shown in Fig. 1. New
functional human variants from a specific viral type are assumed to
emerge at a zoonotic shift rate 𝜇shif t . Functional here means that these
viruses are able to infect and reproduce in humans and have a positive
human-to-human transmission rate. But the rate of replication and
transmission can be very small for poorly adapted variants and the
effective disease growth rate, given infection and recovery rates, can
even be negative. Each such novel human strain is created by a com-
plex interaction between animal and human hosts and between their
respective, related viruses. This can also include intermediate hosts
that form a link between the reservoir host and humans. In general,
the process can involve various jumps between different host species
and multiple mutation and recombination/re-assortment events. The
zoonotic shift rate 𝜇shif t therefore depends on various viral and host
factors [16,17]. The genetic similarity between animal reservoir hosts
and humans determines how much an animal virus typically needs
to change to adapt to the human host environment [15]. Thus we
expect that animal hosts that are more similar to humans produce more
frequent adaptations leading to a higher 𝜇shif t than less similar animals.
Physical proximity, including the extent and nature of interactions be-
tween reservoir and intermediate animal hosts and humans is another
important factor influencing the zoonotic shift rate, since it determines
the frequency, at which viral exchanges between the species occur [15].
Wild birds, for example, form a reservoir for many subtypes of influenza
A virus, and most spillovers to humans have happened via the infection
of humans by livestock hosts such as poultry and pigs, which are in
close contact with humans [18].

Each new human variant, being created at rate 𝜇shif t , is then rep-
resented with a fitness 𝐹0, which is the initial effective growth rate of
the disease in the human population. The fitness parameter 𝐹0 is non-
dimensional and represents infection rate minus recovery rate, times
the typical infection period. This relates to the (basic) reproduction
number 𝑅 = 𝐹0 + 1, a standard parameter used in epidemiological
models [10], which describes the mean number of secondary infections

caused by one infected person.
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In our model, fitness is drawn from a normal distribution 𝑓𝐹 (𝐹0|𝐹m,
𝜎𝐹 ) with mean 𝐹m and variance 𝜎2𝐹 , which represent the traits of a
specific viral type evolving on a complex fitness landscape to become
capable of infecting and potentially thriving in a human population.
We scale all times and rates in our model with the typical infection
period, which is equal to the time it takes for a person to recover from
infection. The recovery rate in non-dimensional form is thus equal to
1.

The fitness depends on both the infectivity of the virus and on
host characteristics such as population density and social interaction
networks. We regard 𝐹m as a typical initial fitness of novel functional
variants of a particular type spreading in a human population without
human intervention. 𝐹m can also depend on the genetic similarity of
humans and the reservoir hosts because viruses that are well adapted
to a very distant reservoir host will require many changes to be well
adapted to humans. Since such dramatic changes are unlikely, 𝐹m
would be small. The variance 𝜎2𝐹 expresses variations of viral traits that
lead to different rates of spread for different functional variants of the
same type.

In the population where the disease first emerges, which we call the
infection center, we assume that a small number 𝑁0 of initial human
hosts are directly infected by animal contact. On average the outbreak,
i.e. the mean number 𝑁 of infections, grows as

𝑁 ≈ 𝑁0 exp
(

∫

𝑡

0
d𝑡′𝐹 (𝑡′)

)

. (1)

itness (starting from 𝐹 (𝑡 = 0) = 𝐹0) generally varies with time,
or example due to human interventions, environmental fluctuations,
r reduction of the number of susceptible individuals with increasing
opulation immunity.

We model the spread of the disease from the local to the global
opulation akin to a simple metapopulation model with two popula-
ions. Metapopulation models were developed to investigate the global
pread of disease across several distinct populations and have been
uccessfully applied to simulate the spatial spread of various epidemics
cross realistic human transportation networks [19–22]. In our model
ndividuals can travel away from the original infection center during
he spread of the disease and can thereby transmit the disease to the
est of the world. We assume that each infected person in the infection
enter can seed a global outbreak at a rate 𝜖, and that a pandemic
s caused when one such seed has emerged, which can then quickly
pread globally. The ‘‘world transmission rate’’ 𝜖 includes a measure
f connectedness of the infection center with the rest of the world
nd transmissibility of the virus. Even though the world transmission
ate intuitively depends in some fashion on the growth rate 𝐹0 of the

given disease in the infection center, it is unclear if and how it should
depend on this typical rate of local spread. A pandemic seed is assumed
to occur via travel, and disease transmission in dense areas such as
planes/airports occurs with potentially high numbers of secondary
infections (that are not expected from 𝐹0). The seeding risk might thus
epend more on human mobility, and on the closeness and temporal
xtent of social contact while traveling than on the typical infection
ate of the respective disease. On the other hand, 𝜖 might even decrease
ith increasing 𝐹0 if high viral fitness comes with increased morbidity
nd suppresses mobility of the sick. Here we assume for simplicity that
is a constant independent of 𝐹0.

The parameter 𝜏max depends on the rapidity with which the emer-
ence of a new virus is understood. 𝜏max is large for a virus that causes
disease like COVID-19 with many asymptomatic yet infectious cases

nd a relatively low death rate, and smaller for the opposite disease
haracteristics. For example, the Ebola, Zika, and MERS epidemics were
haracterized by a smaller 𝜏max compared to COVID-19. This is because
eople infected with Zika, Ebola, or MERS quickly became very ill
nd a large fraction died [23], thus alerting the world to a deadly
irus before it had time to spread widely. Diseases in this category
re comparatively easily detected and subsequently controlled at the
ocation of the outbreak, before significant international transmissions.
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Fig. 1. Schematic depiction of the model framework: A viral type, here shown as a group of viruses of different colors on the left, produces human variants by zoonotic shift
(a bat is an example animal origin). Human functional variants, with initial fitness 𝐹0 drawn from a fitness distribution with mean 𝐹m and variance 𝜎2

𝐹 that characterizes their
type, emerge at rate 𝜇shif t and initially infect 𝑁0 people in the infection center (left circle with humans, colored white if susceptible, red if infected). The disease spreads in the
infection center with effective rate 𝐹 (𝑡), which may change with time. Transmission to the rest of the world (right circle with many humans) that triggers a pandemic, happens at
rate 𝜖, until a time 𝜏max. This is the time before which the emergence and spread of a new disease is not noticed internationally, and so no restrictions to travel are put in place
until then.
c

Since each infected person can seed a pandemic with rate 𝜖, the total
rate of pandemic seeding at time 𝑡 is given as 𝜖 𝑁 . Thus the probability
𝑝not (𝑡 + 𝑑𝑡), that no pandemic has been initiated by time 𝑡 + d𝑡 with d𝑡
being a small time step, can be expressed as

𝑝not (𝑡 + d𝑡) = 𝑝not (𝑡) (1 − 𝜖𝑁) d𝑡, (2)

i.e., as the probability that no pandemic seeding event happened until
time 𝑡 times the probability that also no seeding event happened
between 𝑡 and 𝑡+d𝑡. Therefore, the probability 𝑝not decreases with time
as
d𝑝not
d𝑡

= −𝜖 𝑁 𝑝not . (3)

We obtain the probability that at least one such event has occurred
(i.e. that a pandemic has been caused by time 𝑡) as 𝑝 = 1 − 𝑝not .
Integrating Eq. (3) then leads to the pandemic risk of a single variant,

𝑝(𝐹0, 𝑁0, 𝜖, 𝜏max, 𝐹 (𝑡′ ≤ 𝜏max)) = 1 − exp
(

−∫

𝜏max

0
d𝑡′𝜖 𝑁

)

. (4)

The above formula for pandemic risk is used for deterministic time-
variations of fitness, where each outbreak of the same variant leads to
the same growth curve in the infection center. For our pandemic risk
measure we calculate the probability that a pandemic is caused by a
variant within the specified global response time 𝜏max after its initial
emergence.

The average pandemic risk 𝑝pan of a viral type is finally deter-
mined by averaging the pandemic probability 𝑝 across viruses from
that type, with the initial variant fitness drawn from the characteristic
distribution 𝑓𝐹 (𝐹0|𝐹m, 𝜎𝐹 ). We calculate this average pandemic risk as

𝑝pan(𝐹m, 𝜎𝐹 , 𝑁0, 𝜖, 𝜏max, 𝐹 (𝑡′ ≤ 𝜏max))

= ∫

∞

0
d𝐹0 𝑓𝐹 (𝐹0|𝐹m, 𝜎𝐹 ) 𝑝(𝐹0, 𝑁0, 𝜖, 𝜏max, 𝐹 (𝑡′ ≤ 𝜏max)). (5)

The integration starts at 𝐹0 = 0 (equivalent to 𝑅 = 1), since with an
initially negative fitness and small infection number 𝑁0, the virus will
go extinct quickly due to the discrete nature of the underlying system,
which we do not treat explicitly in our equations.

The single-variant risk 𝑝(𝐹0 = 𝐹m) from Eq. (4), which describes the
pandemic risk of a viral type with a single variant and therefore with
no variance, 𝜎2𝐹 = 0, can be analytically expressed for the scenarios
1 and 2 considered below. The mean 𝑝pan(𝐹m, 𝜎𝐹 , 𝑁0, 𝜖, 𝜏max, 𝐹 (𝑡′ ≤
𝜏max)) (Eq. (5)) can be calculated numerically for those scenarios with
deterministic fitness variation. We calculate this mean pandemic risk
for various parameter combinations and we investigate and interpret
its dependence on the different model parameters.

With the zoonotic shift rate we can, from 𝑝pan, calculate the expected
frequency, at which pandemic variants of a certain type occur, as
𝜇shif t 𝑝pan.

In the following, we first consider the pandemic risk directly for

two different scenarios of the time-variation of fitness during the initial
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outbreak in the infection center: with time-invariant fitness and with
linearly decreasing fitness. For each case we study the mean pandemic
risk 𝑝pan and analyze its dependence on the model parameters. We
further consider a third scenario, with randomly varying fitness around
a constant mean. For this last scenario we cannot directly obtain the av-
erage pandemic risk with an analytical formula, but in all cases we can
determine a characteristic inflection time, beyond which international
interventions will on average only have marginal effects.

3. Results

In order to determine pandemic risk under different outbreak con-
ditions, we consider different temporal variations of fitness in the
infection center. We assume the changes of disease fitness during
the initial outbreak to mainly be caused by changes within the host
population and the environment, and not due to mutation of the virus.
For that we assume that the mutation rate of the virus is sufficiently
small that it does not evolve much during the initial disease outbreak,
which we focus on here. This situation includes SARS-CoV-2, where
mutants only started playing an important role several months after
the initial outbreak, but it does not include very highly mutable viruses
like HIV that evolves significantly even within individual hosts. If the
disease causes mild symptoms and only few hospitalizations, it likely
stays unnoticed for an extended period and the disease growth rate can
stay constant in a large infection center, where the supply of susceptible
individuals stays high and no non-pharmaceutical interventions are put
in place within 𝜏max. This is the first scenario that we analyze; i.e., a
constant fitness with time.

For the second scenario we assume that, due to hospitalizations,
prevalent symptomatic infection or due to regular monitoring of zoonoti
shifts, the disease is detected and early human interventions are put
in place within the infection center. These can include the wearing of
personal protective equipment, social distancing, reduced gatherings,
or a combination of the above. Such interventions reduce the contact
rate between infected and susceptible people and therefore the fitness.
Fitness can also decrease due to the reduction of susceptible people in
the infection center. As a simple example of a gradual fitness reduction
we consider a linear decrease in fitness with time.

The third scenario is random variation of fitness, e.g. through fluc-
tuating human behavior and non-sustained interventions. Such random
variations of disease growth rates are represented by a Gaussian noise
around a mean fitness.

Real disease outbreaks show a wide range of temporal variations,
many of which can be characterized by combinations of the three
scenarios we consider. For example, Thompson et al. [24] found that for
different outbreaks of Ebola, pandemic flu, and MERS, the reproduction
number varied in different fashions, being either roughly constant,
decreasing or fluctuating.
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Scenario 1: Constant fitness

We first consider the scenario in which the fitness stays constant
within the time scale 𝜏max. In this case the number of infected people
in a large infection center grows on average exponentially, following
Eq. (1), as

𝑁(𝑡) = 𝑁0 exp
(

𝐹0 𝑡
)

(6)

The pandemic risk for one variant with fitness 𝐹0 is then calculated
using Eqs. (4) and (6) as

𝑝(𝐹0, 𝑁0, 𝜖, 𝜏max) = 1 − exp
(

−𝜖𝑁0
1
𝐹0

[

exp(𝐹0𝜏max) − 1
]

)

. (7)

We numerically calculate the mean pandemic risk of the corre-
sponding viral type with mean fitness 𝐹m and fitness variance 𝜎2𝐹 using
Eq. (5) for a range of parameter values (Figs. 2 and 3). We compare this
numerical result with the analytical zero-variance risk from Eq. (7) with
𝐹0 = 𝐹m.

For this single-variant risk (Eq. (7)) we expect that the pandemic
risk first increases almost exponentially with fitness, before asymptoti-
cally approaching 1. This can be seen in Fig. 2a, which shows a nearly
linear increase of the logarithm of pandemic risk with mean fitness for
most of the observed fitness range before the asymptotic approach to
1. The single-variant risk agrees with the mean pandemic risk only for
very low variance, while the mean risk can be up to several orders
of magnitude higher than the single-variant result in the case of wide
fitness distributions, as long as 𝐹m > 0 and if 𝐹0 is not too large. In
this case, the pandemic risk initially increases with the variance 𝜎2𝐹
in a roughly exponential fashion, before tapering and asymptotically
approaching 1 (Fig. 2b). This risk-enhancing effect of fitness variance in
a symmetric distribution, which might seem surprising, mainly happens
due to the averaging of a convex function as long as the pandemic risk
is low. In this case 𝑝(𝐹0) is convex and therefore

⟨𝑝(𝐹0)⟩ > 𝑝(⟨𝐹0⟩). (8)

So, even if two strains are equally higher or lower in fitness than the
mean, and so their average fitness equals 𝐹m, the contribution to the
average of 𝑝 from the higher-fitness strain more than makes up for that
from the low-fitness strain.

A virus family, which is adapted to a reservoir host that is genet-
ically very distantly related to us, but sometimes comes in physical
proximity to humans or animals that humans interact with, can lead
to many unsuccessful spillovers with on average very low fitness. But
with a wide fitness distribution it can by chance sometimes produce
fit variants and such rare events can result in pandemics. For example,
a virus type with mean fitness 𝐹m = 0.5 (equivalent to reproduction
number 𝑅 = 1.5) and with variance 𝜎2𝐹 = 2, as well as 𝑁0 = 1,
𝜖 = 10−5, 𝜏max = 4 has a mean pandemic risk of around 4%, which
is a hundred times higher risk compared to the case of a zero-variance
fitness distribution.

When the variant fitness 𝐹0 is high, the single-variant risk (Eq. (7))
passes an inflection point 𝐹 ∗

0 , at which 𝑝′′(𝐹 ∗
0 ) = 0. Thus, the convexity

condition (Eq. (8)), which holds for types with lower fitness where
curvature is positive (𝑝′′(𝐹0) > 0) reverses for higher fitness values and
we see in Fig. 2a that above the inflection point (here when 𝐹m > 𝐹 ∗

0 ≈
3), i.e. when 𝑝′′(𝐹0) < 0, wide distributions with high variance have
a reduced mean pandemic risk compared to the zero-variance case.
At high mean fitness, those fitness variants, which have even higher
fitness than the mean, cause a diminishing return in terms of pandemic
risk since the pandemic probability is restricted by the upper limit of
1, while the co-occurring low-fitness variants cause the mean risk to
decrease.

Virus types with negative mean fitness 𝐹m < 0 and small variance
have very low pandemic risk, since most variants produced by such a
type will have negative growth rates. The pandemic risk reduces rapidly

due to the diminishing portion of the fitness distribution that is above t
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the extinction threshold 𝐹0 = 0, which for specific 𝐹m and 𝜎𝐹 is given
as

𝑍(𝐹m, 𝜎𝐹 ) =
1
2

[

1 + erf

(

𝐹m
√

2 𝜎𝐹

)]

, (9)

and which approaches 0 for negative mean fitness when 𝐹m ≪ −𝜎𝐹 .
As function of response time (Fig. 3), the mean pandemic risk again

initially increases roughly exponentially for short response times before
tapering towards an upper value, which is given by the proportion
𝑍(𝐹m, 𝜎𝐹 ) of positive-fitness strains (Eq. (9)). For the parameter values
we consider, if the global response is delayed by only few disease
generations, the pandemic risk can increase over several orders of
magnitude. For example, if the infection period is around 1 week, the
pandemic risk of a viral type with 𝐹m = 1, 𝜎2𝐹 = 1, 𝑁0 = 1 and 𝜖 = 10−5

can increase from around 1/500 of a percent after the first week to
more than 30% after a two-months delay (after 8 disease generations).

With finite fitness variance the increase with 𝜏max is initially larger
than for zero-variance (Eq. (7)), due to the convex nonlinearity as
function of 𝐹0 at short times. However, when global response time is
slow, at long 𝜏max, the risk starts leveling off towards its upper limit
after passing the inflection point, where 𝑝′′(𝐹0) changes sign. At long
times, again, a large variance 𝜎2𝐹 becomes disadvantageous for the virus
due to the diminishing returns noted above. This means that the mean
pandemic risk at long times is larger if the fitness of the newly emerging
strains in a virus family exhibit no variance from a single value.

This zero-variance risk approaches its upper limit in the long-
time limit rapidly with a double exponential function 1 − 𝑝(𝜏max) ∼
1∕ exp(𝜆 exp(𝐹m𝜏max)) of time (Eq. (7)). The pandemic risk for finite
variance, on the other hand, approaches its asymptotic limit much
slower with 1 − 𝑝pan(𝜏max) ∼ 1∕ exp(𝜆𝜏max) with a single exponential.
The increase of mean pandemic risk at long times is dominated by the
lowest-fitness variants at the extinction threshold, with 𝐹0 → 0, which
have not had the chance yet to seed a pandemic, and which get there
only at a low rate.

The effect of fitness variance leading to reduced risk at long times
or at high mean fitness can only decrease risk down to a certain
point, and not by orders of magnitude as opposed to the contrasting
risk-enhancing effect of wide distributions, which applies before the
inflection point of 𝑝(𝐹0). We can understand this with the following
intuitive argument. The pandemic risk of a variant can be expressed as
𝑝(𝐹0) = 1 − exp(−𝑓 (𝐹0)), where 𝑓 (𝐹0) = 𝜖[𝑁(𝐹0) − 𝑁0]∕𝐹0 is a convex
function of 𝐹0 (see Eq. (7)). As long as 𝐹0 and 𝜏max are small such that
𝑓 < 1, the pandemic risk can be approximated with the convex function
𝑝(𝐹0) ≈ 𝑓 (𝐹0) (using a first order Taylor approximation around 𝑓 = 0).
This means that the inflection point (separating convex from concave
curvature) is around the point, where 𝑓 (𝐹 ∗

0 ) ≈ 1, and at this point the
pandemic risk 𝑝(𝐹 ∗

0 ) ≈ 1−exp(−1) ≈ 0.63 is already quite high. From this
we conclude that the risk-reducing effect of wide distributions beyond
the inflection point is only marginal because it only takes effect when
the risk is already high. So, virus families characterized by a wide
variance in the fitness of emergent variants that can infect humans
generally pose a larger pandemic risk.

With increasing response time 𝜏max, the pandemic risk not only
passes an inflection point with respect to 𝐹0, but also an inflection time
𝑡∗, where 𝑝′′(𝑡∗) = 0, i.e. 𝑝′′(𝜏max) changes sign from positive to negative.
This is again around the point, where the pandemic risk 𝑝(𝜏max) = 1 −
exp(−𝑔(𝜏max)) ≈ 1−exp(−1) ≈ 0.63 approaches its upper limit, i.e., when
pandemic risk is no longer approximated by the convex (exponential)
function 𝑔(𝜏max) = 𝜖[𝑁(𝐹0)−𝑁0]∕𝐹0. This means that changes in global
esponse time matter significantly, due to exponentially increasing risk
ith time, before the inflection time, when 𝜏max < 𝑡∗. At longer times,
max > 𝑡∗, however, due to a diminishing return, varying the response
ime has an only marginal effect on pandemic risk, which then is
lready high and close to its upper limit. As illustrated above, global
ntervention can at this late point only prevent pandemic seeding of

he least fit strains of the respective type. These findings indicate that
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Fig. 3. Mean pandemic risk of a viral type at various times 𝜏max for time-independent
itness. Colors from purple to orange indicate increasing values of mean fitness 𝐹m from
1 to 4 in steps of 0.5. Circles joined by solid lines indicate numerical calculations
sing Eqs. (5) and (7); dashed lines represent the respective zero-variance risks from
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re 𝜎2

𝐹 = 1, 𝑁0 = 1, and 𝜖 = 10−5.

verall a virus family is likely to be most dangerous, if it can seed an
utbreak by causing a disease that is such that it takes long for humans
o realize that a new virus is circulating.

The inflection time can be calculated by differentiating Eq. (3) with
espect to time to obtain

d2 𝑝not
d𝑡2

= −𝜖
(

d𝑁
d𝑡

𝑝not +𝑁
d 𝑝not
d𝑡

)

= −𝜖𝑁𝑝not (𝐹 − 𝜖𝑁) , (10)

here we used the infection dynamics equation

d𝑁
d𝑡

= 𝐹𝑁. (11)

herefore the inflection time is in general determined by

(𝑡∗) = 𝜖𝑁(𝑡∗), (12)

hich leads in this case of constant fitness to

∗ = 1
𝐹0

log
(

𝐹0
𝜖 𝑁0

)

. (13)

For an example virus with an infection period of one week, and with
𝐹0 = 1, 𝜖 = 10−5, 𝑁0 = 1, the dimensional inflection time would be
round 3 months (12 infection periods), after which a global response
ould be classified as too late.
5

Scenario 2: Decreasing fitness

As an alternative scenario we consider a disease which is such
that the fitness of the emergent viral strain decreases with time. This
could happen either because it is quickly detected in the infection
center and early control measures and behavioral changes are put in
place, or because the fraction of susceptible people in the infection
center decreases notably. Here we consider a simple case of a linearly
decreasing fitness 𝐹 (𝑡) = 𝐹0(1 − 𝑡∕𝜏𝐹 ) declining from an initial fitness
𝐹0 ∼ 𝑓𝐹 (𝐹0|𝐹m, 𝜎𝐹 ). Here 𝜏𝐹 is an additional parameter representing
he typical time scale, within which the local interventions or other
echanisms that lead to the fitness decrease fully take effect. The mean
umber of infected individuals in this case is calculated using Eq. (1)
s

(𝑡) = 𝑁0 exp
[

𝐹0 𝑡
(

1 − 1
2

𝑡
𝜏𝐹

)]

. (14)

The pandemic probability for a single variant with initial fitness 𝐹0 is
calculated with Eqs. (4) and (14) as

𝑝(𝐹0, 𝑁0, 𝜖, 𝜏max, 𝜏𝐹 ) = 1 − exp
(

−𝜖 𝑁0 exp
(

𝐹0 𝜏𝐹
2

)√

𝜋 𝜏𝐹
2𝐹0

[

erf

(
√

𝐹0 𝜏𝐹
2

)

− erf

(
√

𝐹0 𝜏𝐹
2

[

1 −
𝜏max
𝜏𝐹

]

)])

. (15)

The above formula is valid for 𝜏max ≤ 2𝜏𝐹 . For longer response times
the risk will stay at 𝑝(𝜏max > 2𝜏𝐹 ) = 𝑝(𝜏max = 2𝜏𝐹 ) ≈ 𝜖𝑁0𝜏𝐹 , since in that
case the disease in the infection center will have reached an extinction
threshold when the time equals 2𝜏𝐹 . By then the infection number will
n average have decreased to the initial number 𝑁0 > 0, and assuming
small 𝑁0 plus the now negative and further decreasing fitness the

isease will stochastically reach extinction soon after. From the single-
ariant risk we again obtain the mean pandemic risk numerically using
q. (5), where we average over 𝐹0 ∼ 𝑓𝐹 (𝐹0|𝐹m, 𝜎𝐹 ).

With such a linearly decreasing fitness the cumulative number of
nfections is given by:

𝑡

0
d𝑡′𝑁(𝑡′) = 𝑁0 exp

(

𝐹0 𝜏𝐹
2

)√

𝜋 𝜏𝐹
2𝐹0

[

erf

(
√

𝐹0 𝜏𝐹
2

)

− erf

(
√

𝐹0 𝜏𝐹
2

[

1 − 𝑡
𝜏𝐹

]

)]

, (16)

This quantity increases with time following an error function. Such
a functional dependence is indeed what was observed for the cu-
mulative number of infected people in various countries that imple-
mented a wide range of social-distancing policies during the COVID-19
pandemic [25].
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Both the zero-variance risk (Eq. (15)) and the averaged pandemic
isk increase with 𝜏𝐹 at first before 𝜏𝐹 ≫ 𝜏max, after which they

asymptotically approach the pandemic risk for constant 𝐹 (𝑡) = 𝐹0
Fig. 4a). This shows that local responses, which often are more direct
nd faster in implementation than a global response (with 𝜏F < 𝜏max)
an reduce pandemic risk by several orders of magnitude via early
uppression of disease spread in the infection center.

The inflection time for the case of decreasing fitness is again calcu-
ated with Eq. (12) and is determined by

0

(

1 − 𝑡∗

𝜏𝐹

)

= 𝜖 𝑁0 exp
[

𝐹0 𝑡
∗
(

1 − 1
2
𝑡∗

𝜏𝐹

)]

, (17)

which we calculated numerically as function of 𝜏𝐹 and 𝐹0 (Fig. 4b). At
small 𝜏𝐹 the inflection time increases with 𝜏𝐹 as
∗
small ≈ 𝜏𝐹 , (18)

ince then the inflection point is determined by the turning point
maximum) of the infected population in the infection center. On the
ther hand, when 𝜏𝐹 → ∞ the inflection time decreases again and
pproaches the inflection time 𝑡∗0 for constant fitness 𝐹0 (Eq. (13)). The
ecrease of the inflection time at long 𝜏𝐹 can be approximated as

𝐹0 ≈ 𝜖 𝑁0 exp

[

𝐹0 𝑡
∗
large

(

1 − 1
2

𝑡∗large
𝜏𝐹

)]

(19)

𝑡∗large ≈ 𝜏𝐹 −

√

𝜏2𝐹 − 2𝜏𝐹
1
𝐹0

log
(

𝐹0
𝜖 𝑁0

)

. (20)

If the inflection time marks the same high pandemic risk in all cases,
t would always be better to have a long inflection time, for pandemic
isk control. For long intervention times 𝜏𝐹 , where the upper limit of
andemic risk is roughly constant, this is the case and long inflection
imes then indicate a human advantage. However, for short local
ntervention times 𝜏𝐹 the upper limit of pandemic risk decreases with
ecreasing 𝜏𝐹 , which is due to the effective control and extinction of the
ocal outbreak. This shows the different effects of local interventions:
ore rapid interventions either decrease the upper limit of pandemic

isk (at short 𝜏𝐹 ) or delay the time at which a high pandemic risk is
eached (at long 𝜏𝐹 ) thereby giving more time for global interventions.

cenario 3: Randomly varying fitness

In addition to systematic changes of fitness, there can be random
ariations due to uncoordinated, non-sustained interventions or other
uman behavioral fluctuations. Here, as example of a random fitness
6

Fig. 5. Inflection time as function of baseline fitness 𝐹0 (Eq. (23)) in the case of
randomly varying fitness. Colors from purple to orange indicate increasing values of
the amplitude of fitness fluctuations in time, 𝐹r , from 0 to 3 in steps of 0.3. The values
of the parameters that are not varied in the graph are 𝑁0 = 1 and 𝜖 = 10−5.

variation in time, we consider fitness that fluctuates around a deter-
ministic mean 𝐹0 as 𝐹 (𝑡) = 𝐹0 +𝐹r𝜉(𝑡) with a Gaussian random variable
𝜉(𝑡) and the characteristic amplitude 𝐹r of the fluctuations. In this case

e calculate the mean number of infections in the infection center
see Appendix A for details), averaged over different random fitness
rajectories as

𝑁⟩(𝑡) = 𝑁0 exp
(

𝐹0 𝑡 +
1
2
𝐹 2
r 𝑡

)

. (21)

Although there is no simple formula in this case for the pandemic
risk, averaged over random trajectories, we can calculate the average
inflection time ⟨𝑡∗⟩ as a function of the fitness parameters 𝐹0 and 𝐹r
using Eqs (12), (21) and the mean fitness ⟨𝐹 ⟩(𝑡) = 𝐹0 across different
disease outbreaks of the same variant. We obtain

𝐹0 = 𝜖 𝑁0 exp
(

𝐹0 ⟨𝑡
∗
⟩ + 1

2
𝐹 2
r ⟨𝑡∗⟩

)

(22)

⟨𝑡∗⟩ = 1
𝐹0 +

1
2𝐹

2
r

log
(

𝐹0
𝜖 𝑁0

)

. (23)

The inflection time again marks the time point, after which a global
response can on average only lead to a marginal reduction of risk. Such
a late response would in most individual outbreak situations be too late
to prevent a global outbreak.

The inflection time decreases with increasing fitness components 𝐹0
and 𝐹 (Fig. 5). For a virus type, whose different strains have baseline
r
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fitness 𝐹0 ∼ 𝑓𝐹 (𝐹0|𝐹m, 𝜎𝐹 ) distributed around a mean 𝐹m, a delay in
global response with 𝜏max > ⟨𝑡∗⟩ signifies that the response can only
affect those strains significantly which on average grow slower than
the mean, with 𝐹0 < 𝐹m, and it would have little effect on the majority
of strains. For 𝐹m = 1 and assuming a relatively large fluctuation
amplitude 𝐹r = 2, and 𝜖 = 10−5, this characteristic inflection time is
⟨𝑡∗⟩(𝐹m, 𝐹r ) = 4 infection periods, while without random fluctuations
in time, 𝐹r = 0, it would be three times longer with 𝑡∗(𝐹m, 𝐹r ) = 12
infection periods, thus on average giving more time to react in the case
of low fitness fluctuations.

4. Discussion

With a minimal pandemic risk model we have investigated how
pandemics emerge from characteristically different viral types. We
analyzed how pandemic risk and frequency are influenced by key viral
and human population traits: mean and variance of the disease growth
rate or fitness, zoonotic shift frequency, world transmission rate, local
and global response times and variations in fitness with time.

We show that wide fitness distributions can drastically increase
pandemic risk compared to narrow distributions around the same mean
fitness, because the functional dependence of pandemic risk on viral
fitness is initially convex. We further identify an inflection point in pan-
demic risk variation with respect to fitness, beyond which the convexity
condition is not valid and narrow fitness distributions become more
dangerous compared to wide distributions in terms of pandemic risk.

It is well known that swift collaborative action is important to
control the global spread of novel pathogens [26]. But how rapid do
these interventions need to be, i.e. what is the relevant time scale? We
identify this time scale to be the pandemic inflection time, after which
human responses are likely too late to stop the world-wide spread
of the disease. Previous studies have discussed an epidemic inflection
time [27,28], which corresponds to the time point at which the number
of infected people in a population reaches its maximum (i.e. its turning
point). This time scale relies on the leveling off of the cumulative
number ∫ 𝑡

0 d𝑡′𝑁(𝑡′) of infections within a relatively short time compared
to the global disease transmission time scale. It therefore represents a
special case of our pandemic inflection time. The epidemic inflection
time coincides with our measure only in scenario 2, in the case of
rapid and complete control (with small 𝜏𝐹 ) of the local outbreak. The
pandemic inflection time, however, describes the time point, at which
the pandemic risk starts leveling off in general. This can be due to
a local turning point as discussed in the context of scenario 2, but
it can also simply occur due to the approach of the upper limit of
pandemic probability (≲ 100%), at which point most outbreaks would
have already caused a pandemic and only few strains, at the low-
fitness end of the distribution, would not yet have reached their final
(pandemic) outcome.

Local interventions, which gradually reduce the disease growth rate
(scenario 2), can by themselves prevent pandemics only if they are
able to rapidly extinguish the outbreak. This is what happened during
the Ebola outbreaks, and to some extent for MERS. Both these diseases
were caused by highly lethal viruses, and thus were quickly noticed and
controlled locally. If, however, local interventions reduce the spread in
the infection center slowly and incompletely, this merely postpones the
inflection time point. In the latter case global interventions are needed,
but are given more time to be put into action. Linear fitness decrease in
the infection center due to such interventions leads to an error function-
type increase of cumulative cases. This characteristic time-dependent
behavior of cumulative case numbers has recently been observed in
several countries, where different social-distancing measures against
COVID-19 were put in place [25]. With the model of linearly decreasing
fitness we thus provide one mechanistic explanation for such trends. On
the other hand we note that for many realistic human interventions,
which can influence various model parameters in a complex way, it

is typically not expected that our simple model of linearly decreasing

7

disease fitness on a local level will accurately represent the detailed
disease dynamics. We further implicitly assume in our model that
global prevention measures are put in place instantaneously at time
𝜏max after first disease emergence and we do not allow for varying the
kind and effectiveness of global interventions, which can significantly
affect pandemic risk.

As long as the disease is not completely eradicated and immu-
nization measures are not yet developed, it is important that control
measures are consistently applied to systematically decrease fitness in
the infection center instead of relying on intermittent interventions
and natural behavioral adaptations, which might lead to large fitness
fluctuations in time. Such random fluctuations are demonstrated to on
average shorten the inflection time and therefore give global inter-
ventions less time to effectively prevent a global outbreak (scenario
3).

The richness and diversity of infectious disease outbreaks have
increased since 1980 [3], which is likely due to human factors such as
the continuous increases in population size, density and connectedness
as well as human occupation of new locales [29,30]. Several of our
model parameters can be influenced by human population trends in
ways that can explain a rising pandemic risk. The zoonotic shift rate
and fitness variance across strains have increased from an increased
frequency of animal–human contact due to increases in livestock and
wildlife trade and human encroachment in new areas (via deforestation
and agricultural expansion) [6,15]. The mean fitness of human variants
could have increased due to increased human population density,
especially in urban environments, which increases the contact rate
between humans and therefore the disease growth rate. Finally, the
world transmission rate is undoubtedly higher due to increased global
connectedness and travel.

On the other hand, a decrease in disease fitness and world transmis-
sion rate, as well as increased speeds of response (local ∼ 1∕𝜏𝐹 or global
∼ 1∕𝜏max) are achieved through technological and scientific advances
leading to improved surveillance as well as through informed and
swiftly implemented policies. Such concerted efforts decrease pandemic
risk; here it appears that global mobilization issues present a greater
source of delayed response than surveillance capacity [26].

We have made several strongly simplifying assumptions in order
to keep our model analytically tractable and to facilitate analyzing
and interpreting the influence of various key parameters. These sim-
plifications, however, also restrict the applicability of our model to
certain disease scenarios. For one we treat the local disease spread
of a single pathogenic variant for the most part as a deterministic
process, thereby neglecting the possibility of disease extinction (for
𝐹0 > 0) or, as opposed to that, faster establishment due to the stochastic
nature of person-to-person spread [31,32]. Including stochasticity of
infection and pandemic seeding, as discussed in Appendix B, leads
to lower pandemic risk than our deterministic formula suggests, but
this effect is only considerable at high fitness or long times when
pandemic risk is already high. In our model we further assume that
infections in the local population grow exponentially as long as the
disease fitness 𝐹0 is constant. The dynamics of disease growth including
the reduction of growth rate due to accumulation of infections and
subsequent immunity is typically modeled with the so-called SIR or
related models [10]. Our simplifying assumption of exponential growth
relies on a constant supply of susceptible people during the studied
time scales such that each infected individual is able to encounter
and infect the same number of people. For this to be valid the local
population needs to be sufficiently well mixed and large enough to not
significantly reduce susceptibility to new infections within the studied
time scales. Due to frequent travel and increasing population size in the
modern age, it is reasonable to assume both a large local population
size and a short typical time scale for the transition from zoonotic
spillovers to international or nationwide transmission, which could
seed a pandemic. Initial exponential growth phases have been observed
to last up to several months corresponding to several infection periods,

as exemplified for ebola and influenza outbreaks [33,34].
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Another potential shortcoming of our model is the limited pre-
ictability and direct observability of model parameters. Similar to the
pidemic reproduction number 𝑅, our fitness parameters 𝐹m and 𝜎𝐹

cannot be directly related to observables such as in-vitro viral growth
or spread of viral variants in reservoir animals and those parameters de-
pend on various complex variables including human social interaction
and viral adaptation to human host characteristics; e.g. via evolution
in animals that are close or far relatives to humans. The zoonotic shift
rate, e.g. depending on animal–human host interactions, is another
parameter that might be very difficult to observe or predict directly.
However, although we are not able to make detailed predictions about
specific fitness distributions, we can make qualitative arguments that
can help guide future research focus. For example, we expect that
viruses with high recombination and mutation rates evolving in a large
group of domesticated animals will likely have a large fitness variance
𝜎𝐹 and we also expect, as discussed earlier, that viruses from reservoir
animals that are closely related to humans will have a larger mean
fitness 𝐹m than coming from distally related reservoirs.

In the face of sparse data on newly emerging infectious diseases [14]
nd to make predictions for diverse viral pathogens, the simplicity and
enerality of our model are, however, a strength. Representing viral
ypes with simple fitness distributions of new variants, without resolv-
ng specific evolutionary paths and fitness landscape topologies, makes
ur model analytically tractable while still capturing important stochas-
ic effects, and could potentially provide mechanistic underpinnings
o empirical observations or more detailed descriptions. In particular,
e hope that the importance of the inflection points revealed by our
nalyses will help guide data-driven public policy.
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Appendix A. Calculation details for randomly varying fitness (sce-
nario 3)

In the case of random fitness fluctuations we have assumed

𝐹 (𝑡) = 𝐹0 + 𝐹r𝜉(𝑡) , (A.1)

with a time-independent component 𝐹0, and Gaussian fluctuations of
he fitness around 𝐹0 with typical amplitude 𝐹r . The random vari-
ble 𝜉(𝑡) is a Gaussian white noise characterized by a unit variance,
𝜉(𝑡)𝜉(𝑡′)⟩ = 𝛿(𝑡 − 𝑡′), and zero mean, ⟨𝜉(𝑡)⟩ = 0.

Accordingly, the infected population size for a certain variant
spreading in one population varies randomly in time, i.e.,

d𝑁
d𝑡

= (𝐹0 + 𝐹r𝜉(𝑡))𝑁 (A.2)

⇒⟨log(𝑁∕𝑁 )⟩ = 𝐹 𝑡 (A.3)
0 𝜉 0

8

⇒Var𝜉 (log(𝑁∕𝑁0)) = 𝐹 2
r 𝑡 , (A.4)

with the mean and variance (subscript 𝜉) as summary statistics across
various random fitness trajectories (averaging over different outbreaks
of disease caused by the same variant). The mean number of infections
after time 𝑡 is then calculated as

⟨𝑁⟩(𝑡) ≈ 𝑁0 ∫

∞

−∞
d𝜁𝑓𝜁 (𝜁 |0, 1) exp

(

𝐹0𝑡 + 𝐹r
√

𝑡 𝜁
)

= 𝑁0 exp
(

𝐹0 𝑡 +
1
2
𝐹 2
r 𝑡

)

, (A.5)

where the random variable 𝜁 is also Gaussian following the normal
distribution 𝑓𝜁 (𝜁 |0, 1) with zero mean and unit variance.

ppendix B. Effect of including stochasticity of infection growth
nd pandemic seeding

For time-independent fitness 𝐹0 we can write master equations for
he probability 𝑃 (𝑁, not, 𝑡) that 𝑁 people are infected in the infection
enter and no pandemic has been caused yet, as
d𝑃 (𝑁, not, 𝑡)

d𝑡
=(1 + 𝐹0)(𝑁 − 1)𝑃 (𝑁 − 1, not, 𝑡)

+ (𝑁 + 1)𝑃 (𝑁 + 1, not, 𝑡) − (2 + 𝐹0 + 𝜖)𝑁𝑃 (𝑁, not, 𝑡)
(B.1)

rom this we can derive a differential equation for the generating
unction 𝐺(𝑠, 𝑡) =

∑∞
𝑁=0 𝑠

𝑁𝑃 (𝑁, not, 𝑡) as

𝜕𝐺(𝑆, 𝑡)
𝜕𝑡

=
[

𝑠2(1 + 𝐹0) + 1 − 𝑠(2 + 𝐹0 + 𝜖)
] 𝜕𝐺(𝑠, 𝑡)

𝜕𝑠
. (B.2)

The generating function can be found analytically by solving Eq. (B.2)
with initial condition 𝐺(𝑠, 0) = 𝑠𝑁0 as

𝐺(𝑠, 𝑡) = 2−𝑁0

[

1
1 + 𝐹0

[

2 + 𝐹0 + 𝜖 + 𝜔 tan
(

1
2
𝜔𝑡

+arctan
(

−2 − 𝜖 − 𝐹0 + 2(1 + 𝐹0)𝑠
𝜔

))]]𝑁0
(B.3)

with

𝜔 =
√

−(1 + 𝜖)2 + 2(1 − 𝜖)(1 + 𝐹0) − (1 + 𝐹0)2. (B.4)

he mean probability for a pandemic having been seeded until time
max can then be obtained from the generating function solution as

(𝐹0, 𝑁0, 𝜖, 𝜏max) = 1 − 𝑝not = 1 −
∞
∑

𝑁=0
𝑃 (𝑁, not, 𝜏max) (B.5)

Fig. B.6. Pandemic risk of a viral variant as function of time 𝜏max for various values
f time-independent fitness 𝐹0. Colors from purple to orange indicate increasing values

of mean fitness 𝐹0 from 0.1 to 4 in steps of 0.5. Solid lines represent the stochastic
formulation from Eq. (B.6) and dashed lines represent the deterministic approximation
from Eq. (7). The values of the parameters that are not varied in the graph are 𝑁0 = 1
and 𝜖 = 10−5.
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= 1 − 𝐺(1, 𝜏max). (B.6)

Fig. B.6 shows a comparison between the stochastic formulation,
Eq. (B.6), and the deterministic formulation, Eq. (7), that is used in
the main study. As long as the pandemic risk is low, the deterministic
formulation is a good approximation. At long times or high fitness,
however, when the pandemic risk approaches 1, the deterministic
formulation tends to overestimate pandemic risk compared to the
more exact stochastic formula. For better analytical interpretability and
tractability we have used the approximate deterministic formulation of
disease growth in our study, which seems to provide a good estimate
for a wide range of reasonable parameter values.
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