
����������
�������

Citation: Sauer, T.; Facchinetti, G.;

Kohl, M.; Kowal, J.M.; Rozanova, S.;

Horn, J.; Schmal, H.; Kwee, I.; Schulz,

A.-P.; Hartwig, S.; et al. Protein

Expression of AEBP1, MCM4, and

FABP4 Differentiate Osteogenic,

Adipogenic, and Mesenchymal

Stromal Stem Cells. Int. J. Mol. Sci.

2022, 23, 2568. https://doi.org/

10.3390/ijms23052568

Academic Editor: C.

Michael Greenlief

Received: 4 February 2022

Accepted: 23 February 2022

Published: 25 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Protein Expression of AEBP1, MCM4, and FABP4 Differentiate
Osteogenic, Adipogenic, and Mesenchymal Stromal Stem Cells
Thorben Sauer 1,† , Giulia Facchinetti 1,†, Michael Kohl 1, Justyna M. Kowal 2, Svitlana Rozanova 1, Julia Horn 1,
Hagen Schmal 3,4 , Ivo Kwee 5, Arndt-Peter Schulz 6,7 , Sonja Hartwig 8,9 , Moustapha Kassem 2,
Jens K. Habermann 1,10 and Timo Gemoll 1,*

1 Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University Hospital
Schleswig-Holstein, University of Luebeck, Campus Luebeck, Ratzeburger Allee 160, 23562 Luebeck,
Germany; thorben.sauer@student.uni-luebeck.de (T.S.); facchinetti.giuli@gmail.com (G.F.);
michael.kohl@uni-luebeck.de (M.K.); svitlana.rozanova@ruhr-uni-bochum.de (S.R.);
julia.horn@uni-luebeck.de (J.H.); jens.habermann@uni-luebeck.de (J.K.H.)

2 Department of Endocrinology and Metabolism, University Hospital of Odense, J.B. Winsløws Vej 25,
5230 Odense, Denmark; jkowal@health.sdu.dk (J.M.K.); mkassem@health.sdu.dk (M.K.)

3 Department of Orthopedics and Traumatology, Odense University Hospital, Odense, J.B. Winsløws Vej 4,
5000 Odense, Denmark; hagen.schmal@uniklinik-freiburg.de

4 Department of Orthopedics and Trauma Surgery, Faculty of Medicine,
Medical-Center—Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany

5 BigOmics Analytics SA, 6500 Bellinzona, Switzerland; kwee@bigomics.ch
6 Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering Luebeck,

Moenkhofer Weg 239a, 23562 Luebeck, Germany; schulz@biomechatronics.de
7 BG Klinikum Hamburg, Department Centrum Klinische Forschung, Bergedorfer Str. 10,

21033 Hamburg, Germany
8 German Center for Diabetes Research (DZD), 85764 Muenchen, Germany; sonja.hartwig@ddz.de
9 German Diabetes Center, Heinrich Heine University Duesseldorf, Leibniz Center for Diabetes Research,

Institute of Clinical Biochemistry and Pathobiochemistry, 40225 Duesseldorf, Germany
10 Interdisciplinary Center for Biobanking-Luebeck, University of Luebeck, Ratzeburger Allee 160,

23562 Luebeck, Germany
* Correspondence: timo.gemoll@uni-luebeck.de; Tel.: +49-451-3101-8703
† These authors contributed equally.

Abstract: Mesenchymal stem cells (MSCs) gain an increasing focus in the field of regenerative
medicine due to their differentiation abilities into chondrocytes, adipocytes, and osteoblastic cells.
However, it is apparent that the transformation processes are extremely complex and cause cellular
heterogeneity. The study aimed to characterize differences between MSCs and cells after adipogenic
(AD) or osteoblastic (OB) differentiation at the proteome level. Comparative proteomic profiling was
performed using tandem mass spectrometry in data-independent acquisition mode. Proteins were
quantified by deep neural networks in library-free mode and correlated to the Molecular Signature
Database (MSigDB) hallmark gene set collections for functional annotation. We analyzed 4108 proteins
across all samples, which revealed a distinct clustering between MSCs and cell differentiation
states. Protein expression profiling identified activation of the Peroxisome proliferator-activated receptors
(PPARs) signaling pathway after AD. In addition, two distinct protein marker panels could be defined
for osteoblastic and adipocytic cell lineages. Hereby, overexpression of AEBP1 and MCM4 for OB as
well as of FABP4 for AD was detected as the most promising molecular markers. Combination of
deep neural network and machine-learning algorithms with data-independent mass spectrometry
distinguish MSCs and cell lineages after adipogenic or osteoblastic differentiation. We identified
specific proteins as the molecular basis for bone formation, which could be used for regenerative
medicine in the future.

Keywords: protein profiling; data-independent acquisition mass spectrometry; SWATH; human
stromal/mesenchymal stem cells; differentiation markers; machine learning
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1. Introduction

Bone marrow stromal cells (MSCs) were first detected by Friedenstein in murine bone
marrow cultures [1] and subsequently gained enormous attention regarding their medical
utility including cellular therapy applications. MSCs are non-hematopoietic cells originat-
ing from the mesodermal germ layer and are detected in a multitude of tissues including
bone marrow. Upon tissue migration, MSCs secrete chemokines, cytokines, and growth
factors modulating the immune response, angiogenic as well as anti-apoptotic effects [2–5].
MSCs have been proven to be effective treatments in many diseases, e.g., cardiovascular
diseases [6,7], musculoskeletal diseases [8], neurological diseases [9], immune system de-
fects [10,11], cancer [12] and tissue regeneration in large bone defects [13–18]. Their clinical
efficacy was recently also tested as a therapeutic approach for patients with a COVID-19
infection [19].

In this study, we focus specifically on the characteristics of MSCs in the context of
potential treatment interventions in bone lesions. MSCs can differentiate into osteoblasts
(OB), adipocytes (AD), chondrocytes and muscle cells [20]. Although the utilization of
MSCs as a cellular therapy approach is clinically investigated, the experimental efficacy of
MSCs concerning bone regeneration was reported inconsistently regarding the successful
in vivo bone formation [18,21–23]. Next to insufficient marker panels for MSC classification,
the most likely causes for this observation are cellular and molecular variations of the bone
marrow, which does not consist of a homogenous cell type but rather of a population with
high cellular heterogeneity containing multipotent stem cells, progenitors and differenti-
ated cells [24–27]. Furthermore, reports suggest that bone marrow contains clonal MSC
subpopulations with associations towards either osteoblast or adipocyte lineage. Hence,
MSCs show cellular heterogeneity in the context of in vitro osteoblast differentiation, result-
ing in heterogenous bone formation capacity in vivo [24,28–34] and certain bone diseases
such as osteoporosis [35–37].

Since the nature of the MSC differentiation into osteoblasts and adipocytes remains
unclear [23,38,39], the specific objective of this study was to characterize undifferentiated
MSCs and cells after osteoblastic and adipocytic differentiation on the proteome level. We
utilized quantitative mass spectrometry in data-independent acquisition mode combined
with machine-learning algorithms for mass spectrometric and statistical evaluation. Gener-
ated quantitative proteome data were used to gain further insight into functional annotation
including intracellular signaling pathways and gene ontology terms for potential clinical
applications. In the future, identified protein candidates for adipocytes or osteoblasts could
be used for regenerative therapeutic approaches healing bone fractures or bone diseases.

2. Results
2.1. Cultured Cell Populations Fulfilled Phenotypic Criteria of MSC, Adipocytic and
Osteoblastic Criteria

The individual MSC isolates (n = 5), each derived from one single individual (patients
p11, p13, p15, p17, and p18), were characterized in vitro (Supplementary Table S1), and
have been published elsewhere [32,38]: using a colony-forming unit fibroblast (CFU-F)
assay, cultured MSCs formed colonies and expressed alkaline phosphatase (ALP) (median
percentage of positive cells ± SD, 37.19% ± 10.91%). The cells were further characterized
by their MSC surface marker expression recommended by the International Society for
Cellular Therapy (ISCT [39]). Cell material of p11, p15, and p18 were limited, wherefore
the determination of all surface markers was only possible for p13 and p17. However, p13
and p17 showed positive expression values for CD44, CD90, CD105 and CD73 in ≥99%
(max. SD of 0.16%).

After induction of in vitro osteoblastic differentiation, matrix mineralization was
visualized by alizarin red staining and compared to cells cultured in control media (Supple-
mentary Figure S1a). Differentiated cells showed a 3.53-fold higher alizarin red intensity
after 14 days of culturing. Additionally, cells showed a 6.35-fold higher ALP activity com-
pared to the control cells. Adipocytic differentiation was assessed by quantifying the lipid
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droplet area based on Oil Red O staining after 14 days. All cell cultures showed visible lipid
droplets after culturing in adipocyte induction media (Supplementary Figure S1b). These
results confirmed the successful differentiation of MSCs into adipocytic and osteoblastic
cell types, respectively.

2.2. Combined Quantitative Mass Spectrometry and Neural-Network-Based Algorithms Revealed
Distinct Protein Expression Patterns of MSCs, Adipocytic and Osteoblastic Cells

To compare differences between adipocyte (AD), osteoblast (OB) lineage cells, and
undifferentiated MSCs on the proteome level, we performed microflow ESI-MS/MS anal-
ysis using the data-independent acquisition mode for exact quantification. The neuronal
network-based workflow of DIA-NN identified 4569 unique proteins (FDR ≤ 0.01 on
both precursor and protein levels). After filtering and imputation of missing values (cf.
Section 4.12), quantitative values of 4108 proteins were subsequently compared between
groups (AD, OB, and MSCs) to reveal distinct clustering between samples, differentially
expressed proteins, and enriched gene sets (cf. Section 4.13). A table containing all protein
quantification values is included in Supplementary Table S2.

2.3. MSCs, Osteoblasts, and Adipocytes Show Distinct Clustering Behavior and Involvement
of PPAR

Phenotypic differences between distinct cell types were visualized using unsupervised
principal component analysis (PCA) and hierarchical clustering (so-called ‘heatmap’) ap-
plying detected protein expression data. Both, PCA and hierarchical clustering showed a
high discriminating potential and clear separation between the three groups (Figure 1A
and Supplementary Figure S2). Analogous to the mass spectrometry-based analysis, two-
dimensional gel electrophoresis was performed. Here, 1517 protein spots were detected
and revealed a similar clustering behavior in the PCA plot (Figure 1B).

In order to identify overrepresented biological states or processes, a gene set enrich-
ment analysis (GSEA) was performed with mass spectrometry derived expression data
of all 4108 quantified proteins against the hallmark gene set collection [40]. Nine gene
sets were detected as significantly enriched for the OB/AD, three for the OB/MSC, and
10 for the AD/MSC comparison (FDR < 0.05, |log2FC| > 0.2, Table 1 and Supplementary
Figure S3A–C). The most striking result to emerge from the data was the association of
both AD comparisons with the hallmark gene set collection ‘adipogenesis’ which consists of
35 founder gene sets. One of the key signaling pathways for adipogenic differentiation was
the ‘peroxisome proliferator-activated receptor (PPAR) signaling pathway’ which is exemplarily
visualized in the Supplementary Figure S4 including the visualized fold changes of the
identified proteins for the AD vs. OB comparison: acetyl-CoA acyltransferase 1 (ACAA1),
acyl-CoA dehydrogenase medium chain (ACADM), acyl-CoA oxidase 1 (ACOX1), acyl-
CoA synthetase long chain family member 1 (ACSL1), adiponectin, C1Q and collagen
domain containing (ADIPOQ), apolipoprotein A1 (APOA1), CD36 molecule (CD36), carni-
tine palmitoyltransferase 1A (CPT1A), carnitine palmitoyltransferase 2 (CPT2), cytochrome
P450 family 27 subfamily A member 1 (CYP27A1), diazepam binding inhibitor, acyl-
CoA binding protein (DBI), enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase
(EHHADH), fatty acid binding protein 4 (FABP4), fatty acid desaturase 2 (FADS2), integrin
linked kinase (ILK), lipoprotein lipase (LPL), malic enzyme 1 (ME1), phosphoenolpyruvate
carboxykinase 1 (PCK1), perilipin 2 (PLIN2), stearoyl-CoA desaturase (SCD), sterol carrier
protein 2 (SCP2), solute carrier family 27 member 4 (SLC27A4), sorbin and SH3 domain
containing 1 (SORBS1). With the exception of ILK, all proteins show positive fold-change
values indicating a prominent pathway activation.
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Figure 1. Unsupervised principal component analysis plots derived from mass spectrometry data
((a), 4108 proteins) and two-dimensional gel electrophoresis data ((b), 1517 protein spots). The three
cell lineages MSCs (green), OB (blue), AD (pink) were run in quintuples. P11, p13, p15, p17, and p18
indicate the patient number of the corresponding sample. X- and y-axes show the first and second
principal components, respectively.

Table 1. Enriched gene sets of the MSigDB Hallmark collection for OB versus AD, OB versus MSC,
and AD versus MSC. (Log2FC, logarithm of fold change; Meta-q, meta q-value used statistical
methods; Avg. Expr., average expression).

Gene set Log2FC OB vs. AD Meta-q Avg. Expr. OB Avg. Expr. AD

MYC_TARGETS_V1 0.575 0.0005 6.103 5.528
E2F_TARGETS 0.410 0.0005 7.049 6.638

G2M_CHECKPOINT 0.278 0.0005 5.411 5.133
PEROXISOME −0.223 0.0366 6.925 7.148

BILE_ACID_METABOLISM −0.317 0.0006 6.762 7.079
FATTY_ACID_METABOLISM −0.350 0.0006 6.535 6.885

CHOLESTEROL_HOMEOSTASIS −0.377 0.0315 6.318 6.695
OXIDATIVE_PHOSPHORYLATION −0.438 0.0006 5.028 5.466

ADIPOGENESIS −0.491 0.0006 5.782 6.273

Gene set Log2FC OB vs. MSC Meta-q Avg. Expr. OB Avg. Expr. MSC

MYC_TARGETS_V2 0.279 0.0435 5.745 5.466
E2F_TARGETS 0.274 0.0008 7.034 6.76

MYC_TARGETS_V1 0.241 0.0098 6.076 5.835

Gene set Log2FC AD vs. MSC Meta-q Avg. Expr. AD Avg. Expr. MSC

OXIDATIVE_PHOSPHORYLATION 0.659 0.0006 5.590 4.931
CHOLESTEROL_HOMEOSTASIS 0.533 0.0006 6.654 6.121

ADIPOGENESIS 0.529 0.0006 6.206 5.677
FATTY_ACID_METABOLISM 0.478 0.0006 6.909 6.431
BILE_ACID_METABOLISM 0.411 0.0006 7.096 6.685

PEROXISOME 0.337 0.0028 7.282 6.945
XENOBIOTIC_METABOLISM 0.271 0.0011 5.857 5.585

PI3K_AKT_MTOR_SIGNALING −0.203 0.0359 7.127 7.331
MYC_TARGETS_V1 −0.334 0.0105 5.605 5.939
MITOTIC_SPINDLE −0.335 0.0006 6.635 6.97
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2.4. Discovery of Differentially Expressed Proteins

For the detection of differentially expressed proteins, all three two-group comparisons
were carried out using an ANOVA with Benjamini–Hochberg correction and Tukey post
hoc testing (Supplementary Table S3). While the comparison between OB and MSCs
identified 50 differentially expressed proteins (post-hoc q-value < 0.05, |log2FC| > 2) with
25 proteins being over- and under-expressed in the OB group, respectively (Figure 2a), the
comparison OB versus AD revealed 66 proteins with differential abundance (16 over- and
50 under-expressed in the OB group, Figure 2b). The evaluation between AD and MSC
revealed 61 proteins with a higher and 25 with lower protein abundance (86 differential
expressed proteins in total, Figure 2c).

Figure 2. Volcano plots of differentially expressed proteins between MSCs, osteoblasts, and adipocytes
(a–c) as well as a Venn diagram indicating the overlap of differentially abundant proteins between all
three group comparisons (d). Volcano plots are presented with the fold-change of the corresponding
comparison in logarithmic scale (x-axis) against the q-value of the Tukey’s post hoc test (y-axis).
Significance thresholds (q-value < 0.05 and |log2FC| threshold of >2) are indicated by dashed lines.
Proteins passing these cut-offs are considered significant and colored in pink. Proteins passing
the ANOVA and post-hoc q-value but not the log2FC threshold are colored in green. Proteins that
were not significant in the ANOVA but in Tukey’s post hoc are indicated in blue. (a) OB vs. MSC
comparison, 50 proteins are identified as significantly differentially expressed. (b) OB vs. AD
comparison, 66 proteins are identified as significantly differentially expressed. (c) AD vs. MSC
comparison, 86 proteins are identified as significantly differentially expressed. (d) Venn diagram
indicating the overlap of differentially abundant proteins (ANOVA) of all three defined comparisons.
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2.5. Two Distinct Protein Panels Differentiate Osteoblasts and Adipocytes from Mesenchymal
Stem Cells

Next, the separation of the three distinct cell types based on their protein expression
profiles was analyzed. In total, 15 proteins which were both identified as differentially
expressed in the OB vs. MSC and OB vs. AD comparison were defined as osteoblast-
specific proteins. In analogy, 30 proteins that were differentially expressed in the AD vs.
MSC and OB vs. AD comparison were defined as adipocyte-specific proteins (Figure 2d).
To validate the results of the ANOVA analysis, expression data were further evaluated
by computing their variable importance using machine learning algorithms (LASSO [41],
elastic nets [42], random forests [43], and extreme gradient boosting [44]): the results
confirmed 9 out of 15 proteins (60%) for the osteoblastic and 13 out of 30 proteins (43%) for
the adipocytic panel.

2.5.1. Osteoblastic Panel

A total of nine differentially expressed proteins were calculated combining two feature
selection approaches (classical statistical analysis and machine learning algorithms) for
the osteoblastic panel showing six (66%, AEBP1, BGN, CARMIL1, CYP24A1, MCM4,
STMN1) with a higher and three (33%, COL3A1, MEST, P4HA1) with lower expression
in the osteoblastic group. Expression levels of these nine osteoblast-specific proteins are
visualized in Figure 3a. Closer inspection of the figure showed a protein expression of
AEBP1 and MCM4 in the AD and MSC group with uniformly low expression values (range
of means: 1.09–1.60) and coefficients of variation (CV, range: 0.28–0.64).

2.5.2. Adipocytic Panel

For the adipocytic panel, a total of 13 differentially expressed proteins (ACSL1, CD36,
EPHX1, FABP4, HP, HSD11B1, ITIH1, MAOA, PLIN1, PLIN4, PLPP1, RAP2A, SCD) were
detected all being more highly expressed in the AD group. Expression levels of these
13 adipocyte-specific proteins are visualized in Figure 3b. It is apparent from this figure that
the protein expression of FABP4, ITIH1, SCD, PLIN1, and PLIN4 in the OB and MSC group
presented uniformly low expression values (range of means: 0.24–1.04) and coefficients of
variation (CV, range: 0.36–1.72).

As a summary, differentially expressed proteins which were cell-type specifically dif-
ferentially expressed and further validated by the machine learning strategies are presented
as a heatmap in Figure 4 and Supplementary Table S4 including gene symbols, UniProt IDs,
descriptive statistics, ANOVA with post-hoc results, fold changes and functional GO-term
annotations.
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Figure 3. Boxplots of nine proteins for (a) osteoblastic differentiation and (b) adipocytic differentiation
using ANOVA and machine learning algorithms. Individual data points are shown with median
expression in log2 of the measured intensity. Whiskers are plotted according to the Tukey method
indicating 1.5 * interquartile range. The osteoblastic protein (a) COL3A1 and the adipocytic protein (b)
HSD11B1 show significant differential expressions for all three comparisons (indicated by asterisks),
however, the comparison between the AD and MSC group and OB and MSC did not exceed the net
log2FC threshold of 2, respectively. Asterisks indicate the Tukey’s post hoc q-value results: * =≤ 0.05,
** =≤ 0.01, *** =≤ 0.001.
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Figure 4. Heatmap of 22 marker proteins for osteoblastic and adipocytic differentiation. Expression
values are shown in log2 of the measured intensity.

2.6. MSC Marker Protein Panel Comparison

The Mesenchymal Tissue Stem Cell Committee of the International Society of Cellular
Therapy (ISCT) defined a set of cluster differentiation (CD) cell surface markers for MSC
classification (CD105+, CD73+, CD90+, CD45-, CD34-, CD14-, CD11b-, CD79a- or CD19-
and HLA-DR-). However, reports suggest that this marker panel is insufficient to distin-
guish undifferentiated MSCs from differentiated adipocytes or osteoblasts [32,38]. This
inconsistency is also supported by our quantitative protein data shown in Table 2. It is
apparent from this table that all ISCT-defined markers identified showed no significance
across comparisons. Additionally, CD90 was the only protein to present a net log2 fold
change >1.0 (OB vs. MSC comparison). All CD markers that are defined by a very low
protein level by the ISCT were not identified in the analyzed samples.

Table 2. Protein expression values of CD markers that have been defined by the International Society
of Cellular Therapy for MSC classification. (+) defined high protein expression in MSCs; (-) defined
low expression in MSCs. (CV, coefficients of variation; q-value, adjusted post-hoc p-value; Log2FC,
logarithm of fold change).

Protein Gene Name CV q-Value Log2FC
AD vs. MSC

Log2FC
OB vs. MSC

Log2FC
OB vs. AD

CD105+ ENG 0.104 0.25 0.121 −0.884 −0.763
CD73+ NT5E 0.064 0.43 0.426 0.157 0.583
CD90+ THY1 0.121 0.41 0.355 −1.046 −0.691

CD45- PTPRC Not Identified
CD34- CD34 Not Identified
CD14- CD14 Not Identified

CD11b- ITGAM Not Identified
CD79a- CD79a Not Identified
CD19- CD19 Not Identified

HLA-DR- HLA-DR Not Identified

3. Discussion

Therapy development for bone regeneration is highly challenging and depends on the
in vitro differentiation of MSCs into favorable bone-forming osteoblasts. It has been shown
that, e.g., osteoblast-like cells derived from MSCs can prevent glucocorticoid-induced bone
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loss [45] and support bone regeneration [46]. However, the prediction of MSCs to differ-
entiate into osteoblasts is hampered by the incomplete biomolecular understanding and
the lack of cellular biomarkers that define the quality of cells designated for therapy [29].
The present study was designed to determine differences between MSCs and their differ-
entiated adipocytes (AD) and osteoblasts (OD) on the proteome level. Although previous
studies evaluated the relationship between MSCs and osteoblasts using proteomics ap-
proaches such as mass spectrometry [47–50], this is the first report comparing the global
proteome of MSCs, osteoblasts, and adipocytes by using label-free mass spectrometry in
data-independent acquisition mode for quantification. Additionally, updated workflows
for machine learning algorithms were applied for in-depth protein identification and data
evaluation.

Cluster analysis of proteomics data indicated a clear separation of all cell types along
with an enrichment of hallmark gene sets, e.g., associated with adipogenesis including, e.g.,
PPAR (Peroxisome proliferator-activated receptors) signaling gene sets which is considered
as the key master transcription regulator in adipocytes [51]. The Mesenchymal and Tissue
Stem Cell Committee of the International Society for Cellular Therapy (ISCT) has defined
MSC by a set of present (+) and absent (-) cluster of differentiation (CD) markers (CD105+,
CD73+, CD90+, CD45-, CD34-, CD14-, CD11b-, CD79a- or CD19- and HLA-DR-), their
plastic adherence capacity and their multipotent differentiation potential when cultured in
standard conditions as minimal quality [39]. However, it has been reported that positive
markers of the ISCT panel are homogenously expressed among all MSC progeny [32].
Consistent with the literature, our protein analysis demonstrated that CD105, CD73, and
CD90 were detectable but did not show a differential expression between MSCs, adipogenic
and osteoblastic cells (Table 2). Additionally, all ISCT-defined markers that should present
a very low protein abundance in MSCs have not been identified at all. These findings
suggest that (a) our applied mass spectrometric workflow is capable of validating ISCT
+ -markers and (b) new protein markers to differentiate between MSCs, adipocytes, and
osteoblasts are needed.

The model of the MSC differentiation into AD and OB allows us to determine their
global proteome using quantitative mass spectrometry combined with neuronal networks
and machine-learning algorithms for the first time. Interestingly, Aasebø et al. performed
the only recent similar study and reported a strong separation of osteoblasts and MSCs [50]
by comparing mass spectrometric data after data-dependent acquisition. However, and
in contrast to our data, the proteome of adipocytes was not evaluated and only proteins
were reported that showed an abundance level in the osteoblasts and not in the MSCs
(n = 156). The findings of the here presented data considered positive and negative effect
sizes (log2FC > |2|) resulting in 50 differentially expressed proteins between MSCs and
osteoblasts. In line with the results presented by Aasebø, we detected decorin (DCN)
and biglycan (BGN) as potential protein markers for osteoblastic differentiation (Sup-
plementary Table S2): while BGN acts on the cell surface and is involved in the matrix
mineralization [52–54], DCN was described to promote osteoblast differentiation fate [55].
It must be noted though that DCN could not be validated by machine learning algo-
rithms and was thus not included in our final differentiation marker panel for osteoblastic
differentiation.

3.1. Osteoblastic Panel

Overall, the applied algorithms revealed nine specific proteins for the osteoblastic
differentiation, respectively. Analogous to BGN, cytochrome P450 family 24 subfamily A
member 1 (CYP24A1), AE binding protein 1 (AEBP1), and collagen type III alpha 1 chain
(COL3A1) concern functions of bone mineralization, osteoblastogenesis as well as matrix
remodeling and thus confirmed a close association to the osteoblastic molecular differentia-
tion module [56–60]. Strikingly, CYP24A1 presented the highest fold-change comparing
OB to MSC (log2FC 3.65) and OB to AD (log2FC 3.52). Further, three identified proteins
were reported to be associated with osteoblastic diseases: while Stathmin 1 (STMN1) was
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described for osteoblast and osteoclast function [61] as well as for osteopenic phenotypes
in mice [62], we found minichromosome maintenance complex component 4 (MCM4)
which seems to play an important role during cell division and metastasis-free survival
of osteosarcoma patients [63]. Further, prolyl 4-hydroxylase subunit alpha 1 (P4HA1) has
been found as the active catalytic component of the prolyl 4-hydroxylase which catalyzes
the post-translational formation of 4-hydroxyproline [64,65]. High P4HA1 gene and protein
expression values have been recently described as a prognostic predictor in head and neck
squamous cell carcinoma [66] as well as primary melanomas [67]. Additionally, P4HA1 is
associated with the collagen-dependent bone disease osteogenesis imperfecta [68,69]: as
P4HA1 is involved in the post-translational modification of collagens, a direct involvement
in the pathogenesis of osteogenesis imperfecta is conceivable. Noteworthy, AEBP1 and
MCM4 presented low protein levels in the AD and MSC groups making AEBP1+ and
MCM4+ most suited as new OB or ISCT differentiation markers with a known osteoblastic
background.

No literature link for osteoblastic differentiation or diseases was found for the proteins
capping protein regulator and myosin 1 linker 1 (CARMIL1), and mesoderm specific tran-
script (MEST). While the CARMIL1 was more highly expressed in the OB than in the MSC
and AD groups, the expression pattern for MEST was reduced. The plasma-membrane-
associated protein CARMIL1 plays a role in the regulation of actin polymerization and cell
migration. Specifically, CARMIL1 prevents the F-actin heterodimeric capping protein (CP)
activity of migrating cells and thus stimulates actin polymerization [64]. In this context, it
has been shown that activation of actin polymerization decreases osteoblast differentiation
and bone formation in MSCs [70]. Since we observed high CARMIL1 levels in OBs, one
could assume that the endpoint of an osteoblastic differentiation process is marked by
high protein levels of CARMIL1 to activate actin polymerization and thus to stop cellular
differentiation mechanisms.

Last, MEST—one of the markers with a low expression in osteoblastic cells—has been
described to be involved in the mesoderm development and the regulation of lipid storage.
Inline, it was described as a specific protein for the endoplasmic reticulum that co-localizes
within lipid droplets in cells undergoing adipogenic differentiation [71]. Additionally,
elevated gene expression of MEST in preadipocytes differentiating in adipocytes was
described by Kadota et al. [72].

3.2. Adipocytic Panel

The differentiation of MSCs into adipocytes resulted in a higher expression of 13 pro-
teins from which 10 support the work of other studies in this area. While fatty acid-binding
protein 4 (FABP4), perilipin 1 and 4 (PLIN1/4), haptoglobin (HP), and CD36 have been
described to be associated with adipogenesis, hydroxysteroid 11-beta dehydrogenase 1
(HSD11B1), monoamine oxidase A (MAOA), stearoyl-CoA desaturase (SCD), and adipose
acyl-CoA synthetase-1 (ACSL1) demonstrate molecular function in adipose tissues [73–80].
FABP4 presented the highest differential expression compared to OB (log2FC 7.04) and
MSC (log2FC 6.77) and nearly no protein expression in the OD and MSC group. Associated
with adipocytic processes, this finding could be used to implement FABP4+ as new AB or
ISCT differentiation markers.

Noteworthy and to our best knowledge, no specific association to adipocyte differ-
entiation was described for inter-alpha-trypsin inhibitor heavy chain 1 (ITIH1), RAP2A
member of RAS oncogene family (RAP2A), epoxide hydrolase 1 (EPHX1), and phospho-
lipid phosphatase 1 (PLPP1). While ITIH1 belongs to a protein family of related plasma
serine protease inhibitors which is involved in extracellular matrix stabilization and the
prevention of tumor metastasis [81], RAP2A is a small GTP binding protein that may regu-
late cytoskeletal rearrangements, cell migration, cell adhesion, and spreading [82]. EPHX1
is a member of the epoxide hydrolase family which plays a role in the metabolism of en-
dogenous lipids such as epoxide-containing fatty acids [83] and fulfills a key function in the
detoxification of xenobiotics [84]. Lastly, PLPP1 is a magnesium-independent phospholipid
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phosphatase of the plasma membrane and is associated with the regulation of inflamma-
tion, platelet activation, cell proliferation, and migration [85,86]. Against this background,
it could be hypothesized that all four proteins may play a reasonable role in adipocytic
processes. However, further studies including larger patient collectives are required.

In conclusion, this study set out to characterize undifferentiated MSCs and cells
after osteoblastic and adipocytic differentiation on the proteome level. These experiments
identified 22 highly cell type-specific proteins for MSCs, adipocytes, and osteoblasts using
the combination of deep neural network-based quantification of data-independent mass
spectrometry data. Overexpression of AEBP1 and MCM4 for OB as well as of FABP4 for
AD differentiation seem to be the most promising molecular targets which could be used
for regenerative medicine, stem cell, and cancer research in the future. Further studies to
evaluate the molecular basis for bone formation including single-cell criteria and clinical
patient data are warranted.

4. Materials and Methods
4.1. Donors and Materials

Bone marrow was aspirated from the lower extremities of five adult donors undergoing
surgeries at the Department of Orthopedics and Traumatology, Odense University Hospital.
The donor collective consisted of one male and four females. The bone marrow samples
were considered as ‘waste material’ from routine operations and were thus collected
without any extra patient risk. All donors received oral and written information and
signed a consent. The project was approved by the Scientific Ethics Committee of Southern
Denmark (project ID: S-20160084).

4.2. Cell Isolation and Culture

Bone marrow (5–10 mL) was collected into ethylenediaminetetraacetic acid (EDTA)-
coated vacutainers. MSCs were isolated from the mononuclear cell population following
gradient centrifugation using Lymphoprep of the bone marrow, through plastic adherence,
as described previously by Stenderup et al. [87]. The cells were cultured in minimum
essential medium (MEM medium) supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin/streptomycin (P/S) at 37 ◦C in a humidified incubator with 5% CO2. The medium
was switched to MEM medium supplemented with 10% FBS, 1% P/S, 1% GlutaMAX, 1%
sodium pyruvate, and 1% nonessential amino acids (S-MEM growing medium) after the
first visualization of adherent cells. At 80% confluence, the cells were trypsinized and used
for analysis and further cell expansion.

4.3. Colony-Forming Unit-Fibroblast (CFU-f) Assay

The colony-forming unit-fibroblast (CFU-f) assay was performed to assess the colony-
forming capacity of cultured MSCs. The freshly isolated cells were counted in triplicates
using a hemocytometer under an optical microscope and plated at a density of 1 million
cells (passage 0) into three 22.1 cm2 Petri dishes (TPP, 93060). Standard culture conditions
were used for 17 days and colonies were visualized by crystal violet staining.

4.4. Cell Proliferation

The cell proliferation capacity assay was performed at the first cell passage in tripli-
cates. The cells were counted in a hemocytometer under an optical microscope, seeded
(1000 cells/well) in a 6-well plate (TPP, 92006), and cultured under standard conditions.
On days 1, 3, 6, 9, 12, and 15, the cells were trypsinized and counted in a hemocytometer.
The proliferation capacity of the cells was measured as the area under the curve (AUC).

4.5. In Vitro Cell Differentiation
4.5.1. Osteoblastic Differentiation

For the osteogenic differentiation, MSCs at first passage were seeded in a 4-well
plate at a density of 20,000 cells/cm2. At 90% confluence (after 24 h), cell culture media
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were replaced with osteoblastic induction media containing: 10% FBS, 1% P/S, 5 mM
β-glycerophosphate, 10 nM dexamethasone, 50 µg/mL vitamin C, and 10 nM vitamin D3.
Osteoblastic induction media were replaced every 2–3 days. After 14 days, the osteoblastic
differentiation was assessed by visualization of mineralized matrix formation via alizarin
red staining. The cells were washed with PBS and fixed with 70% ice-cold ethanol at −20 ◦C
for 1 h. Afterwards, the cells were washed with Milli-Q and incubated with alizarin red
(pH = 4.2) for 10 min with rotation at room temperature (RT). Subsequently, the staining
intensity of alizarin red was quantified using ImageJ software.

Alkaline Phosphatase (ALP) Activity

The alkaline phosphatase (ALP) activity is a common biochemical measure for os-
teoblast activity. Cells were washed with tris-buffered saline (pH 9), fixed with 3.7%
formaldehyde–90% ethanol for 30 s at RT, and incubated with p-nitrophenyl phosphate
(1 mg/mL) in 50 mM NaHCO3 and 1 mM MgCl2, pH 9.6 at 37 ◦C. After 20 min of incuba-
tion, 3 M NaOH was added to stop the reaction. Absorbance was measured at 405 nm, and
ALP activity values were corrected for the number of cells in each well. The cell number
was determined as a measure of cell viability and determined by incubating the cells with
CellTiter-Blue for 1 h at 37 ◦C. The fluorescent intensity at 560/590 nm (excitation/emission)
was measured in the FLUOstar Omega plate reader.

4.5.2. Adipocytic Differentiation

MSCs of the first passage were plated at a density of 30,000 cells/cm2 in a 4-well
plate for 24 h. At near full confluence, the media were replaced with adipocytic induction
media containing Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10%
FBS, 1% P/S, 5% horse serum, 1 µM rosiglitazone (BRL) 49,653, 3 µg/mL insulin, 100 nM
dexamethasone and 225 µM 3-isobutyl-1-methylxanthine (IBMX). Media were changed
every 2–3 days. After 14 days, adipocytic differentiation efficiency was determined by
visualizing the formation of mature adipocytes containing lipid droplets using Oil Red O
staining. The cells were fixed with 4% paraformaldehyde (PFA) for 10 min at RT, washed
with 3% isopropanol, and incubated with filtered Oil Red O solution (25 mg of Oil Red O
in 5 mL of 100% isopropanol and 3.35 mL Milli-Q). Photomicrographs of the differentiated
cells were captured using an Olympus optical microscope (×10 magnification objective)
and quantified as the area of lipid droplets (average of 6 images per sample) using ImageJ
software.

4.6. Flow Cytometry

Flow cytometry was used for measuring the expression of surface CD markers for
MSC characterization. After ex vivo expansion to passage 2, MSCs were trypsinized and
washed with phosphate-buffered saline (PBS) (without Ca2+ and Mg2+) containing 2%
FBS. The cells were incubated with primary fluorophore-conjugated antibodies as follows:
CD14-PE, CD44-PE, CD34-PE, CD73-PE, CD90-PE, CD105-PE and ALPL-APC for 25 min at
4 ◦C. After the incubation, MSCs were washed twice to remove antibodies with unspecific
binding and were analyzed using a BD LSR II Flow Cytometer and the BD FACSDiva
software. The data were analyzed with Kaluza Flow Cytometry Analysis Software Version
1.3 (Beckman Coulter, Brea, CA, USA).

4.7. Cell Isolation for Mass Spectrometry Analysis

Five samples per cell lineage derived from bone marrow donors (patient numbers
11, 13, 15, 17, and 18) were selected and prepared for mass spectrometry analysis: (a)
MSCs without differentiation; (b) MSCs after osteoblastic differentiation (osteoblasts); (c)
MSCs after adipocytic differentiation (adipocytes). The Protease-Inhibitor (PIH) buffer
was prepared as follows: 4 µL aprotinin (1:1000) + 4 µL leupeptin (1:1000) + 80 µL phenyl-
methylsulfonyl fluoride (PMSF) (1:50) in 3.91 mL 2-D Lysis Buffer. The cells were washed
twice with 10 mL DPBS at 4 ◦C. Afterwards, the cells were scraped off the plate into 1.7 mL
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ice-cold PIH buffer centrifuged at 660× g for 3 min at 4 ◦C. The pellet was resuspended in
1 mL PIH buffer and transferred to pre-weighted cryo-tubes and centrifuged at 2700× g for
5 min at 4 ◦C. The pellet was frozen at −80 ◦C.

4.8. Two-Dimensional Fluorescence Gel Electrophoresis

The samples were assessed as described previously [88]. Briefly, samples were
lyophilized and subsequently dissolved in a DIGE lysis buffer (30 mM Tris, 7M Urea,
2M Thiourea, 4% CHAPS (3-[(3-Cholamidopropyl)-dimethylammonio]-1-propansulfonat
Hydrate)). Subsequently, protein samples were precipitated with the trichloroacetic acid
(TCA)-like ReadyPrep 2-D Cleanup Kit (Bio-Rad Laboratories, Hercules, CA, USA) as
specified by the manufacturer. Total protein concentration was determined in quadruples
using the fluorescence-based EZQ Protein Quantitation Kit (Life Technologies, Carlsbad,
CA, USA) according to the manufacturer’s protocol.

After labeling the protein samples with the fluorescence-based Refraction-2D Labelling
Kit (NH DyeAGNOSTIC, Germany), proteins were diluted with rehydration sample buffer
(7 M urea, 2 M thiourea, 2% (w/v) CHAPS, 2% (v/v) carrier ampholytes (pH 4–7) and
bromophenol blue) and applied to immobilized pH gradient (IPG) gel strips, with a pH
range 4–7 (Immobiline DryStrip pH 4–7, 24 cm, linear, GE Healthcare, Chicago, IL, USA).
Isoelectric focusing (IEF) was carried out in a Protean i12 IEF cell (Bio-Rad Laboratories,
USA) at 20 ◦C reaching approximately 57,700 Vh. The horizontal second dimension (HPE
FlatTop Tower, SERVA Electrophoresis, Heidelberg, Germany) was carried out by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) on 12.5% acrylamide
gels (2DHPE Large Gel NF 12.5% Kit, 0.65 × 200 × 255 mm, SERVA Electrophoresis,
Heidelberg, Germany). Electrophoresis was performed with 1500 V for 4 h 50 min reaching
approximately 3400 Vh.

Gel image acquisition was performed using the Typhoon FLA 9000 laser scanner (GE
Healthcare, UK). Subsequently, protein spots were evaluated using the software Progenesis
SameSpots (Nonlinear Dynamics, Newcastle upon Tyne, UK, v4.1). The analysis included
protein spot detection, background subtraction, and relative quantification.

4.9. Sample Preparation for High-Performance Liquid Chromatography (HPLC) and Electrospray
Ionization Tandem Mass Spectrometry (ESI-MS/MS)

The sample preparation for mass spectrometry analysis was performed with a filter
aided sample preparation (FASP) protocol [89]. Briefly, 100 µg samples diluted in 200 µL
8M uric acid in 0.1 M Tris-HCL (UA) were added to filter columns (30 k, AmiconUltra,
Merck, Darmstadt, Germany) and centrifuged at RT, 14,000× g for 15 min. Additional
200 µL UA was added to the filter column and repeatedly centrifuged. After discarding the
eluate, 100 µL 0.05 M IAA (solubilized in UA) was added to the filter column and incubated
in the dark at RT for 20 min. The column was washed two times with UA before 100 µL
0.05 M ammonium bicarbonate (ABC) buffer was added to the columns and centrifugation
at RT, 14,000× g for 10 min, twice. Next, 40 µL trypsin in ABC (enzyme:protein ratio 1:100)
was added and left for incubation in a humid chamber at 37 ◦C overnight. The columns
were centrifuged at RT (14,000× g for 10 min) before 40 µL of ABC were added. Finally, the
filtrate was collected, lyophilized, and stored at −20 ◦C after centrifugation at 14,000× g
for 10 min.

4.10. High-Performance Liquid Chromatography (HPLC) and Electrospray Ionization Tandem
Mass Spectrometry (ESI-MS/MS)

The samples were solubilized with a final concentration of 1 µg/µL in solvent A
(0.1% formic acid) and were loaded into a HPLC Dionex Ultimate 3000 (Thermo Fisher
Scientific, Waltham, MA, USA). The samples were first loaded onto a trap column (µ-
Precolumn Acclaim PepMap100, internal diameter: 0.3 × 5 mm, 5 µm, 100 Å, Thermo
Fisher Scientific, Waltham, MA, USA) and desalted with loading solution at 10 µL/min
for 4 min. Peptides were subsequently separated using an analytical column (LC Column,
3 µm C18 (2), 0.3 × 50 mm, 3 µm, 100 Å, Phenomenex Inc., Torrence, CA, USA) and eluted
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with a multi-step gradient of solvent B (0.1% formic acid in acetonitrile) in solvent A for
86 min at a flow rate of 5 µL/min. Purified peptides were analyzed with a TripleTOF 5600+
mass spectrometer (AB ScieX, Framingham, MA, USA). The following SWATH (sequential
window acquisition of all theoretical mass spectra) acquisition working parameters were
used: Ion Spray Voltage Floating (ISVF) at 5000 V; ion source gas (GS1), 15; ion source
gas (GS2), 0; curtain gas (CUR) at 30 and source temperature heating set to 0 ◦C. The
optimized declustering potential (DP) was set at 100; collision energy (CE) to 19.2; collision
energy spread (CES), 5.0; ion release delay (IRD), 67; ion release width (IRW) at 25. For
data acquisition, one 0.049965 s MS scan (m/z 350–1250) was performed, followed by
100 variable Q1 windows with the size range 5–91.3 Da, each at 0.030 s accumulation
time with CES at 5 eV. The precursor isolation windows were defined using the SWATH
Variable Window Calculator V1.1 (AB Sciex) based on precursor m/z densities obtained
from DDA spectra. For DDA acquisition, identical instrument working parameters were
used. MS scans were performed for 350–1250 Da with an accumulation time of 0.25 s,
MS/MS scans were performed for 100–1500 Da with an accumulation time of 0.05 s at high
sensitivity mode.

4.11. SWATH Data Processing

The raw SWATH data were processed using the software tool DIA-NN v1.7.16 (data-
independent acquisition by neural networks) developed by Vadim Demichev et al. [90]. The
software was used in the high accuracy LC mode with RT-dependent cross-normalization
enabled. Mass accuracy, MS1 accuracy, and scan window settings were set to 0, as
DIA-NN optimizes these parameters automatically. The ‘match between runs’ function
was used to first develop a spectral library using the ‘smart profiling strategy’ from the
data-independent acquisition data. The human UniProtKB/swiss-prot database (version
2020/12/6) [91] was used for protein inference from identified peptides. Trypsin/P was
specified as protease. The precursor ion generation settings were set to peptide length
of 7–52 amino acids, the maximum number of missed cleavages to one. The maximum
number of variable modifications was set to zero. N-terminal methionine excision and
cysteine carbamidomethylation were enabled as fixed modifications. The neural network
classifier was set to double-pass mode as it typically generates the best results and analysis
time was not an issue here. The resulting report file was further processed in the DIA-NN
R package [90] for MaxLFQ-based [92] protein quantification. A report was generated
containing unique proteins (proteins that were not assigned to a group of homologs) that
passed the FDR cut-off of 0.01 applied on the precursor level and were identified and quan-
tified using proteotypic peptides only. All proteins in the final dataset were identified by at
least two unique peptides. The proteins were mapped for their corresponding gene names,
which were required for downstream analysis steps such as gene enrichment analysis. In
this context, the terms proteins and genes are used interchangeably in this study report.

The mass spectrometry proteomics data have been deposited to the ProteomeX-
change Consortium [93] via the PRIDE [94] partner repository with the dataset identifier
PXD029900.

4.12. Quantitative Data Processing

The dataset was further processed with the R [95] package DEP [96], which allows for
missing value filtering and imputation: proteins/genes that were not reliably identified
in 4 out of 5 replicates of at least one condition were removed from the dataset. Vari-
ance stabilizing normalization was applied to the remaining dataset using the R package
vsn [97]. To analyze all identified proteins, remaining missing values were imputed with a
multiple imputation strategy, as those can conserve differential expression, maintain the
original informational content of the dataset, and respect low concentrated/not detectable
proteins [96,98]. Missing values were considered as missing not at random (MNAR) when
protein quantity data were completely missing for at least one condition. All other missing
values were considered missing at random (MAR). While MNAR were imputed with
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random draws from a Gaussian distribution centered around a minimal value, MAR were
imputed with a k-nearest neighbor model. The imputed dataset was used for subsequent
statistical analysis.

4.13. Data Analysis

The gene name of the corresponding protein was used for analyses. The bioinformatics
platform Omics Playground v2.7.18 (BigOmics Analytics, Lugano, Switzerland) was partly
used for protein quantity data analysis and visualization [99]. For a clustering analysis and
visualization of the high-dimensional quantitative proteomics data, a principal components
analysis plot was computed using the stats package provided by the R software suite [95],
and visualized with the R package ggplot2 [100]. A heatmap (two-way hierarchical cluster-
ing) was computed in Omics Playground. Using the R package NbClust [101], we utilized
several algorithms for the estimation of the adequate cluster numbers within the data
set of the top 50 differentially expressed proteins (selected via their standard deviation).
According to a majority vote of the NbClust algorithms, three is the best number of clusters
for this data set. Thus, ‘three clusters’ was used as a parameter for the initialization of the
unsupervised two-way hierarchical clustering method included in the Omics Playground
software suite. The method was applied to the data set of the top 50 proteins and used to
generate the heatmap.

The gene set enrichment was computed with Omics Playground using the merged
results of the Fisher’s exact test [102], fGSEA [103], and GSVA [104], thereby applying a
FDR < 0.05 (which corresponds to a so-called ‘meta.q value’ which corresponds to the
highest q-value provided by the used statistical methods) and absolute |log2FC| threshold
of >0.2. The MSigDB gene set collection was used as the target database for the enrichment.
All measured genes are used as ‘universe’ after filtering for non-expressed genes. The
log2FC is calculated as the average log2FC of all genes identified in the particular gene set.

For a differential protein expression analysis, a Welch-ANOVA was computed using
the stats package. The results of the Welch-ANOVA were corrected for multiple testing via
the Benjamini–Hochberg procedure [105], selecting the candidates for post-hoc testing with
a FDR of <0.05. Post-hoc testing was performed via the Tukey honestly significant difference
(HSD) method using the TukeyHSD function of the R software suite. Significant differential
protein expression was considered at a q-value of <0.05 and an absolute logarithmic fold
change (|log2FC|) of >2. Volcano plots were created from the results of the differential
expression analysis, using the plot function in R. For better visualization, the -log10 q-values
of the ANOVA were plotted on the y-axis and log2FC on the x-axis. A Venn diagram was
created using the web tool InteractiVenn [106], using the differentially expressed proteins
of the three comparisons as input sets. Boxplots for overlapping proteins were created in
the R software suite using ggplot2. The ‘biomarker’ module of Omics Playground was
used for the ranking of biomarkers that could be suitable for the characterization of the cell
lineage. Here, a cumulative variable importance score for each feature was calculated using
machine learning algorithms, including LASSO [41], elastic nets [42], random forests [43],
and extreme gradient boosting [44] and provides the top 40 features according to the
ranking of the cumulative score by the algorithms. The findings of the machine learning
algorithms were used as further validation of our marker panels derived from classical
statistical testing. The Panther classification system was used for the annotation of all
overlapping proteins according to gene ontology terms of the biological process, molecular
function, and cellular component [107].

4.14. Reagents

Lymphoprep (StemCell Technologies, Vancouver, Canada, 1114545), minimum es-
sential media (MEM, Gibco/Thermo Fisher Scientific, Waltham, MA, USA, 31095-029),
Dulbecco’s modified Eagle’s medium (DMEM, Gibco/Thermo Fisher Scientific, 31966),
fetal bovine serum (Thermo Fisher Scientific, Waltham, MA, USA, 10270106), GlutaMAX
(Gibco/Thermo Fisher Scientific, 35050-038), non-essential amino acids (MEM NEAA,
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Gibco/Thermo Fisher Scientific, 11140-035), Trypsin-EDTA (Invitrogen/Thermo Fisher Sci-
entific, 25300062), β-glycerophosphate (Calbiochem/Merck, Darmstadt, Germany, 35675),
dexamethasone (Sigma/Merck, Darmstadt, Germany, D4902), vitamin C (L-Ascorbic Acid
Phosphate Magnesium Salt n-Hydrate, Wako, Neuss, Germany, 013-12061), vitamin D3
(1α,25-Dihydroxyvitamin D3 a kind gift from Leo Pharma, Ballerup Sogn, Denmark), p-
nitrophenyl phosphate (Sigma/Merck, 71768), Alizarin Red (Sigma/Merck, A5533), Oil
Red O (Sigma/Merck, O0625), horse serum (Sigma/Merck, H1270), rosiglitazone (BRL,
Cayman Chemical, Ann Arbor, MI, USA, 71740), insulin (Sigma/Merck, I9278), 3-isobutyl-
1-methylxanthine (IBMX, Sigma/Merck, I5879), Napthol AS-TR phosphate disodium salt
(Sigma/Merck, N6125), Fast Red TR Salt hemi (zinc chloride) salt (Sigma/Merck, F8764),
anti-CD14 (BD Pharmingen, Franklin Lakes, NJ, USA, 555398), anti-CD44 (Beckman Coul-
ter, Brea, CA, USA A32537), anti-CD34 (BD Biosciences, Franklin Lakes, NJ, USA, 555822),
anti-CD73 (BD Bioscience, 550257), anti-CD90 (Beckman Coulter, IM3600U), anti-CD105
(Beckman Coulter, A07414), anti-ALPL (R&D Systems, Minneapolis, MN, USA, FAB1448A),
CellTiter-Blue cells viability assay reagent (Promega, Walldorf, Germany, G8081), TRI-
zol (Invitrogen/Thermo Fisher Scientific, 15596018), High-Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems, 4368813), Fast SYBR Green Master Mix (Applied
Biosystems/Thermo Fisher Scientific, Waltham, MA, USA 4385614), RNAse (Affymetrix,
Santa Clara, CA, USA, 78020Y), DNAse (Worthington, Columbus, OH, USA, DPRF), Tris
(Merck, 1083821000), uric acid (Affymetrix, 75826), thiourea (Sigma/Merck, 33717), CHAPS
(Sigma/Merck, C5070-1G), ReadyPrep 2-D Cleanup Kit (Bio-Rad Laboratories, Hercules,
CA, USA, 163-21-30), Tris-HCL (Roth, Karlruhe, Germany, 48551), ammoniumbicarbonate
(Honeywell, Morristown, NJ, USA, 1066-33-7), iodacetamide (Sigma/Merck, 163-2109),
Trypsin gold (Promega, V5280), formic acid (Baker, 9820), acetonitrile (Baker/Thermo
Fisher Scientific, 9017).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23052568/s1.

Author Contributions: Conceptualization, J.M.K., M.K. (Moustapha Kassem), J.K.H. and T.G.; data
curation, T.S., G.F., M.K. (Michael Kohl), J.M.K. and T.G.; formal analysis, T.S., G.F., M.K. (Michael
Kohl), J.M.K. and T.G.; funding acquisition, J.M.K., A.-P.S., M.K. (Moustapha Kassem), J.K.H. and T.G.;
methodology, T.S., G.F., M.K. (Michael Kohl), S.R., J.H., I.K., S.H. and T.G.; resources, J.M.K., H.S. and
T.G.; software, I.K.; supervision T.G.; visualization, T.S. and M.K. (Michael Kohl); writing—original
draft, T.S., G.F., M.K. (Michael Kohl) and T.G.; writing—review and editing, J.M.K., S.R., J.H., H.S.,
I.K., A.-P.S., S.H., M.K. (Moustapha Kassem) and J.K.H. All authors have read and agreed to the
published version of the manuscript.

Funding: The study was performed as a part of the BONEBANK project (project number: 16-1.0-15)
supported by Interreg 5a Germany-Denmark with funds from the European Regional Development.

Institutional Review Board Statement: The project was approved by the Scientific Ethics Committee
of Southern Denmark (project ID: S-20160084).

Informed Consent Statement: All donors received oral and written information and signed a con-
sent.

Data Availability Statement: The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium [93] via the PRIDE [94] partner repository with the dataset identifier
PXD029900.

Acknowledgments: This work was supported by the German Network for Bioinformatics Infrastructure—
de.NBI, service center BioInfra.Prot, funded by the German Federal Ministry of Education and
Research (BMBF)—Grant FKZ 031 A 534A. Additionally, we would like to thank V. Demichev for
the support with the DIA-NN software. T. Sauer is grateful for the support from the Ad Infinitum
Foundation.

Conflicts of Interest: All authors declare that they have no competing financial interest. IK is CTO
of BigOmics Analytics SA, the creator of the Omics Playground. TG is a member of the BigOmics
Analytics Advisory Board.

https://www.mdpi.com/article/10.3390/ijms23052568/s1
https://www.mdpi.com/article/10.3390/ijms23052568/s1


Int. J. Mol. Sci. 2022, 23, 2568 17 of 21

References
1. Friedenstein, A.Y. Induction of bone tissue by transitional epithelium. Clin. Orthop. Relat. Res. 1968, 59, 21–37. [CrossRef]

[PubMed]
2. Ullah, M.; Liu, D.D.; Thakor, A.S. Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. iScience

2019, 15, 421–438. [CrossRef] [PubMed]
3. Singer, N.G.; Caplan, A.I. Mesenchymal stem cells: Mechanisms of inflammation. Annu. Rev. Pathol. 2011, 6, 457–478. [CrossRef]
4. Le Blanc, K.; Mougiakakos, D. Multipotent mesenchymal stromal cells and the innate immune system. Nat. Rev. Immunol. 2012,

12, 383–396. [CrossRef]
5. Bronckaers, A.; Hilkens, P.; Martens, W.; Gervois, P.; Ratajczak, J.; Struys, T.; Lambrichts, I. Mesenchymal stem/stromal cells as a

pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacol. Ther. 2014, 143, 181–196. [CrossRef]
6. Yun, C.W.; Lee, S.H. Enhancement of Functionality and Therapeutic Efficacy of Cell-Based Therapy Using Mesenchymal Stem

Cells for Cardiovascular Disease. Int. J. Mol. Sci. 2019, 20, 982. [CrossRef] [PubMed]
7. Kim, J.; Shapiro, L.; Flynn, A. The clinical application of mesenchymal stem cells and cardiac stem cells as a therapy for

cardiovascular disease. Pharmacol. Ther. 2015, 151, 8–15. [CrossRef]
8. Chung, M.-J.; Son, J.-Y.; Park, S.; Park, S.-S.; Hur, K.; Lee, S.-H.; Lee, E.-J.; Park, J.-K.; Hong, I.-H.; Kim, T.-H.; et al. Mesenchymal

Stem Cell and MicroRNA Therapy of Musculoskeletal Diseases. Int. J. Stem. Cells 2021, 14, 150–167. [CrossRef]
9. Kim, M.; Kim, K.H.; Song, S.U.; Yi, T.G.; Yoon, S.H.; Park, S.R.; Choi, B.H. Transplantation of human bone marrow-derived clonal

mesenchymal stem cells reduces fibrotic scar formation in a rat spinal cord injury model. J. Tissue Eng. Regen. Med. 2018, 12,
e1034–e1045. [CrossRef]

10. Wei, X.; Yang, X.; Han, Z.P.; Qu, F.F.; Shao, L.; Shi, Y.F. Mesenchymal stem cells: A new trend for cell therapy. Acta Pharm. Sin.
2013, 34, 747–754. [CrossRef]

11. Yong, K.W.; Choi, J.R.; Wan Safwani, W.K. Biobanking of Human Mesenchymal Stem Cells: Future Strategy to Facilitate Clinical
Applications. Adv. Exp. Med. Biol. 2016, 951, 99–110. [CrossRef] [PubMed]

12. Lee, H.-Y.; Hong, I.-S. Double-edged sword of mesenchymal stem cells: Cancer-promoting versus therapeutic potential. Cancer
Sci. 2017, 108, 1939–1946. [CrossRef]

13. Knight, M.N.; Hankenson, K.D. Mesenchymal Stem Cells in Bone Regeneration. Adv. Wound Care New Rochelle 2013, 2, 306–316.
[CrossRef] [PubMed]

14. Marcacci, M.; Kon, E.; Moukhachev, V.; Lavroukov, A.; Kutepov, S.; Quarto, R.; Mastrogiacomo, M.; Cancedda, R. Stem cells
associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng. 2007, 13,
947–955. [CrossRef] [PubMed]

15. Giannotti, S.; Trombi, L.; Bottai, V.; Ghilardi, M.; D’Alessandro, D.; Danti, S.; Dell’Osso, G.; Guido, G.; Petrini, M. Use ofautologous
human mesenchymal stromal cell/fibrin clot constructs in upper limb non-unions: Long-term assessment. PLoS ONE 2013, 8,
e73893. [CrossRef]

16. Quarto, R.; Mastrogiacomo, M.; Cancedda, R.; Kutepov, S.M.; Mukhachev, V.; Lavroukov, A.; Kon, E.; Marcacci, M. Repair of large
bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 2001, 344, 385–386. [CrossRef]

17. Liebergall, M.; Schroeder, J.; Mosheiff, R.; Gazit, Z.; Yoram, Z.; Rasooly, L.; Daskal, A.; Khoury, A.; Weil, Y.; Beyth, S. Stem
cell-based therapy for prevention of delayed fracture union: A randomized and prospective preliminary study. Mol. Ther. 2013,
21, 1631–1638. [CrossRef]

18. Oryan, A.; Kamali, A.; Moshiri, A.; Baghaban Eslaminejad, M. Role of Mesenchymal Stem Cells in Bone Regenerative Medicine:
What Is the Evidence? Cells Tissues Organs 2017, 204, 59–83. [CrossRef]

19. Shi, L.; Huang, H.; Lu, X.; Yan, X.; Jiang, X.; Xu, R.; Wang, S.; Zhang, C.; Yuan, X.; Xu, Z.; et al. Effect of human umbilical cord-
derived mesenchymal stem cells on lung damage in severe COVID-19 patients: A randomized, double-blind, placebo-controlled
phase 2 trial. Signal. Transduct Target. Ther. 2021, 6, 58. [CrossRef]

20. Ciuffreda, M.C.; Malpasso, G.; Musarò, P.; Turco, V.; Gnecchi, M. Protocols for in vitro Differentiation of Human Mesenchymal
Stem Cells into Osteogenic, Chondrogenic and Adipogenic Lineages. Methods Mol. Biol. 2016, 1416, 149–158. [CrossRef]

21. O’Keefe, R.J.; Tuan, R.S.; Lane, N.E.; Awad, H.A.; Barry, F.; Bunnell, B.A.; Colnot, C.; Drake, M.T.; Drissi, H.; Dyment, N.A.; et al.
American Society for Bone and Mineral Research-Orthopaedic Research Society Joint Task Force Report on Cell-Based Therapies.
J. Bone Miner. Res. 2020, 35, 3–17. [CrossRef] [PubMed]

22. Gómez-Barrena, E.; Rosset, P.; Müller, I.; Giordano, R.; Bunu, C.; Layrolle, P.; Konttinen, Y.T.; Luyten, F.P. Bone regeneration: Stem
cell therapies and clinical studies in orthopaedics and traumatology. J. Cell Mol. Med. 2011, 15, 1266–1286. [CrossRef]

23. Fakhry, M.; Hamade, E.; Badran, B.; Buchet, R.; Magne, D. Molecular mechanisms of mesenchymal stem cell differentiation
towards osteoblasts. World J. Stem Cells 2013, 5, 136–148. [CrossRef] [PubMed]

24. Zaher, W.; Harkness, L.; Jafari, A.; Kassem, M. An update of human mesenchymal stem cell biology and their clinical uses. Arch.
Toxicol. 2014, 88, 1069–1082. [CrossRef] [PubMed]

25. Centeno, C.J.; Al-Sayegh, H.; Freeman, M.D.; Smith, J.; Murrell, W.D.; Bubnov, R. A multi-center analysis of adverse events among
two thousand, three hundred and seventy two adult patients undergoing adult autologous stem cell therapy for orthopaedic
conditions. Int. Orthop. 2016, 40, 1755–1765. [CrossRef] [PubMed]

26. Pittenger, M.F.; Discher, D.E.; Péault, B.M.; Phinney, D.G.; Hare, J.M.; Caplan, A.I. Mesenchymal stem cell perspective: Cell
biology to clinical progress. NPJ Regen. Med. 2019, 4, 22. [CrossRef]

http://doi.org/10.1097/00003086-196807000-00003
http://www.ncbi.nlm.nih.gov/pubmed/5665458
http://doi.org/10.1016/j.isci.2019.05.004
http://www.ncbi.nlm.nih.gov/pubmed/31121468
http://doi.org/10.1146/annurev-pathol-011110-130230
http://doi.org/10.1038/nri3209
http://doi.org/10.1016/j.pharmthera.2014.02.013
http://doi.org/10.3390/ijms20040982
http://www.ncbi.nlm.nih.gov/pubmed/30813471
http://doi.org/10.1016/j.pharmthera.2015.02.003
http://doi.org/10.15283/ijsc20167
http://doi.org/10.1002/term.2425
http://doi.org/10.1038/aps.2013.50
http://doi.org/10.1007/978-3-319-45457-3_8
http://www.ncbi.nlm.nih.gov/pubmed/27837557
http://doi.org/10.1111/cas.13334
http://doi.org/10.1089/wound.2012.0420
http://www.ncbi.nlm.nih.gov/pubmed/24527352
http://doi.org/10.1089/ten.2006.0271
http://www.ncbi.nlm.nih.gov/pubmed/17484701
http://doi.org/10.1371/annotation/e4403abb-b80e-43c5-be74-1bdb2c899d1c
http://doi.org/10.1056/NEJM200102013440516
http://doi.org/10.1038/mt.2013.109
http://doi.org/10.1159/000469704
http://doi.org/10.1038/s41392-021-00488-5
http://doi.org/10.1007/978-1-4939-3584-0_8
http://doi.org/10.1002/jbmr.3839
http://www.ncbi.nlm.nih.gov/pubmed/31545883
http://doi.org/10.1111/j.1582-4934.2011.01265.x
http://doi.org/10.4252/wjsc.v5.i4.136
http://www.ncbi.nlm.nih.gov/pubmed/24179602
http://doi.org/10.1007/s00204-014-1232-8
http://www.ncbi.nlm.nih.gov/pubmed/24691703
http://doi.org/10.1007/s00264-016-3162-y
http://www.ncbi.nlm.nih.gov/pubmed/27026621
http://doi.org/10.1038/s41536-019-0083-6


Int. J. Mol. Sci. 2022, 23, 2568 18 of 21

27. Bianco, P.; Robey, P.G.; Simmons, P.J. Mesenchymal stem cells: Revisiting history, concepts, and assays. Cell Stem Cell 2008, 2,
313–319. [CrossRef]

28. Post, S.; Abdallah, B.M.; Bentzon, J.F.; Kassem, M. Demonstration of the presence of independent pre-osteoblastic and pre-
adipocytic cell populations in bone marrow-derived mesenchymal stem cells. Bone 2008, 43, 32–39. [CrossRef]

29. Larsen, K.H.; Frederiksen, C.M.; Burns, J.S.; Abdallah, B.M.; Kassem, M. Identifying a molecular phenotype for bone marrow
stromal cells with in vivo bone-forming capacity. J. Bone Miner. Res. 2010, 25, 796–808. [CrossRef]

30. McLeod, C.M.; Mauck, R.L. On the origin and impact of mesenchymal stem cell heterogeneity: New insights and emerging tools
for single cell analysis. Eur. Cell Mater. 2017, 34, 217–231. [CrossRef]

31. Elsafadi, M.; Manikandan, M.; Atteya, M.; Hashmi, J.A.; Iqbal, Z.; Aldahmash, A.; Alfayez, M.; Kassem, M.; Mahmood, A.
Characterization of Cellular and Molecular Heterogeneity of Bone Marrow Stromal Cells. Stem Cells Int. 2016, 2016, 9378081.
[CrossRef] [PubMed]

32. Kowal, J.M.; Schmal, H.; Halekoh, U.; Hjelmborg, J.B.; Kassem, M. Single-cell high-content imaging parameters predict functional
phenotype of cultured human bone marrow stromal stem cells. Stem Cells Transl. Med. 2020, 9, 189–202. [CrossRef] [PubMed]

33. Keating, A. Mesenchymal stromal cells. Curr. Opin. Hematol. 2006, 13, 419–425. [CrossRef] [PubMed]
34. Hunt, C.J. Cryopreservation of Human Stem Cells for Clinical Application: A Review. Transfus. Med. Hemother. 2011, 38, 107–123.

[CrossRef] [PubMed]
35. Shen, W.; Chen, J.; Gantz, M.; Punyanitya, M.; Heymsfield, S.B.; Gallagher, D.; Albu, J.; Engelson, E.; Kotler, D.; Pi-Sunyer, X.; et al.

MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older
adults. Eur. J. Clin. Nutr. 2012, 66, 983–988. [CrossRef]

36. Li, C.J.; Cheng, P.; Liang, M.K.; Chen, Y.S.; Lu, Q.; Wang, J.Y.; Xia, Z.Y.; Zhou, H.D.; Cao, X.; Xie, H.; et al. MicroRNA-188 regulates
age-related switch between osteoblast and adipocyte differentiation. J. Clin. Investig. 2015, 125, 1509–1522. [CrossRef]

37. Liao, L.; Yang, X.; Su, X.; Hu, C.; Zhu, X.; Yang, N.; Chen, X.; Shi, S.; Shi, S.; Jin, Y. Redundant miR-3077-5p and miR-705 mediate
the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow. Cell Death Dis. 2013, 4, e600.
[CrossRef]

38. Kowal, J.M.; Möller, S.; Ali, D.; Figeac, F.; Barington, T.; Schmal, H.; Kassem, M. Identification of a clinical signature predictive of
differentiation fate of human bone marrow stromal cells. Stem Cell Res. 2021, 12, 265. [CrossRef]

39. Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz,
E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position
statement. Cytotherapy 2006, 8, 315–317. [CrossRef]

40. Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database Hallmark
Gene Set Collection. Cell Syst. 2015, 1, 417–425. [CrossRef]

41. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw
2010, 33, 1–22. [CrossRef] [PubMed]

42. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320.
[CrossRef]

43. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
44. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
45. Liao, Y.-J.; Tang, P.-C.; Chen, Y.-H.; Chu, F.-H.; Kang, T.-C.; Chen, L.-R.; Yang, J.-R. Porcine induced pluripotent stem cell-derived

osteoblast-like cells prevent glucocorticoid-induced bone loss in Lanyu pigs. PLoS ONE 2018, 13, e0202155. [CrossRef]
46. Yamada, M.; Watanabe, J.; Ueno, T.; Ogawa, T.; Egusa, H. Cytoprotective Preconditioning of Osteoblast-Like Cells with N-Acetyl-

L-Cysteine for Bone Regeneration in Cell Therapy. Int. J. Mol. Sci. 2019, 20, 5199. [CrossRef]
47. Kristensen, L.P.; Chen, L.; Nielsen, M.O.; Qanie, D.W.; Kratchmarova, I.; Kassem, M.; Andersen, J.S. Temporal profiling and

pulsed SILAC labeling identify novel secreted proteins during ex vivo osteoblast differentiation of human stromal stem cells. Mol.
Cell Proteom. 2012, 11, 989–1007. [CrossRef] [PubMed]

48. Foster, L.J.; Zeemann, P.A.; Li, C.; Mann, M.; Jensen, O.N.; Kassem, M. Differential expression profiling of membrane proteins
by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation. Stem Cells 2005, 23,
1367–1377. [CrossRef] [PubMed]

49. Granéli, C.; Thorfve, A.; Ruetschi, U.; Brisby, H.; Thomsen, P.; Lindahl, A.; Karlsson, C. Novel markers of osteogenic and
adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. Stem Cell
Res. 2014, 12, 153–165. [CrossRef] [PubMed]

50. Aasebø, E.; Brenner, A.K.; Hernandez-Valladares, M.; Birkeland, E.; Berven, F.S.; Selheim, F.; Bruserud, Ø. Proteomic Comparison
of Bone Marrow Derived Osteoblasts and Mesenchymal Stem Cells. Int. J. Mol. Sci 2021, 22, 5665. [CrossRef]

51. Yuan, Z.; Li, Q.; Luo, S.; Liu, Z.; Luo, D.; Zhang, B.; Zhang, D.; Rao, P.; Xiao, J. PPARγ and Wnt Signaling in Adipogenic and
Osteogenic Differentiation of Mesenchymal Stem Cells. Curr Stem Cell Res. 2016, 11, 216–225. [CrossRef]

52. Parisuthiman, D.; Mochida, Y.; Duarte, W.R.; Yamauchi, M. Biglycan modulates osteoblast differentiation and matrix mineraliza-
tion. J. Bone Miner. Res. 2005, 20, 1878–1886. [CrossRef] [PubMed]

53. Chen, X.-D.; Fisher, L.W.; Robey, P.G.; Young, M.F. The small leucine-rich proteoglycan biglycan modulates BMP-4-induced
osteoblast differentiation. FASEB J. 2004, 18, 948–958. [CrossRef] [PubMed]

http://doi.org/10.1016/j.stem.2008.03.002
http://doi.org/10.1016/j.bone.2008.03.011
http://doi.org/10.1359/jbmr.091018
http://doi.org/10.22203/eCM.v034a14
http://doi.org/10.1155/2016/9378081
http://www.ncbi.nlm.nih.gov/pubmed/27610142
http://doi.org/10.1002/sctm.19-0171
http://www.ncbi.nlm.nih.gov/pubmed/31758755
http://doi.org/10.1097/01.moh.0000245697.54887.6f
http://www.ncbi.nlm.nih.gov/pubmed/17053453
http://doi.org/10.1159/000326623
http://www.ncbi.nlm.nih.gov/pubmed/21566712
http://doi.org/10.1038/ejcn.2012.35
http://doi.org/10.1172/JCI77716
http://doi.org/10.1038/cddis.2013.130
http://doi.org/10.1186/s13287-021-02338-1
http://doi.org/10.1080/14653240600855905
http://doi.org/10.1016/j.cels.2015.12.004
http://doi.org/10.18637/jss.v033.i01
http://www.ncbi.nlm.nih.gov/pubmed/20808728
http://doi.org/10.1111/j.1467-9868.2005.00503.x
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1371/journal.pone.0202155
http://doi.org/10.3390/ijms20205199
http://doi.org/10.1074/mcp.M111.012138
http://www.ncbi.nlm.nih.gov/pubmed/22801418
http://doi.org/10.1634/stemcells.2004-0372
http://www.ncbi.nlm.nih.gov/pubmed/16210410
http://doi.org/10.1016/j.scr.2013.09.009
http://www.ncbi.nlm.nih.gov/pubmed/24239963
http://doi.org/10.3390/ijms22115665
http://doi.org/10.2174/1574888X10666150519093429
http://doi.org/10.1359/JBMR.050612
http://www.ncbi.nlm.nih.gov/pubmed/16160746
http://doi.org/10.1096/fj.03-0899com
http://www.ncbi.nlm.nih.gov/pubmed/15173106


Int. J. Mol. Sci. 2022, 23, 2568 19 of 21

54. Ye, Y.; Hu, W.; Guo, F.; Zhang, W.; Wang, J.; Chen, A. Glycosaminoglycan chains of biglycan promote bone morphogenetic
protein-4-induced osteoblast differentiation. Int. J. Mol. Med. 2012, 30, 1075–1080. [CrossRef]

55. Li, X.; Pennisi, A.; Yaccoby, S. Role of decorin in the antimyeloma effects of osteoblasts. Blood 2008, 112, 159–168. [CrossRef]
56. Liu, L.; Pathak, J.L.; Zhu, Y.-Q.; Bureik, M. Comparison of cytochrome P450 expression in four different human osteoblast models.

Biol. Chem. 2017, 398, 1327–1334. [CrossRef]
57. van Driel, M.; Koedam, M.; Buurman, C.J.; Hewison, M.; Chiba, H.; Uitterlinden, A.G.; Pols, H.A.; van Leeuwen, J.P. Evidence for

auto/paracrine actions of vitamin D in bone: 1alpha-hydroxylase expression and activity in human bone cells. FASEB J. 2006, 20,
2417–2419. [CrossRef] [PubMed]

58. Moena, D.; Merino, P.; Lian, J.B.; Stein, G.S.; Stein, J.L.; Montecino, M. Switches in histone modifications epigenetically control
vitamin D3-dependent transcriptional upregulation of the CYP24A1 gene in osteoblastic cells. J. Cell Physiol. 2020, 235, 5328–5339.
[CrossRef]

59. Segal, E.; Friedman, N.; Koller, D.; Regev, A. A module map showing conditional activity of expression modules in cancer. Nat.
Genet. 2004, 36, 1090–1098. [CrossRef]

60. Volk, S.W.; Shah, S.R.; Cohen, A.J.; Wang, Y.; Brisson, B.K.; Vogel, L.K.; Hankenson, K.D.; Adams, S.L. Type III collagen regulates
osteoblastogenesis and the quantity of trabecular bone. Calcif. Tissue Int. 2014, 94, 621–631. [CrossRef]

61. Kumar, R.; Haugen, J.D. Human and rat osteoblast-like cells express stathmin, a growth-regulatory protein. Biochem. Biophys. Res.
Commun. 1994, 201, 861–865. [CrossRef]

62. Liu, H.; Zhang, R.; Ko, S.-Y.; Oyajobi, B.O.; Papasian, C.J.; Deng, H.-W.; Zhang, S.; Zhao, M. Microtubule assembly affects bone
mass by regulating both osteoblast and osteoclast functions: Stathmin deficiency produces an osteopenic phenotype in mice. J.
Bone Mineral. Res. 2011, 26, 2052–2067. [CrossRef] [PubMed]

63. Kuijjer, M.L.; Rydbeck, H.; Kresse, S.H.; Buddingh, E.P.; Lid, A.B.; Roelofs, H.; Bürger, H.; Myklebost, O.; Hogendoorn, P.C.W.;
Meza-Zepeda, L.A.; et al. Identification of osteosarcoma driver genes by integrative analysis of copy number and gene expression
data. Genes Chromosomes Cancer 2012, 51, 696–706. [CrossRef]

64. Yang, C.; Pring, M.; Wear, M.A.; Huang, M.; Cooper, J.A.; Svitkina, T.M.; Zigmond, S.H. Mammalian CARMIL inhibits actin
filament capping by capping protein. Dev. Cell 2005, 9, 209–221. [CrossRef]

65. Myllyharju, J.; Kivirikko, K.I. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 2004,
20, 33–43. [CrossRef] [PubMed]

66. Li, Q.; Shen, Z.; Wu, Z.; Shen, Y.; Deng, H.; Zhou, C.; Liu, H. High P4HA1 expression is an independent prognostic factor for
poor overall survival and recurrent-free survival in head and neck squamous cell carcinoma. J. Clin. Lab. Anal. 2020, 34, e23107.
[CrossRef]

67. Eriksson, J.; Le Joncour, V.; Jahkola, T.; Juteau, S.; Laakkonen, P.; Saksela, O.; Hölttä, E. Prolyl 4-hydroxylase subunit alpha 1
(P4HA1) is a biomarker of poor prognosis in primary melanomas, and its depletion inhibits melanoma cell invasion and disrupts
tumor blood vessel walls. Mol. Oncol. 2020, 14, 742–762. [CrossRef]

68. Rappaport, N.; Nativ, N.; Stelzer, G.; Twik, M.; Guan-Golan, Y.; Stein, T.I.; Bahir, I.; Belinky, F.; Morrey, C.P.; Safran, M.; et al.
MalaCards: An integrated compendium for diseases and their annotation. Database 2013, 2013, bat018. [CrossRef] [PubMed]

69. Rossi, V.; Lee, B.; Marom, R. Osteogenesis imperfecta: Advancements in genetics and treatment. Curr. Opin. Pediatr. 2019, 31,
708–715. [CrossRef]

70. Chen, L.; Shi, K.; Frary, C.E.; Ditzel, N.; Hu, H.; Qiu, W.; Kassem, M. Inhibiting actin depolymerization enhances osteoblast
differentiation and bone formation in human stromal stem cells. Stem Cell Res. 2015, 15, 281–289. [CrossRef] [PubMed]

71. Prudovsky, I.; Anunciado-Koza, R.P.; Jacobs, C.G.; Kacer, D.; Siviski, M.E.; Koza, R.A. Mesoderm-specific transcript localization in
the ER and ER-lipid droplet interface supports a role in adipocyte hypertrophy. J. Cell Biochem. 2018, 119, 2636–2645. [CrossRef]

72. Kadota, Y.; Yanagawa, M.; Nakaya, T.; Kawakami, T.; Sato, M.; Suzuki, S. Gene expression of mesoderm-specific transcript is
upregulated as preadipocytes differentiate to adipocytes in vitro. J. Physiol. Sci. 2012, 62, 403–411. [CrossRef] [PubMed]

73. Shan, T.; Liu, W.; Kuang, S. Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and
brown adipose tissues. FASEB J. 2013, 27, 277–287. [CrossRef] [PubMed]

74. Hng, C.H.; Camp, E.; Anderson, P.; Breen, J.; Zannettino, A.; Gronthos, S. HOPX regulates bone marrow-derived mesenchymal
stromal cell fate determination via suppression of adipogenic gene pathways. Sci. Rep. 2020, 10, 11345. [CrossRef] [PubMed]

75. Gamucci, O.; Lisi, S.; Scabia, G.; Marchi, M.; Piaggi, P.; Duranti, E.; Virdis, A.; Pinchera, A.; Santini, F.; Maffei, M. Haptoglobin
deficiency determines changes in adipocyte size and adipogenesis. Adipocyte 2012, 1, 142–183. [CrossRef] [PubMed]

76. Christiaens, V.; Van Hul, M.; Lijnen, H.R.; Scroyen, I. CD36 promotes adipocyte differentiation and adipogenesis. Biochim. Biophys.
Acta 2012, 1820, 949–956. [CrossRef]

77. Do Nascimento, F.V.; Piccoli, V.; Beer, M.A.; von Frankenberg, A.D.; Crispim, D.; Gerchman, F. Association of HSD11B1
polymorphic variants and adipose tissue gene expression with metabolic syndrome, obesity and type 2 diabetes mellitus: A
systematic review. Diabetol. Metab. Syndr. 2015, 7, 38. [CrossRef]

78. Pizzinat, N.; Marti, L.; Remaury, A.; Leger, F.; Langin, D.; Lafontan, M.; Carpéné, C.; Parini, A. High expression of monoamine
oxidases in human white adipose tissue: Evidence for their involvement in noradrenaline clearance. Biochem. Pharm. 1999, 58,
1735–1742. [CrossRef]

79. Rodriguez-Cuenca, S.; Whyte, L.; Hagen, R.; Vidal-Puig, A.; Fuller, M. Stearoyl-CoA Desaturase 1 Is a Key Determinant of
Membrane Lipid Composition in 3T3-L1 Adipocytes. PLoS ONE 2016, 11, e0162047. [CrossRef]

http://doi.org/10.3892/ijmm.2012.1091
http://doi.org/10.1182/blood-2007-11-124164
http://doi.org/10.1515/hsz-2017-0205
http://doi.org/10.1096/fj.06-6374fje
http://www.ncbi.nlm.nih.gov/pubmed/17023519
http://doi.org/10.1002/jcp.29420
http://doi.org/10.1038/ng1434
http://doi.org/10.1007/s00223-014-9843-x
http://doi.org/10.1006/bbrc.1994.1780
http://doi.org/10.1002/jbmr.419
http://www.ncbi.nlm.nih.gov/pubmed/21557310
http://doi.org/10.1002/gcc.21956
http://doi.org/10.1016/j.devcel.2005.06.008
http://doi.org/10.1016/j.tig.2003.11.004
http://www.ncbi.nlm.nih.gov/pubmed/14698617
http://doi.org/10.1002/jcla.23107
http://doi.org/10.1002/1878-0261.12649
http://doi.org/10.1093/database/bat018
http://www.ncbi.nlm.nih.gov/pubmed/23584832
http://doi.org/10.1097/MOP.0000000000000813
http://doi.org/10.1016/j.scr.2015.06.009
http://www.ncbi.nlm.nih.gov/pubmed/26209815
http://doi.org/10.1002/jcb.26429
http://doi.org/10.1007/s12576-012-0217-8
http://www.ncbi.nlm.nih.gov/pubmed/22753118
http://doi.org/10.1096/fj.12-211516
http://www.ncbi.nlm.nih.gov/pubmed/23047894
http://doi.org/10.1038/s41598-020-68261-2
http://www.ncbi.nlm.nih.gov/pubmed/32647304
http://doi.org/10.4161/adip.20041
http://www.ncbi.nlm.nih.gov/pubmed/23700523
http://doi.org/10.1016/j.bbagen.2012.04.001
http://doi.org/10.1186/s13098-015-0036-1
http://doi.org/10.1016/S0006-2952(99)00270-1
http://doi.org/10.1371/journal.pone.0162047


Int. J. Mol. Sci. 2022, 23, 2568 20 of 21

80. Ellis, J.M.; Li, L.O.; Wu, P.-C.; Koves, T.R.; Ilkayeva, O.; Stevens, R.D.; Watkins, S.M.; Muoio, D.M.; Coleman, R.A. Adipose
acyl-CoA synthetase-1 directs fatty acids toward beta-oxidation and is required for cold thermogenesis. Cell Metab. 2010, 12,
53–64. [CrossRef]

81. Himmelfarb, M.; Klopocki, E.; Grube, S.; Staub, E.; Klaman, I.; Hinzmann, B.; Kristiansen, G.; Rosenthal, A.; Dürst, M.; Dahl, E.
ITIH5, a novel member of the inter-alpha-trypsin inhibitor heavy chain family is downregulated in breast cancer. Cancer Lett.
2004, 204, 69–77. [CrossRef]

82. Taira, K.; Umikawa, M.; Takei, K.; Myagmar, B.E.; Shinzato, M.; Machida, N.; Uezato, H.; Nonaka, S.; Kariya, K. The Traf2-
and Nck-interacting kinase as a putative effector of Rap2 to regulate actin cytoskeleton. J. Biol. Chem. 2004, 279, 49488–49496.
[CrossRef] [PubMed]

83. Decker, M.; Adamska, M.; Cronin, A.; Di Giallonardo, F.; Burgener, J.; Marowsky, A.; Falck, J.R.; Morisseau, C.; Hammock, B.D.;
Gruzdev, A.; et al. EH3 (ABHD9): The first member of a new epoxide hydrolase family with high activity for fatty acid epoxides.
J. Lipid Res. 2012, 53, 2038–2045. [CrossRef] [PubMed]

84. Gautheron, J.; Jéru, I. The Multifaceted Role of Epoxide Hydrolases in Human Health and Disease. Int. J. Mol. Sci. 2020, 22, 13.
[CrossRef] [PubMed]

85. Smyth, S.S.; Sciorra, V.A.; Sigal, Y.J.; Pamuklar, Z.; Wang, Z.; Xu, Y.; Prestwich, G.D.; Morris, A.J. Lipid phosphate phosphatases
regulate lysophosphatidic acid production and signaling in platelets: Studies using chemical inhibitors of lipid phosphate
phosphatase activity. J. Biol. Chem. 2003, 278, 43214–43223. [CrossRef] [PubMed]

86. Zhao, Y.; Usatyuk, P.V.; Cummings, R.; Saatian, B.; He, D.; Watkins, T.; Morris, A.; Spannhake, E.W.; Brindley, D.N.; Natarajan, V.
Lipid phosphate phosphatase-1 regulates lysophosphatidic acid-induced calcium release, NF-kappaB activation and interleukin-8
secretion in human bronchial epithelial cells. Biochem. J. 2005, 385, 493–502. [CrossRef]

87. Stenderup, K.; Justesen, J.; Clausen, C.; Kassem, M. Aging is associated with decreased maximal life span and accelerated
senescence of bone marrow stromal cells. Bone 2003, 33, 919–926. [CrossRef]

88. Gemoll, T.; Epping, F.; Heinrich, L.; Fritzsche, B.; Roblick, U.J.; Szymczak, S.; Hartwig, S.; Depping, R.; Bruch, H.-P.; Thorns,
C.; et al. Increased cathepsin D protein expression is a biomarker for osteosarcomas, pulmonary metastases and other bone
malignancies. Oncotarget 2015, 6, 16517–16526. [CrossRef]

89. Manza, L.L.; Stamer, S.L.; Ham, A.-J.L.; Codreanu, S.G.; Liebler, D.C. Sample preparation and digestion for proteomic analyses
using spin filters. Proteomics 2005, 5, 1742–1745. [CrossRef]

90. Demichev, V.; Messner, C.B.; Vernardis, S.I.; Lilley, K.S.; Ralser, M. DIA-NN: Neural networks and interference correction enable
deep proteome coverage in high throughput. Nat. Methods 2020, 17, 41–44. [CrossRef]

91. The UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2018, 47, D506–D515. [CrossRef]
92. Cox, J.; Hein, M.Y.; Luber, C.A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate Proteome-wide Label-free Quantification by Delayed

Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol. Cell. Proteom. 2014, 13, 2513–2526. [CrossRef]
93. Deutsch, E.W.; Csordas, A.; Sun, Z.; Jarnuczak, A.; Perez-Riverol, Y.; Ternent, T.; Campbell, D.S.; Bernal-Llinares, M.; Okuda, S.;

Kawano, S.; et al. The ProteomeXchange consortium in 2017: Supporting the cultural change in proteomics public data deposition.
Nucleic Acids Res. 2017, 45, D1100–D1106. [CrossRef] [PubMed]

94. Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.;
Eisenacher, M.; et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data.
Nucleic Acids Res. 2019, 47, D442–D450. [CrossRef] [PubMed]

95. R Development Core Team. R: A Language and Environment for Statistical Computing; R foundation for Statistical Computing:
Vienna, Austria, 2021.

96. Zhang, X.; Smits, A.H.; van Tilburg, G.B.; Ovaa, H.; Huber, W.; Vermeulen, M. Proteome-wide identification of ubiquitin
interactions using UbIA-MS. Nat. Protoc. 2018, 13, 530–550. [CrossRef]

97. Huber, W.; von Heydebreck, A.; Sültmann, H.; Poustka, A.; Vingron, M. Variance stabilization applied to microarray data
calibration and to the quantification of differential expression. Bioinformatics 2002, 18, S96–S104. [CrossRef]

98. Lazar, C.; Gatto, L.; Ferro, M.; Bruley, C.; Burger, T. Accounting for the Multiple Natures of Missing Values in Label-Free
Quantitative Proteomics Data Sets to Compare Imputation Strategies. J. Proteome Res. 2016, 15, 1116–1125. [CrossRef] [PubMed]

99. Akhmedov, M.; Martinelli, A.; Geiger, R.; Kwee, I. Omics Playground: A comprehensive self-service platform for visualization,
analytics and exploration of Big Omics Data. NAR Genom. Bioinform. 2020, 2, lqz019. [CrossRef] [PubMed]

100. Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016.
101. Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a

Data Set. J. Stat. Softw. 2014, 61, 36. [CrossRef]
102. Fisher, R.A. On the Interpretation of χ2 from Contingency Tables, and the Calculation of P. J. R. Stat. Soc. 1922, 85, 87–94.

[CrossRef]
103. Korotkevich, G.; Sukhov, V.; Budin, N.; Shpak, B.; Artyomov, M.N.; Sergushichev, A. Fast gene set enrichment analysis. bioRxiv

2021, 060012. [CrossRef]
104. Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinform.

2013, 14, 7. [CrossRef] [PubMed]
105. Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R.

Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [CrossRef]

http://doi.org/10.1016/j.cmet.2010.05.012
http://doi.org/10.1016/j.canlet.2003.09.011
http://doi.org/10.1074/jbc.M406370200
http://www.ncbi.nlm.nih.gov/pubmed/15342639
http://doi.org/10.1194/jlr.M024448
http://www.ncbi.nlm.nih.gov/pubmed/22798687
http://doi.org/10.3390/ijms22010013
http://www.ncbi.nlm.nih.gov/pubmed/33374956
http://doi.org/10.1074/jbc.M306709200
http://www.ncbi.nlm.nih.gov/pubmed/12909631
http://doi.org/10.1042/BJ20041160
http://doi.org/10.1016/j.bone.2003.07.005
http://doi.org/10.18632/oncotarget.4140
http://doi.org/10.1002/pmic.200401063
http://doi.org/10.1038/s41592-019-0638-x
http://doi.org/10.1093/nar/gky1049
http://doi.org/10.1074/mcp.M113.031591
http://doi.org/10.1093/nar/gkw936
http://www.ncbi.nlm.nih.gov/pubmed/27924013
http://doi.org/10.1093/nar/gky1106
http://www.ncbi.nlm.nih.gov/pubmed/30395289
http://doi.org/10.1038/nprot.2017.147
http://doi.org/10.1093/bioinformatics/18.suppl_1.S96
http://doi.org/10.1021/acs.jproteome.5b00981
http://www.ncbi.nlm.nih.gov/pubmed/26906401
http://doi.org/10.1093/nargab/lqz019
http://www.ncbi.nlm.nih.gov/pubmed/33575569
http://doi.org/10.18637/jss.v061.i06
http://doi.org/10.2307/2340521
http://doi.org/10.1101/060012
http://doi.org/10.1186/1471-2105-14-7
http://www.ncbi.nlm.nih.gov/pubmed/23323831
http://doi.org/10.1111/j.2517-6161.1995.tb02031.x


Int. J. Mol. Sci. 2022, 23, 2568 21 of 21

106. Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets
through Venn diagrams. BMC Bioinform. 2015, 16, 169. [CrossRef] [PubMed]

107. Mi, H.; Ebert, D.; Muruganujan, A.; Mills, C.; Albou, L.-P.; Mushayamaha, T.; Thomas, P.D. PANTHER version 16: A revised
family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 2020, 49, D394–D403.
[CrossRef] [PubMed]

http://doi.org/10.1186/s12859-015-0611-3
http://www.ncbi.nlm.nih.gov/pubmed/25994840
http://doi.org/10.1093/nar/gkaa1106
http://www.ncbi.nlm.nih.gov/pubmed/33290554

	Introduction 
	Results 
	Cultured Cell Populations Fulfilled Phenotypic Criteria of MSC, Adipocytic and Osteoblastic Criteria 
	Combined Quantitative Mass Spectrometry and Neural-Network-Based Algorithms Revealed Distinct Protein Expression Patterns of MSCs, Adipocytic and Osteoblastic Cells 
	MSCs, Osteoblasts, and Adipocytes Show Distinct Clustering Behavior and Involvement of PPAR 
	Discovery of Differentially Expressed Proteins 
	Two Distinct Protein Panels Differentiate Osteoblasts and Adipocytes from Mesenchymal Stem Cells 
	Osteoblastic Panel 
	Adipocytic Panel 

	MSC Marker Protein Panel Comparison 

	Discussion 
	Osteoblastic Panel 
	Adipocytic Panel 

	Materials and Methods 
	Donors and Materials 
	Cell Isolation and Culture 
	Colony-Forming Unit-Fibroblast (CFU-f) Assay 
	Cell Proliferation 
	In Vitro Cell Differentiation 
	Osteoblastic Differentiation 
	Adipocytic Differentiation 

	Flow Cytometry 
	Cell Isolation for Mass Spectrometry Analysis 
	Two-Dimensional Fluorescence Gel Electrophoresis 
	Sample Preparation for High-Performance Liquid Chromatography (HPLC) and Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS) 
	High-Performance Liquid Chromatography (HPLC) and Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS) 
	SWATH Data Processing 
	Quantitative Data Processing 
	Data Analysis 
	Reagents 

	References

