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Following the 2009 H1N1 influenza virus pandemic, numerous studies identified the
striking link between diabetes mellitus and influenza disease severity. Typically, influenza
virus is a self-limiting infection but in individuals who have a pre-existing chronic illness,
such as diabetes mellitus, severe influenza can develop. Here, we discuss the latest
clinical and experimental evidence for the role of diabetes in predisposing the host
to severe influenza. We explore the possible mechanisms that underlie this synergy
and highlight the, as yet, unexplored role that blood glucose oscillations may play in
disease development. Diabetes is one of the world’s fastest growing chronic diseases
and influenza virus represents a constant and pervasive threat to human health. It is
therefore imperative that we understand how diabetes increases influenza severity in
order to mitigate the burden of future influenza epidemics and pandemics.
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INTRODUCTION

Every year, approximately 5–15% of the world’s population are infected with influenza virus (Shirey
et al., 2013). Of the three types of influenza virus (A, B, and C), influenza A virus is the most
common cause of respiratory illnesses in humans. Influenza A virus typically causes an acute and
self-limiting infection characterized by symptoms such as myalgia, fever, and a dry cough. However,
in patients with one or more underlying medical conditions, influenza A virus can cause severe, and
even fatal, disease (Short et al., 2015). Influenza thus represents a significant healthcare challenge
for the 21st century, where the majority of people have more than one medical ailment (Vos et al.,
2015). This interaction between chronic disease and influenza was particularly evident after the
2009 H1N1 influenza pandemic (Kumar et al., 2009). Specifically, this pandemic highlighted that
people with diabetes suffered from more severe influenza than people with no underlying medical
condition (Allard et al., 2010; Wilking et al., 2010). Here, we review the currently available literature
on the role of diabetes in the pathogenesis of influenza virus. We further highlight the specific roles
that high, and/or oscillating, blood glucose levels may play in the severity of influenza virus.

DIABETES MELLITUS AND ITS VASCULAR COMPLICATIONS

Diabetes mellitus affects 415 million people worldwide and this figure is projected to increase to
642 million by the year 2040 (International Diabetes Federation, 2015). Diabetes is characterized
by chronic hyperglycemia and is classified into two main types. Type 1 diabetes accounts for
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approximately 10% of all cases and is most commonly caused
by an autoimmune condition affecting insulin production. In
contrast, type 2 diabetes accounts for approximately 85–90% of
cases and is characterized by insulin resistance and compromised
insulin secretory capacity. All individuals with diabetes have an
increased risk of developing a number of serious complications.
Diabetes is a leading cause of blindness, limb amputations, end-
stage kidney failure, and cardiovascular disease (The Emerging
Risk Factors Collaboration, 2011). Chronic hyperglycemia is
thought to underlie the development of complications and, as
such, a primary aim in the management of diabetes is to improve
blood glucose control (Gallo et al., 2015). Blood glucose control
is typically assessed by measuring a patient’s HbA1c. The term
HbA1c refers to glycated hemoglobin, i.e., when hemoglobin
joins with glucose and becomes ‘glycated.’ The average lifespan
of red blood cells is approximately 2–3 months, meaning that
HbA1c provides an estimate of long-term blood glucose control.
Interestingly, however, there is no guarantee that achieving near-
normal HbA1c levels (HbA1c < 7%), particularly in patients
with long-standing type 2 diabetes, will prevent the onset
and progression of vascular complications. Using traditional
therapies, such as metformin, sulphonylureas and insulin, near-
normal HbA1c levels were achieved in numerous trials but
mortality from cardiovascular disease was either not affected
(The U.K. Prospective Diabetes Study Group, 1998; The Advance
Collaboration group, 2008; Duckworth et al., 2009) or increased
(The Action to Control Cardiovascular Risk in Diabetes Study
Group et al., 2008). In the latter study, the trial was prematurely
stopped due to a significant increase in short-term mortality
following intensive glucose lowering (The Action to Control
Cardiovascular Risk in Diabetes Study Group et al., 2008). The
lack of a definitive conclusion in this field has dampened clinical
urgency to normalize HbA1c levels and suggests that other factors
may contribute to the development of diabetic complications.

INFLUENZA VIRUS IN DIABETES
MELLITUS

Prior to the 2009 H1N1 pandemic, several studies had already
suggested that diabetes enhanced the severity of influenza
(Diepersloot et al., 1987; Valdez et al., 1999). Valdez et al. (1999)
showed that from 1986 to 1989, people with diabetes were
more likely to have pneumonia and influenza recorded on their
death certificate than people without diabetes. However, the most
extensive body of evidence regarding this relationship emerged
following the first influenza pandemic of the 21st century: the
2009 H1N1 pandemic. Numerous clinical studies suggested that
people with diabetes were a key susceptibility group for severe
H1N1 infections (see Table 1). For example, in Canada, diabetes
tripled the risk of hospitalization after infection with the 2009
H1N1 virus and quadrupled the risk of admission to the intensive
care unit (Allard et al., 2010). Similarly, in Germany, diabetes
doubled the risk of a fatal outcome after infection with the
2009 virus (Wilking et al., 2010). Whilst the majority of clinical
studies suggest a role for diabetes in increasing influenza severity,
this synergism was not observed in all studies (see Table 1).

Taken together, these data suggest that the relationship between
diabetes and influenza may vary depending on the diabetic
patient population in question. It is also important to note
that many patients with diabetes have various other conditions
that can increase (or decrease) the severity of influenza. For
example, approximately 90% of patients living with type 2
diabetes are overweight, and obesity is an independent risk factor
for severe influenza (Morgan et al., 2010). Adjusting clinical
analyses for the presence of these other illnesses has yielded
contradictory results (see Table 1), highlighting the need for
further research in this area. Nevertheless, consistent with the
majority of clinical observations, murine models demonstrate
that diabetes increases susceptibility to severe infections with
both seasonal and highly pathogenic influenza virus strains (see
Table 2).

A ROLE FOR HYPERGLYCEMIA

At present, the mechanisms by which diabetes can increase
the severity of influenza remain unclear. There is a growing
body of evidence that hyperglycemia can increase the incidence
and severity of bacterial infections. For example, diabetic
patients with an HbA1c level > 7% had a three times
increased risk of active tuberculosis compared to those with
an HbA1c level < 7% (Leung et al., 2008). Similarly, diabetic
patients with hyperglycemia (>7% HbA1c) were more likely
to develop Klebsiella pneumoniae liver abscess than diabetic
patients with controlled glycaemia (Lin et al., 2013). It has
also been reported that individuals with diabetes are more
likely to suffer from infection-related mortality following a
kidney allograft than non-diabetic patients (Hayer et al., 2014).
However, in a recent systematic review of a range of surgical
specialities, the relationship between preoperative HbA1c levels
and postoperative complications, including mortality from
infection, was less convincing (Rollins et al., 2016). The authors
noted that their retrospective analyses contained heterogenous
datasets of small sample sizes and that further research,
specifically dedicated to addressing this topic, is warranted
(Rollins et al., 2016).

With regards to respiratory tract infections, Rayfield et al.
(1982) noted a striking positive correlation with the mean plasma
glucose levels in patients with diabetes. These findings may
reflect, in part, the immunosuppressive effects of hyperglycemia.
Hyperglycemia can reduce neutrophil degranulation (Stegenga
et al., 2008), impair complement activation (Ilyas et al., 2011)
and impair phagocytosis (Alexiewicz et al., 1995) – all of which
can increase the severity of bacterial infections as well as viral
infections such as influenza. However, to date, there have been
only limited experimental studies directly addressing the role of
hyperglycemia in the pathogenesis of influenza virus.

Elevated blood glucose levels can directly increase glucose
concentrations in airway secretions (Philips et al., 2003). In vitro
exposure of pulmonary epithelial cells to elevated glucose
concentrations significantly increased influenza virus infection
and replication (Kohio and Adamson, 2013), suggesting that
hyperglycemia may increase viral replication in vivo. Elevated
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TABLE 2 | Animal models of diabetes and influenza.

Mouse model Diabetes type
modeled

Influenza A
virus subtype

Measure of
disease severity

Findings Reference

STZ-induced diabetes in
BALB/c mice

I H1N1 Lung viral titers
Lethal dose 50

Diabetic mice had increased influenza virus
titers and a lower lethal dose 50 compared
to non-diabetic mice.

Zhu et al., 2005

STZ-induced diabetes in
BALB/c mice

I H5N1 Lung viral titers
Lethal dose 50

Diabetic mice had increased influenza virus
titers, a lower lethal dose 50 and a more
persistent viral infection compared to
non-diabetic mice.

Wu et al., 2010

RIP-Kb transgenic diabetic
mice

I H3N2 Lung viral titers
Weight loss

There was a significant correlation between
blood glucose levels and influenza virus
titers in diabetic mice. Diabetic mice had
increased influenza virus titers but no
difference in weight loss compared to
non-diabetic mice.

Reading et al., 1998

BKS.Cg-+Leprdb/+Leprdb/Jcl
(diabetic mice)

II H1N1 Lethal dose 50
Death

Diabetic mice had a lower lethal dose 50
and a higher mortality rate compared to
non-diabetic mice.

Ito et al., 2015

glucose levels may also serve to suppress the anti-viral immune
response (Reading et al., 1998). In a mouse model of type I
diabetes, susceptibility to influenza was associated with a
reduction in the anti-viral activity of collectins (Reading et al.,
1998). This immunosuppression was driven by hyperglycemia as
disease susceptibility could be reversed with insulin treatment
(Reading et al., 1998). These findings are consistent with studies
of patients infected with highly pathogenic avian influenza,
whereby hyperglycemia was associated with a fatal outcome
(Wiwanitkit, 2008). Interestingly, in a mouse model of type
II diabetes, susceptibility to influenza was associated with an
impairment in the recruitment of macrophages to the lung (Ito
et al., 2015). However, whether this phenotype was driven by
hyperglycemia or other physiological changes associated with
diabetes remains to be determined. Hyperglycemia may also
affect pulmonary function such that influenza virus-induced
respiratory dysfunction is exacerbated in patients with diabetes.
In animal models of disease, diabetes is associated with numerous
structural changes to the lung including augmented permeability
of the vasculature and a collapsed alveolar epithelium (Popov
and Simionescu, 1997). In patients with diabetes, there is
also a significant reduction in forced vital capacity (FVC)
and forced expiratory volume in one second (FEV1), and
this impaired pulmonary function is significantly associated
with raised plasma glucose concentration (Lange et al., 1989;
Yeh et al., 2008). Finally, it is important to recognize that
during influenza virus pandemics of the last century (including
the 2009 H1N1 pandemic) the majority of fatalities were the
result of secondary bacterial infections, rather than primary
viral pneumonia (Short et al., 2012). Elevated airway glucose
concentrations can increase the replication of respiratory
bacterial pathogens (Garnett et al., 2013), suggesting that patients
with diabetes may have increased bacterial outgrowth after an
influenza virus infection. However, to the best of our knowledge,
there have been no large-scale clinical studies investigating the
association between influenza severity (and the acquisition or
development of any associated secondary bacterial infection) and
hyperglycemia in patients with diabetes. Thus, at present, the role

of hyperglycemia in the pathogenesis of influenza virus remains
unclear.

A ROLE FOR GLYCEMIC OSCILLATIONS

In the context of vascular complications of diabetes (e.g.,
cardiovascular disease), there is a growing body of evidence
indicating that glucose variability is an important contributing
factor to disease development (Hirakawa et al., 2014). In
healthy individuals, blood glucose levels are kept within a
narrow range of 4.4–6.7 mmol/L, including small and short-lived
post-prandial peaks (Saisho, 2014). In the setting of impaired
glucose tolerance, glucose fluctuations become greater and more
frequent (Bonora and Muggeo, 2001). Blood glucose variability
generally refers to hour-to-hour or day-to-day oscillations,
but may also refer to month-to-month or even year-to-year
changes. Glycemic variability is induced by many different
factors including consuming a meal, changes in exercise,
weight, medication, diet, and sleep patterns (Davies, 2004).
As hyperglycemia is typically measured by a patient’s HbA1c,
individuals with steady-state and oscillating glucose levels are
generally not differentiated in the clinic, making prevalence
estimates difficult to obtain. However, it is clear from clinical
studies that the extent to which these glucose fluctuations
occur differs greatly from patient to patient (Monnier et al.,
2006).

There is now a growing body of evidence showing that
glycemic oscillations play an important role in endothelial
dysfunction, irrespective of HbA1c levels (Risso et al., 2001;
Quagliaro et al., 2003; Azuma et al., 2006; Ceriello et al., 2008).
For example, patients with type 2 diabetes that had blood glucose
levels oscillating between 15 and 5 mmol/l every 6 h for 24 h had a
significant increase in endothelial dysfunction relative to diabetic
patients exposed to continuous 10 mmol/l glucose (Ceriello et al.,
2008). In vitro, human umbilical endothelial cells (HUVECs)
exposed to oscillating glucose have an increased level of apoptosis
compared to HUVECs exposed to constant high levels of glucose
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(Quagliaro et al., 2003). Similarly, human endothelial cells
exposed to intermittent high glucose had increased expression of
ICAM-1, VCAM-1, VEGF, high mobility group box 1 (HMGB1),
IL-8, NF-κB and E-selectin relative to endothelial cells exposed
to stable high glucose (Quagliaro et al., 2005; Mudaliar et al.,
2014). This is consistent with studies demonstrating increased
monocyte adhesion to endothelial cells in rats exposed to glucose
fluctuations relative to stable hyperglycemia (Azuma et al., 2006).

Endothelial cells, whilst not the primary target of influenza
virus in humans, play an important role in disease pathogenesis
(Teijaro et al., 2011; Short et al., 2013, 2014, 2016). During severe
influenza virus infection, pulmonary endothelial cells produce
cytokines which drive pulmonary lesions and mortality (Teijaro
et al., 2011). In addition to mediating cytokine production,
endothelial cells also indirectly control the inflammatory
response in the lung during influenza virus infection via the
expression of adhesion molecules (e.g., E-selectin, P-selectin,
ICAM1, and VCAM1) (Short et al., 2014). Overexpression
of these adhesion molecules is thought to impair pulmonary
function during influenza virus infection by allowing the
uncontrolled extravasation of leukocytes in the alveolus (Perrone
et al., 2008; Short et al., 2014). These leukocytes can in turn
damage the lung and impair respiratory function (Short et al.,
2014). Given that glycemic oscillations are known to induce
endothelial cytokine production (Quagliaro et al., 2005; Mudaliar
et al., 2014) and enhance the expression of endothelial adhesions
(Quagliaro et al., 2005; Mudaliar et al., 2014), it is tempting
to speculate that glycemic variability augments the severity of
influenza, at least in part, via effects on pulmonary endothelial
cells.

CONCLUSION AND FUTURE
DIRECTIONS

Diabetes is one of the world’s fastest growing chronic diseases,
whereby the proportion of adults with diabetes is projected to

increase from 9 to 10% by the year 2040 (International Diabetes
Federation, 2015). With advancements in awareness, detection,
and management of the disease, the average life expectancy of
patients with diabetes is increasing (Lutgers et al., 2009; Guja
et al., 2011; Huo et al., 2016). Thus, the number of individuals
living with long-term complications is enhanced. Given this
growing prevalence of diabetes and the increased window of
opportunity for influenza virus infection, it is surprising that
there are only few published studies in this field. It is therefore
imperative that we dedicate research efforts to understanding
how diabetes can increase the severity of influenza.

This includes delineating the role of other underlying
comorbidities, hyperglycemia and glycemic oscillations in disease
development and severity. Moreover, whilst type 1 and type 2
diabetes share a common symptom, i.e., hyperglycemia, they
are vastly different in disease pathogenesis and, potentially, in
their susceptibility to complications including influenza virus.
Therefore, future studies would benefit from studying the
development and severity of influenza in both type 1 and type 2
diabetes mellitus. This research will prove vital in mitigating the
burden of future influenza epidemics and pandemics.
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