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Abstract

Introduction Sulfotransferase 1A1 (encoded by SULT1AT1) is
involved in the metabolism of procarcinogens such as
heterocyclic amines and polycyclic aromatic hydrocarbons, both
of which are present in tobacco smoke. We recently reported a
differential effect of N-acetyltransferase (NAT) 2 genotype on
the association between active and passive smoking and breast
cancer. Additional investigation of a common SULT1A1 genetic
polymorphism associated with reduced enzyme activity and
stability might therefore provide deeper insight into the
modification of breast cancer susceptibility.

Methods We conducted a population-based case—control
study in Germany. A total of 419 patients who had developed
breast cancer by age 50 years and 884 age-matched control
individuals, for whom risk factor information and detailed
smoking history were available, were included in the analysis.
Genotyping was performed using a fluorescence-based melting
curve analysis method. Multivariate logistic regression analysis
was used to estimate breast cancer risk associated with the
SULT1A1 Arg2'3His polymorphism alone and in combination
with NAT2 genotype in relation to smoking.
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Results The overall risk for breast cancer in women who were
carriers of at least one SULT1A7*2 allele was not significantly
different from that for women with the SULT1A1*1/*1 genotype
(adjusted odds ratio 0.83, 95% confidence interval 0.66—1.06).
Risk for breast cancer with respect to several smoking variables
did not differ substantially between carriers of the *2 allele and
noncarriers. However, among NAT2 fast acetylators, the odds
ratio associated with passive smoking only (3.23, 95%
confidence interval 1.05-9.92) was elevated in homozygous
carriers of the SULT1A71*1 allele but not in carriers of the
SULT1A1*2 allele (odds ratio 1.28, 95% confidence interval
0.50-3.31).

Conclusion We found no evidence that the SULT1A1 genotype
in itself modifies breast cancer risk associated with smoking in
women up to age 50 years. In combination with NAT2 fast
acetylator status, however, the SULT1A1*1/*1 genotype might
increase breast cancer risk in women exposed to tobacco
smoke.

Introduction

Epidemiologic evidence linking cigarette smoking to
increased risk for development of breast cancer is mount-
ing (for review [1,2]). In addition, findings from both epide-
miology and molecular biology indicate that there is
differential susceptibility within the population to develop-
ment of malignant neoplasms following exposure to certain
xenobiotics because of polymorphisms in genes that
encode metabolizing enzymes.

Previously, we reported a differential effect of N-acetyl-
transferase (NAT) 2 genotype on the association between
active and passive smoking and breast cancer risk [3]. The
identification of passive smoking as a breast cancer risk
factor, particularly for fast acetylators, implied that hetero-
cyclic aromatic amines (HCAs) are among the responsible
carcinogens. HCAs are particularly abundant in side-
stream tobacco smoke [4] and are activated by O-acetyla-
tion catalyzed by NATs [5]. Because sulfotransferase
(SULT)1A1 (encoded by SULT1A1) is also involved in the
metabolism of pro-carcinogens from tobacco smoke, the

Cl = confidence interval; HCA = heterocyclic aromatic amine; |Q = 2-amino-3-methylimidazo [4,5-f]quinoline; NAT = N-acetyltransferase; OR = odds
ratio; PCR = polymerase chain reaction; PhIP = 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine; SULT = sulfotransferase.
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additional investigation of a common polymorphism in the
SULT1A1 gene might provide deeper insight into the mod-
ification of susceptibility to breast cancer.

The SULT1A1 enzyme is generally associated with detoxi-
fication of xenobiotic compounds and has been implicated
in oestrogen metabolism. However, Glatt and coworkers
[6,7] showed that several substances can be activated by
the conjugation reaction with SULT1A1, among which are
pro-carcinogens such as polycyclic aromatic hydrocarbons
and HCAs, both of which are present in tobacco smoke
[8,9].

In contrast to earlier assumptions [10], there is increasing
evidence that the SULT1A1 enzyme apparently does not
play an important role in oestrogen metabolism in vivo.
Results from in vitro studies showed that only the
SULT1E1 enzyme is capable of the sulfonation of oestra-
diol, oestrone and catecholestrogens at physiologically rel-
evant concentrations [11,12]. For instance, Adjei and
Weinshilboum [11] showed that K, values for the sulfona-
tion of oestradiol with SULT1A1 were in the micromolar
range, which is clearly above physiological concentrations,
whereas the K, value for SULT1E1 was considerably lower
(0.029 £ 0.01 pmol/l).

Large interindividual variations in the biochemical and met-
abolic properties of the SULT1A1 enzyme have been
observed that can partly be explained by a G to A polymor-
phism at nucleotide 638 (Arg213His), referred to as the *2
allele. The *2 allele has been associated with lower activity
and lower thermal stability of the SULT1A1 enzyme
[13,14], and thus reduced bioactivation of mutagens [6].

Thus far, three case—control studies that investigated the
association between SULT1A1 genotype and breast can-
cer risk [15-17] have been reported. Results were not con-
sistent and the effect of smoking was not considered in any
of those case—control studies. Saintot and coworkers [18]
recently reported a positive interaction between smoking
and the variant allele for SULT1A1 with respect to breast
cancer risk in a case-only study.

We conducted the present study to elucidate the potential
role of SULT1A1 genotype alone and in combination with
NAT2 genotype as a modifier of susceptibility to breast
cancer associated with exposure to tobacco smoke among
predominantly premenopausal women.

Methods

Study population

The present study is based on a case—control study that is
described in greater detail elsewhere [19,20]. In brief,
between January 1992 and December 1995 a population-
based case—control study on breast cancer was con-

ducted in two regions (Rhein-Neckar-Odenwald and
Freiburg regions) in southern Germany. Women with a
diagnosis of in situ or invasive breast cancer were identi-
fied by surveying all of the hospitals that serve the two
study regions. Women were eligible for inclusion in the
study if they spoke German, if they lived in the study region
and if the neoplasm was diagnosed before their 51st birth-
day. During the period of study 1020 women were identi-
fied, of whom 1005 were alive at the time of identification.
Of the living, eligible patients, 706 (70.2%) completed a
self-administered questionnaire. For every patient, two con-
trols were selected randomly from lists of female residents
obtained by the population registries of the study regions
and matched according to exact age and residence. Of the
2257 eligible control individuals who were contacted by
letter, 1381 (61.2%) participated in the study. After giving
written informed consent, all participants completed a self-
administered questionnaire and were asked to provide a
blood sample. The study is in compliance with the Declara-
tion of Helsinki and was reviewed and approved by the eth-
ics committee of the University of Heidelberg.

The study participants were re-contacted in August 1999
and were invited to participate in a computer-assisted tele-
phone interview to assess comprehensively their history of
active and passive smoking [20]. Of the original study pop-
ulation, 66.3% of cases and 78.9% of controls took part in
this additional investigation. In short, women were asked
when they began smoking, the type of product, the amount
and frequency of tobacco usage, the intensity of inhalation,
and the date of cessation or changes in their smoking hab-
its. Exposure to passive smoking was assessed in child-
hood, in the adult household and at work. For passive
smoking in adult life, women who had lived with a smoking
partner were asked the onset, end, or changes to smoking
exposure, daily amount and type of product smoked, and
number of hours and days of passive exposure. For child-
hood exposure as well as exposure at work and that due to
other household members, questions pertained to number
of smokers living in the household, onset of exposure, and
the number of hours and days of smoke exposure that the
participant experienced in the presence of each smoking
person. All information was truncated at the reference date,
which was the date of diagnosis for patients and the date
of recruitment for control individuals.

Menopausal status was defined as the reported state at
half a year before the reference date. The status of women
with previous hysterectomy not accompanied by bilateral
oophorectomy was not ascertainable and therefore classi-
fied as unknown. Because the study participants were all
aged 50 years or younger, these women were included in
the analysis restricted to the subgroup with premenopausal
status.



Blood samples were available for 95% of cases and 82%
of controls in the original study population. This analysis
was restricted to women who had either both (97.8%) or at
least one parent of German nationality (2.2%) in order to
achieve ethnic homogeneity of the study population. In
total, 419 patients with breast cancer and 884 control indi-
viduals, for whom full genotype information and detailed
history of tobacco smoke exposure were available, were
included in the analysis.

Genotyping

DNA was extracted from EDTA blood samples using a
standard method based on salt precipitation. SULT1A7-
specific primers and hybridization probes were used to
detect G638A in exon 7. The primers for DNA amplification
were previously described by Coughtrie and coworkers
[21]. As sensor and anchor probes, we used LCRed640-
CAgggAgCgCCCCACAA-p and gAACCATgAAgTC-
CACggTCTCCTCT-x, respectively. PCR and melting curve
analyses were performed in 10 pl volumes in glass capillar-
ies (Roche Diagnostics, Mannheim, Germany) using the fol-
lowing: 1x PCR buffer, 2.5 mmol/l MgCl,, 200 pmol/|
dNTPs, 0.1% bovine serum albumin, 0.5 U Taq polymer-
ase, 0.15 pumol/l of each probe (TIB MOLBIOL, Berlin), 1
umol/l of the sense primer (CF) and 0.1 umol/l of the
reverse primer (CR; asymmetric PCR). Approximately 10
ng gDNA was used as a template. The cycling conditions
were as follows: initial denaturation at 95°C for 2 min fol-
lowed by 45 cycles of denaturation at 95°C for 0 s, anneal-
ing at 63°C for 5 s and elongation at 72°C for 10 s, with a
ramping rate of 20°C/s.

Melting curve analyses were performed with an initial dena-
turation at 95°C for 10 s, 20 s at 40°C, followed by slow
heating of the samples to 80°C with a ramping rate of
0.1°C/s and continuous fluorescence detection. The melt-
ing curves were converted to melting peaks by plotting the
negative derivatives of fluorescence against temperature (-
dF/dT). Melting peaks were mostly unambiguous, but cer-
tain samples exhibited abnormal peaks due to two rare
silent genetic polymorphisms, one covered by the sensor
(G645A [Leu215]) and another covered by the anchor
probe (G654A [Glu218]). Forty-eight such samples were
additionally digested with Hhal [15], allowing unambiguous
genotyping at position 638. A further 160 samples
selected randomly for quality control exhibited no discrep-
ancies between genotyping results obtained with both
methods. Two additional rare genetic variants of the
SULT1A1 gene (i.e. the *3 [Met223Val] and *4 [Arg37Gly]
alleles), which have been observed in Caucasian popula-
tions with allele frequencies of 0.01 and 0.003, respec-
tively, were not accounted for in the present study [22].

Detection of polymorphic sites in the NAT2 gene was also
carried out by capillary-based PCR followed by melting
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curve analysis. The method was described in detail previ-
ously [3].

Statistical analysis

The association between active/passive smoking and
breast cancer by SULT1A1 genotype was assessed by
multivariate conditional logistic regression analysis. We
computed maximum likelihood estimates for the odds ratios
(ORs) and their 95% confidence intervals (Cls) using the
PHREG procedure of the statistical software package SAS
release 8.2 (SAS Institute, Cary, NC, USA).

'Ever active smoking' was defined as having smoked more
than 100 cigarettes in one's life. Among ever active smok-
ers, women were termed current smokers if they had
smoked regularly within the year preceding the interview;
otherwise, they were classified as former smokers. If
women were on average exposed to passive smoke for
more than 1 hour/day for at least 1 year, then they were
defined as ever passive smokers. The average exposure
was obtained by multiplying the average hours/day by the
duration in years for each exposure phase and dividing the
sum over all phases separately for childhood and adulthood
by the total years of passive exposure. Missing data on
hours/day for 7.7% of cases and 5.7% of controls were
replaced with the mean hours/day of exposed controls for
the particular source of exposure. A detailed description of
the quantification of lifetime exposure to passive smoke can
be found elsewhere [20].

In the multivariate model, we included several relevant vari-
ables that influence breast cancer risk, such as first-degree
family history of breast cancer, total duration of breastfeed-
ing, body mass index, average daily alcohol intake, educa-
tion level, number of full-term pregnancies and menopausal
status. Variables that did not change the estimates sub-
stantially, such as study region or age at menarche, were
not adjusted for in the analyses presented here. Statistical
interaction between genotype and smoking variables was
tested by using multiplicative interaction terms and evalu-
ated using the likelihood ratio test. We performed the mul-
tivariate analyses with stratification in 5-year age groups to
ensure sufficient numbers of subjects in the subgroups for
genotypes and smoking characteristics.

Results

The women included in the present study, for whom a com-
prehensive history of active and passive smoking was avail-
able, closely resemble the original study population with
respect to the distributions of several sociodemographic
characteristics and putative risk factors, such as age, family
history of breast cancer, body mass index, education level,
parity, menopausal status, alcohol consumption, smoking
and breastfeeding (data not shown).
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Table 1

Selected characteristics of breast cancer patients and controls

Characteristic

Cases (n=419)

Controls (n = 884)

Mean age (years) 429 42.7
Mean body mass index 23.9 24.3
First-degree family history of breast cancer 62 (14.8%) 53 (6.0%)
Menopausal status
Premenopausal 325 (77.6%) 718 (81.2%)
Postmenopausal 25 (6.0%) 49 (5.5%)
Unknown 69 (16.5%) 117 (13.2%)
SULT1A1 genotype
*11*1 198 (47.3%) 374 (42.3%)
*1/*2 169 (40.3%) 4083 (45.6%)
*2/*2 52 (12.4%) 107 (12.1%)

NAT2 genotype?
Fast acetylator

Slow acetylator

177 (42.2%)
242 (57.8%)

351 (39.7%)
533 (60.3%)

aNAT2 fast acetylators are carriers of at least one *4 (wild-type) allele, based on detection of known genetic polymorphisms at nucleotide positions
481, 590, 803 and 857; slow acetylators are carriers of two variant alleles [3].

Selected characteristics of the present study population
are summarized in Table 1. The mean (+ standard devia-
tion) age for breast cancer patients was 42.9 *+ 5.5 years
and that for control individuals was 42.7 * 5.6 years. The
frequency of the SULT1A77*2 allele was 0.33 among cases
and 0.35 among controls (0.32 and 0.34 in the original
population). Of cases and control individuals, 52.7% and
57.7%, respectively, were carriers of at least one
SULT1A1*2 allele. The distribution of SULT1A1 geno-
types was in Hardy—Weinberg equilibrium (P = 0.92 for
control individuals, P = 0.09 for cases).

The overall risk for breast cancer among carriers of the
SULT1A1*2 allele was not significantly different from that
in women with the SULT1A1*1/*1 genotype (adjusted OR
0.83, 95% CI 0.66—-1.06). The distributions of potential risk
factors, such as first-degree family history of breast cancer,
body mass index, alcohol consumption, menopausal status,
parity and breastfeeding, were similar in carriers and non-
carriers of the SULT1A1772 allele. There was also no major
effect of SULT1A1 genotype in combination with NAT2
acetylator status on breast cancer risk (data not shown).

We assessed the effect of SULT1A1 genotype on the
association between smoking and breast cancer risk, ini-
tially comparing ever active smokers with nonsmokers (i.e.
passive-only smokers were included in the reference
group). The ORs for variables such as smoking status (cur-
rent or former active smoker), duration and pack-years of
smoking did not differ by SULT1A7 genotype (data not

shown). We then considered a separate category of only
passively exposed women, with a reference group compris-
ing women with neither active nor passive cigarette smoke
exposure (Table 2). Associations of breast cancer risk with
smoking variables were apparent, but the risk estimates
were similar for carriers and for noncarriers of the
SULT1A1*2 allele. In the analysis of passive smoking
among never active smokers, we observed a tendency
toward higher ORs in women with the SULT1A1%*1/*1 gen-
otype compared with carriers of the SULT1A7*2 allele
(Table 2). The test for interaction between SULT1AT gen-
otype and passive smoking was not statistically significant
(P=0.86).

We investigated the combined effect of SULT1A7 and
NAT2 genotype with respect to smoking, and observed
elevated ORs associated with passive smoking only (OR
3.283, 95% Cl 1.05-9.92) in NAT2 fast acetylators with the
SULT1A1*1/*1 genotype but not in NAT2 fast acetylators
carrying the SULT1A 172 allele (Table 3). There was also a
difference in OR for 11 or more pack-years of active smok-
ing by SULT1A1 genotype, but the risk estimates were not
significant. The test for interaction between SULT1A1 gen-
otype and active/passive smoking among NAT2 fast
acetylators did not reach statistical significance (P = 0.4).
Among NAT2 slow acetylators, risk estimates for active and
passive smoking did not differ by SULT1A7 genotype.

The results were generally similar when the analysis was
restricted to the subgroup of women with premenopausal



Table 2

Available online http://breast-cancer-research.com/content/7/2/R229

Odds ratios for breast cancer associated with smoking variables stratified by SULT1A417 genotype

SULT1A1*1/*1 genotype

SULT1A1*2 allele carriera

Variable Cases (n=198) Controls (n =374) ORP (95% CI) Cases (n=221) Controls (n=510) ORP (95% CI)
Never active 86 159 1 (ref) 88 209 1 (ref)
Ever active 112 215 0.92 (0.63-1.34) 133 301 1.01 (0.73-1.42)
Never active/ 20 56 1 (ref) 19 57 1 (ref)
passivec: d
Former active 44 94 1.23 (0.64-2.36) 59 157 1.11 (0.60-2.06)
Current active 68 121 1.44 (0.76-2.71) 74 144 1.51 (0.82-2.78)
Average cigarettes per day® ¢
>0-9 42 106 1.06 (0.55-2.03) 52 154 0.99 (0.54-1.84)
10-19 56 73 2.12 (1.10-4.07) 60 99 1.75 (0.94-3.25)
20+ 14 34 1.05 (0.45-2.46) 20 48 1.09 (0.51-2.32)
Duration of smokinge: d
1-15 years 36 80 1.19 (0.61-2.34) 46 145 0.97 (0.562-1.82)
16+ years 76 135 1.44 (0.77-2.69) 87 156 1.62 (0.89-2.95)
Age at first cigarettec. d
9-15 years 21 47 1.09 (0.561-2.35) 20 63 0.84 (0.40-1.79)
16-18 years 56 109 1.33 (0.70-2.52) 70 145 1.42 (0.77-2.62)
19+ years 35 59 1.51 (0.75-3.05) 43 93 1.42 (0.74-2.72)
Pack-yearse e
>0-10 59 129 1.22 (0.65-2.27) 76 191 1.15 (0.64-2.07)
11+ 53 84 1.77 (0.91-3.42) 56 110 1.43 (0.77-2.67)
Passive smokingf
No 20 57 1 (ref) 19 57 1 (ref)
Yes 66 102 1.69 (0.89-3.21) 69 152 1.40 (0.74-2.64)
Duration of passive exposure in adulthoodf 9. h
1-13 years 29 40 1.91 (0.91-4.00) 33 70 1.47 (0.72-2.98)
14+ years 32 47 1.66 (0.79-3.48) 29 61 1.47 (0.70-3.10)
Cumulative lifetime exposure (in hours/day-years)" g1
1-55 22 49 1.13 (0.52-2.38) 37 76 1.76 (0.89-3.50)
56+ 43 52 2.12 (1.06-4.25) 32 71 1.39 (0.68-2.83)

alncludes SULT1A71*1/*2 and SULT1A1*2/*2 genotypes. POdds ratios (ORs) stratified for age by 5-year intervals; additional adjustment was
made for first-degree family history (yes/no), breastfeeding (total number of months) and body mass index (weight [kgl/ height [m]2) as continuous
variables, parity (0, 1-2, 3+ children), alcohol consumption (0, 1-18, 19+ g/day), menopausal status (premenopausal, postmenopausal,
unknown) and education (low, intermediate, high) as categorical variables. cReference group comprises never active/never passive smokers;
category of passive smokers included in the models. 9Data missing for one control individual. eData missing for three control individuals and one
case. fEver active smokers are excluded from the analysis; reference group consists of women not exposed to passive smoke. 9Dichotomization
according to median of nonsmoking control individuals. hCategory of subjects only exposed during childhood is included in the model. iSum of
hours/day-years for the sources partner, work and childhood, whereby childhood hours/day-years were divided by the number of smokers to avoid
overlapping of exposures; data missing for one case and six control individuals.

status, although the confidence intervals were wider. With
regard to the differential effect of SULTTA71 and NAT2 gen-
otype, the OR for passive smoking was 2.24 (95% CI
0.68-7.35) in NAT2 fast acetylators with the SULTTA1*1/
*1 genotype and 1.03 (95% CI 0.39-2.71) in fast acetyla-
tors carrying the SULT1A1*2 allele.

Discussion

Our data do not suggest a strong influence of SULTTA1
genotype alone or in combination with NAT2 on the risk for
breast cancer. There is no clear evidence that the
SULT1A1 Arg?'8His single nucleotide polymorphism
investigated in this study in itself is an important effect mod-
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Table 3

Odds ratios for breast cancer associated with smoking stratified by NAT2 acetylator status and SULT1A17 genotype

SULT1A1*1/*1 genotype SULT1A1*2 allele carriera Total
Cases Controls ORP (95% CI) Cases Controls ORP (95% CI) Cases Controls ORP (95% CI)
NAT2 fast acetylatore
Never active/ 6 20 1 (ref) 8 18 1 (ref) 14 38 1 (ref)
passive
Passive only 30 37 3.23 (1.05-9.92) 37 59 1.28 (0.50-3.31) 67 96 1.95 (0.97-3.91)
1-10 pack-years 22 53 1.26 (0.40-3.95) 30 74 0.76 (0.29-1.96) 52 127 0.98 (0.48-1.98)
11+ pack-years 23 38 2.21 (0.68-7.12) 20 50 0.75 (0.27-2.06) 43 88 1.22 (0.59-2.54)
NAT2 slow acetylator
Never active/ 14 33 1 (ref) 11 39 1 (ref) 25 75 1 (ref)
passive
Passive only 36 65 1.35 (0.62-2.91) 32 93 1.18 (0.53-2.66) 68 158 1.25 (0.72-2.16)
1-10 pack-years 37 76 1.24 (0.67-2.69) 46 117 1.34 (0.62-2.92) 83 193 1.24 (0.72-2.12)
11+ pack-years 30 46 1.83 (0.79-4.26) 36 60 2.07 (0.91-4.72) 66 106 1.85 (1.04-3.30)

alncludes SULT1A1*1/*2 and SULT1A1*2/*2 genotypes. bPOdds ratios (ORs) stratified for age by 5-year intervals; additional adjustment was

made for first-degree family history (yes/no), breastfeeding (total number of months) and body mass index (weight [kgl/ height [m]2) as continuous
variables, parity (0, 1-2, 3+ children{ alcohol consumption (0, 1-18, >19 g/day), menopausal status (premenopausal, postmenopausal, unknown)
and education (low, intermediate, high) as categorical variables. Data missing for one case and three controls. °NAT2 fast acetylators are carriers

of at least one *4 (wild-type) allele.

ifier of breast cancer risk associated with active/passive
smoking among women up to age 50 years.

Differences in risk estimates for carriers and noncarriers of
the SULT1A1*2 allele associated with smoking were
apparent among NAT2 fast acetylators but not among slow
acetylators. The observed estimates indicated that fast
acetylators with the SULT1A71*1/*1 genotype were at
higher risk for breast cancer than were carriers of the
SULT1A17*2 allele when exposed to tobacco smoke, with a
particularly prominent increase in risk for passive smokers
versus never active/passive smokers.

We cannot rule out the possibility that the observed risk
elevation for SULT1A1*1/*1 among fast acetylators was
due to chance, because confidence intervals were wide for
the combined analysis of genotypes. However, it seems
biologically plausible that the combination of NAT2 and
SULT1A1 'fast' genotypes is unfavourable. Both enzymes
have been shown to be capable of bioactivating several
pro-carcinogens. NAT2 is thought to play a major role in the
activation of N-hydroxy derivatives of HCAs by O-acetyla-
tion [5]. The sulfonation of a variety of xenobiotics or their
metabolites, such as polycyclic aromatic hydrocarbons,
HCAs and aromatic amines, can lead to short-lived conju-
gates that may react with DNA and other cellular nucle-
ophiles [23]. Studies that investigated the genotype—
phenotype correlation for SULT1A1 clearly indicate that
the SULT1A1*2 allele is associated with decreased cata-
lytic activity of the respective allozyme as compared with

the sulfonation activity of the wild-type SULT1A1 enzyme
[6,13,14]. Consequently, in individuals with this genotype
combination, reactive metabolites from acetylation and sul-
fonation might accumulate and lead to greater DNA dam-
age and increase tumourigenesis.

For instance, DNA adducts of 2-amino-3-methylimidazo
[4,5-lquinoline (IQ) and 2-amino-1-methyl-6-phenylimi-
dazo [4,5-b]pyridine (PhIP) have been detected in human
breast milk [24]. These HCAs, which are also present in
tobacco smoke, have been classified as probably and pos-
sibly carcinogenic to humans, respectively [25]. In muta-
genicity assays after heterologous expression of NAT2 and
SULT1A1 in Salmonella typhimurium, N-hydroxy-IQ was
found to be efficiently activated by NAT2 whereas N-
hydroxy-PhIP was specifically activated by the SULT1A1
enzyme [26]. Likewise, mutagenicity of 2-amino-3-methyl-
9H-pyrido [2,3-blindole, another abundant HCA, was
strongly enhanced in a Salmonella typhimurium strain
expressing SULT1A1 [27].

Consistent with a role of greater bioactivation of HCAs
associated with SULT1A7*1 rather than SULT1A1*2 in
carcinogenesis are previous reports of greater risk for
breast cancer and prostate cancer associated with intake
of well done red meat [14,15]. In accord with this notion are
the findings of three studies that investigated the formation
of DNA adducts of heterocyclic and aromatic amines [28-
30]. All of them found a tendency toward a higher capacity
for adduct formation for the SULT1A1*1 enzyme as com-



pared with the *2 allozyme, which is in agreement with a
more efficient activation of several pro-mutagens by
SULT1A1*1 than by the *2 allelic variant reported by Glatt
and coworkers [6].

Two previous studies [15,17] reported an increased risk for
breast cancer associated with the SULT1A71*2 allele per
se. Risk estimates were statistically significant only in the
study conducted by Zheng and coworkers [15], a nested
case—control study in postmenopausal women, which
found an 80% elevated risk for homozygous carriers of the
variant allele. We found no association with the
SULT1A1*2 variant although our study had 93% power to
detect an OR of equivalent magnitude at a significance
level of . = 0.05.

In a recent case-only study, an interaction between the
SULT1A1 polymorphism and tobacco smoke exposure
with an OR for interaction of 2.55 (95% CI 1.21-5.36) for
current smokers carrying the *2 allele was found [18].
Results from our case—control study did not provide an
indication for such a strong interaction between SULT1A1
genotype and smoking. Accordingly, we failed to detect a
significant interaction in a case-only analysis of our data,
although the power of our study is similar and the precon-
dition of independence between genotype and exposure in
the general population was fulfilled. The ORs (95% Cls) for
interaction were 1.04 (0.50-2.14) for passive smoking
only, 1.34 (0.63-2.86) for former smoking, and 1.15
(0.55-2.39) for current smoking.

We feel confident that our study population is representa-
tive of the general German population. The observed allele
frequencies for SULT1A1 are in accordance with previous
studies conducted in Caucasian populations [31] and the
SULT1A1 genotype distribution did not deviate from
Hardy—Weinberg equilibrium. Re-contacting the study par-
ticipants for the telephone interview might have introduced
selection bias. However, the participants in the present
study closely resemble the original study population with
regard to the distributions of relevant characteristics. Also,
we do not believe that recall bias is a major concern
because smoking was not known to be associated with
breast cancer at the time of the interviews, and the correla-
tion of reported active smoking between the original study
and the present study is high [20]. Moreover, previous
studies showed that the validity for self-reported active
smoking, as well as passive smoke exposure, is high and
nondifferential in cases and controls [32,33].

Although in vitro data suggest that SULT1A1 may not play
an important role at physiologically relevant oestrogen con-
centrations [11,12], the question regarding whether
SULT1A1 genotype actually has an effect on oestrogen
metabolism in vivo deserves further study. Concerning the
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expression of SULT1A1 and SULT1E1 enzymes, for
instance, there is some controversy in the literature. Falany
and coworkers [34,35] observed SULT1E1 expression in
normal breast epithelial cells, whereas Williams and cow-
orkers [36] reported that only SULT1A1 was expressed at
detectable levels. Because we cannot definitely rule out a
potential role of SULT1AT1 in the metabolism of oestrogens,
we analyzed our data also with respect to use of oral con-
traceptives and various reproductive factors that may alter
exposure to oestrogens. The results did not provide any
indication for a modification of breast cancer risk related to
oestrogens by SULT1A1 genotype (data not shown) and
corroborate recent evidence indicating that sulfonation of
oestrogens catalyzed by SULT1A1 is less relevant in nor-
mal breast tissue in physiological conditions [11,12].

The inconsistent findings of previous studies, which also
considered the possible involvement of the SULT1A1 gene
in other cancer sites (summarized by Glatt and Meinl [23]),
and the broad substrate specificity of the SULT1A1
enzyme indicate the complexity of the issue. Elucidation of
the potential effects of SULT1A1 genotype on a hormone-
related cancer, such as breast cancer, is rendered more
complicated by the fact that smoking may alter oestrogen
levels in the body [37-40]. Moreover, and as suggested by
our findings, it is possible that SULT1A71 genotype only
exerts a detectable effect in combination with other genes,
not to mention several polymorphic genes that are involved
in oestrogen metabolism. Further determinants such as var-
ying levels of enzyme expression or enzyme induction,
which cannot easily be assessed in epidemiological stud-
ies, might also be of importance. Nevertheless, we cannot
exclude that, because of limitations in statistical power, we
were unable to detect a potential weak or moderate
association or interaction between SULT1A1 genotype,
smoking and breast cancer, independent of NAT2
genotype.

Conclusion

In summary, the results of our study do not suggest that
there is a strong association between the SULT1A1
Arg?13His genetic polymorphism and risk for breast cancer
in women who had developed breast cancer by age 50
years. We did not find any evidence for a significant inter-
action of SULT1A1 with smoking. The SULT1A1*1/*1 gen-
otype in combination with NAT2 fast acetylator status,
however, appeared to increase breast cancer risk in
women exposed to tobacco smoke. Hence, further bio-
chemical investigations and large molecular epidemiologic
studies are required to evaluate the effects of multiple
genes and exposures on susceptibility to breast cancer.
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