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ABSTRACT Antimicrobial resistance (AMR) is an important global health threat that
impacts millions of people worldwide each year. Developing methods that can
detect and predict AMR phenotypes can help to mitigate the spread of AMR by
informing clinical decision making and appropriate mitigation strategies. Many bio-
informatic methods have been developed for predicting AMR phenotypes from
whole-genome sequences and AMR genes, but recent studies have indicated that
predictions can be made from incomplete genome sequence data. In order to
more systematically understand this, we built random forest-based machine learn-
ing classifiers for predicting susceptible and resistant phenotypes for Klebsiella
pneumoniae (1,640 strains), Mycobacterium tuberculosis (2,497 strains), and Salmonella
enterica (1,981 strains). We started by building models from alignments that were based
on a reference chromosome for each species. We then subsampled each chromosomal
alignment and built models for the resulting subalignments, finding that very small
regions, representing approximately 0.1 to 0.2% of the chromosome, are predictive. In
K. pneumoniae, M. tuberculosis, and S. enterica, the subalignments are able to predict
multiple AMR phenotypes with at least 70% accuracy, even though most do not encode
an AMR-related function. We used these models to identify regions of the chromosome
with high and low predictive signals. Finally, subalignments that retain high accuracy
across larger phylogenetic distances were examined in greater detail, revealing genes
and intergenic regions with potential links to AMR, virulence, transport, and survival
under stress conditions.

IMPORTANCE Antimicrobial resistance causes thousands of deaths annually world-
wide. Understanding the regions of the genome that are involved in antimicrobial
resistance is important for developing mitigation strategies and preventing transmis-
sion. Machine learning models are capable of predicting antimicrobial resistance
phenotypes from bacterial genome sequence data by identifying resistance genes,
mutations, and other correlated features. They are also capable of implicating regions
of the genome that have not been previously characterized as being involved in resist-
ance. In this study, we generated global chromosomal alignments for Klebsiella pneumo-
niae, Mycobacterium tuberculosis, and Salmonella enterica and systematically searched
them for small conserved regions of the genome that enable the prediction of antimi-
crobial resistance phenotypes. In addition to known antimicrobial resistance genes, this
analysis identified genes involved in virulence and transport functions, as well as many
genes with no previous implication in antimicrobial resistance.
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Antimicrobial resistance (AMR) threatens global health by preventing effective
treatments against bacteria, parasites, viruses, and eukaryotic pathogens. AMR usually

arises as a natural consequence of genetic alterations; however, misuse or overuse of anti-
microbials accelerates the selection of resistant variants. In 2019, the United States Centers
for Disease Control and Prevention reported that antimicrobial-resistant infections occur
annually in over 2.8 million people in the United States, with at least 35,000 deaths (1),
and the European Centre for Disease Prevention and Control (ECDC) reported 33,000
deaths due to antimicrobial-resistant infections in the European Union and the European
Economic Area each year (2). In addition to causing disease and mortality, AMR also causes
major economic burdens to health care systems because of longer hospital stays, addi-
tional tests, and use of more expensive drugs (3).

In bacteria, AMR mechanisms can be grouped in three general categories, i.e., intrin-
sic, acquired, and adaptive. Intrinsic resistance involves all of the inherent features of a
microorganism that prevent antibiotic effects, such as outer membranes with low per-
meability in some of the Gram-negative bacteria (4). Acquired resistance refers to the
acquisition of mutations or genes on mobilizable elements such as plasmids, transpo-
sons, integrons, or to the transformation of naked DNA (4, 5). Adaptive resistance is
triggered by environmental factors, such as antibiotic or nutrient stress, and can be re-
vertible. Alterations in gene expressions and duplications of existing genes are known
consequences of adaptive resistance (4, 5). These acquired or genetically encoded
mutations and cell responses can cause resistance through enzymatic deactivation of
antibiotics, reduction in the amount of antibiotic in the cells by efflux mechanisms,
and modifications of the cell surface that make the cell less permeable (4).

To provide effective treatments and prevent rapid AMR spread, it is essential to
know the resistance phenotypes of the pathogen (6). In the clinic, this is usually done
using traditional antimicrobial susceptibility testing (AST), in which a bacterial culture
is subjected to various antibiotics (7). As increasing numbers of genome sequences
paired with AST phenotypes have become available, several studies have published
machine learning (ML) models for predicting AMR phenotypes based on sequence
data (8). Different ML algorithms have been used with good effect for making predic-
tions; these include adaptive boosting (9), random forest (10–12), extreme gradient
boosting (13, 14), set-covering machines (15), support vector machines (16, 17), and
neural networks (10, 18). The choice of features also differs, and studies have been
published where the authors used the AMR genes (10, 16, 19), k-mers based on the
whole-genome sequence (9, 13, 14), whole-genome alignments (11), and alignments
of the entire pangenome (17, 20). Two previous studies have also shown that the phy-
logeny of the isolates can provide a predictive signal (18, 21).

Although many studies have shown that ML methods can yield accurate models,
the robustness of these models is highly dependent on the quality of the training set.
For instance, training set size, phylogenetic diversity, and the various drug susceptibil-
ity testing methods can impact model accuracies (22–24). Ideally, ML models should
be built from data sets that are balanced by class (e.g., resistant versus susceptible),
and the number of samples should be greater than the number of features (24, 25). In
practice, large and well-balanced training sets of genomes paired with antimicrobial
susceptibility test data can be difficult to obtain.

In previous work, Nguyen et al. demonstrated that AMR phenotypes could be pre-
dicted using sets of conserved genes that are held in common among the members of
a species, even if they are not known to be involved in AMR (26). The reasons relatively
high accuracies are observed in the non-AMR genes are not entirely clear. Based on
previous studies, it is likely that phylogeny plays a role in providing a predictive signal
in these core gene models (18, 21). However, the authors also showed several cocorre-
lating virulence factor genes with high feature importance values, and other ML stud-
ies have been used to identify previously unrecognized epistatic mutations in the ge-
nome (17). It is also possible that some core genes could have a previously unrecognized
function relating to AMR.
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Knowing which conserved parts of the genome provide signal for AMR prediction
models could potentially help to enhance our understanding of AMR mechanisms and
the compensatory changes that result from the acquisition of resistance. In this study,
we generate AMR prediction models from short chromosomal subalignments and use
them to systematically identify regions of the genome with predictive power and
potential links to AMR.

RESULTS
Chromosomal subalignments can be used to predict AMR phenotypes. In this

study, we wanted to gain a more systematic understanding of the conserved chromo-
somal regions that are useful for predicting AMR phenotypes. To do this, we selected
three species, Klebsiella pneumoniae, Salmonella enterica, and Mycobacterium tuberculo-
sis, which at the time of writing, all had rather large collections of AST data paired with
whole-genome sequences (see Fig. S1 to S3 in the supplemental material).

The collection of genomes and the AST data were downloaded from the Pathosystems
Resource Integration Center (PATRIC) (Table 1; see also Tables S1A to S1C in the supplemen-
tal material) (27), and the contigs of each genome were aligned against the chromosomal
sequence of a high-quality reference genome. This resulted in a single global nucleotide
alignment for the chromosomes of each species. The global chromosomal alignment was
then used to build a matrix for machine learning. Susceptibility or resistance to each antibi-
otic was predicted by building a random forest classifier (28) for each species and antibiotic.
For K. pneumoniae, the average area under the receiver operating characteristic curve (AUC)
of the test set genomes in the 5-fold cross-validation is 0.8786 0.023 (Table 1; see also
Fig. S4 in the supplemental material). The AUC values of each antibiotic range from
0.7336 0.044 for cefepime to 0.9746 0.006 for levofloxacin. ForM. tuberculosis, the average
AUC for all antibiotics is 0.7786 0.028, and the values for individual antibiotics range from
0.6766 0.026 for streptomycin to 0.8336 0.013 for rifampin. For S. enterica, the AUC for all
antibiotics is 0.8046 0.029, with individual values ranging from 0.7406 0.027 for gentami-
cin to 0.8416 0.033 for sulfisoxazole. When the Salmonella models are recomputed using
the chromosome of Salmonella enterica serovar Typhi CT18 as the reference, we also
observe nearly identical results (see Table S1D in the supplemental material), indicating that
the choice of the reference chromosomes has little impact. Overall, these AUCs and corre-
sponding model statistics, including F1 scores and error rates (see Tables S1E to S1G in the
supplemental material), are consistent with previous studies that have used k-mers and
AMR genes as input (14, 15, 26).

In order to assess how much sequence data are required to make an accurate AMR
phenotype prediction, we randomly sampled smaller regions of each chromosomal
alignment to generate subalignments of various sizes and built models for each suba-
lignment using the same algorithm and parameters. For all three species, the AUC
increases as the subalignment length increases (Fig. 1). This effect is most pronounced
in M. tuberculosis, perhaps because of the high similarity between strains of this species
(Fig. S2). The accuracies, F1 scores, and Matthews correlation coefficients (MCCs) follow
the same trend as the AUCs, and error rates trend downward as alignment length
increases (Tables S1E to S1G). These results indicate that small conserved chromosomal
regions of only a few thousand bases in length contain a predictive signal that can be
identified by the machine learning algorithm.

Chromosomal regions yielding high- and low-accuracy models. In order to under-
stand which regions of the chromosome provide high- and low-accuracy AMR predic-
tions, we plotted the AUCs of the subalignment-based models based on their alignment
positions. To do this, we chose a subalignment size of 5 kb for K. pneumoniae and
S. enterica, and an alignment size of 10 kb for M. tuberculosis. The longer subalignment
size was chosen for M. tuberculosis since the increase in accuracy starts to become less
dramatic at 10 kb (Fig. 1).

When the AUCs for each small subalignment-based model are plotted based on
their chromosomal positions, we observe a consistent pattern of relatively high AUCs
across the reference chromosome (Fig. 2), although the average AUCs are generally 5
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to 12% lower than those predicted by the corresponding model based on the whole
chromosomal alignment (Table 1 and Fig. S4). For each species, there are several peaks
that are higher than the background. For example, three dramatic peaks at the approx-
imate positions 770,000, 2,160,000, and 4,250,000 in M. tuberculosis correspond with
subalignments containing the rpoB, katG, ermA, and ermB AMR genes (see Fig. S5 and
Table S1H in the supplemental material). The rpoB, katG, ermA, and ermB genes encode
proteins that can confer resistance to rifamycin, isoniazid, and macrolide antibiotics,
respectively (29–31).

On the other hand, we also observe several valleys where subalignment models fail
to predict AMR phenotypes. For example, these include the approximate positions
1,310,000, 3,440,000, 4,035,000, and 4,535,000 for K. pneumoniae. These valleys often
correspond with the locations of mobile elements (Fig. S5 and Table S1I in the supple-
mental material). Indeed, when we plot the alignment conservation for each column,
many of the regions with poor alignment conservation corresponded with poor accu-
racies in the subalignment models (Fig. 2). Overall, these results indicate fairly stable
AUCs over the reference chromosome, with higher-than-average predictive power for

TABLE 1 Data set sizes and model performances reported as AUC for models built from the
whole chromosomal alignment for each species and from randomly selected subalignments

Species or antibiotic
No. of susceptible
genomes

No. of resistant
genomes

Chromosomal
alignment AUCa

Subalignment
AUCb

Klebsiella pneumoniae
Amikacin 1,296 100 0.8976 0.063 0.8686 0.080
Aztreonam 208 1,388 0.7976 0.026 0.6756 0.065
Cefepime 407 950 0.7336 0.044 0.6536 0.048
Cefoxitin 650 819 0.8806 0.043 0.7496 0.059
Ceftazidime 128 1,470 0.9306 0.027 0.7616 0.095
Ciprofloxacin 189 1,413 0.9636 0.012 0.8656 0.089
Gentamicin 909 676 0.8976 0.015 0.7626 0.065
Imipenem 1,138 473 0.9156 0.016 0.7576 0.066
Levofloxacin 332 1,277 0.9746 0.006 0.9066 0.091
Meropenem 1,112 478 0.9156 0.009 0.7636 0.072
Piperacillin-tazobactam 417 1,040 0.8506 0.014 0.7466 0.064
Tetracycline 725 766 0.8056 0.015 0.7086 0.049
Tobramycin 578 715 0.8916 0.015 0.8216 0.068
Trimethoprim-
sulfamethoxazole

405 1,235 0.8446 0.023 0.6416 0.058

Avg 0.8786 0.023 0.7636 0.069

Mycobacterium tuberculosis
Ethambutol 2,182 246 0.8076 0.030 0.7126 0.058
Isoniazid 1,868 570 0.7606 0.038 0.6566 0.045
Pyrazinamide 1,803 224 0.8156 0.033 0.7236 0.063
Rifampin 2,061 416 0.8336 0.013 0.6986 0.053
Streptomycin 364 132 0.6766 0.026 0.6596 0.077
Avg 0.7786 0.028 0.6906 0.059

Salmonella enterica
Amoxicillin-clavulanate 1,473 398 0.7926 0.053 0.7626 0.046
Ampicillin 1,277 702 0.7796 0.018 0.7356 0.045
Cefoxitin 1,584 346 0.7656 0.036 0.7516 0.050
Ceftiofur 1,586 391 0.8156 0.015 0.7626 0.052
Ceftriaxone 1,585 395 0.8136 0.037 0.7626 0.055
Chloramphenicol 1,848 88 0.8206 0.039 0.7376 0.083
Gentamicin 1,622 328 0.7406 0.027 0.6956 0.050
Streptomycin 378 767 0.8336 0.014 0.7596 0.064
Sulfisoxazole 1,093 770 0.8416 0.033 0.7936 0.052
Tetracycline 859 1,114 0.8396 0.021 0.7536 0.051
Avg 0.8046 0.029 0.7516 0.055

aData are the results of one model per antibiotic, with the standard deviation of a 5-fold cross-validation.
bData are for 1,066 and 971 5-kb subalignment models for each antibiotic for K. pneumoniae and S. enterica,
respectively, and for 441 10-kb subalignment models forM. tuberculosis. Data are the averages of all 5-fold
cross-validations with standard deviations.
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regions containing chromosomally encoded AMR genes and lower than average AUCs
in regions of poor conservation.

Sequence similarity influences subalignment model performance. The subalign-
ment-based machine learning models can detect signal in most conserved regions of
the chromosome, even though many of these small regions do not contain annotated
AMR genes (Fig. 2). Since the machine learning models learn from nucleotide similarity
that has been observed across samples in the training set, some of the high accuracies
are likely due to similar sequences occurring in both the training and testing sets,
which may obscure the more broadly conserved nucleotide signatures relating to, or
correlating with, resistance. This has been observed previously, and several studies
have tried to balance strains based on phylogeny to reduce this effect in the ML mod-
els (10, 11, 21, 26). In essence, having related genomes in the training and testing sets
can improve accuracies, but may also potentially reduce the generalizability of the
models if the overall phylogenetic distribution of the training set is biased.

To observe how strain similarity affects the predictions, we clustered each strain
using the nucleotide k-mer similarity from the whole chromosomal alignment and
evaluated the subalignment-based model performances by changing the clustering
threshold. All strains were used in the models; however, strains that were members of
the same cluster were restricted to either the testing or the training set in each fold of
the 5-fold cross-validation. The similarity thresholds that were used differed depending
on the diversity of the sequences for each species. For K. pneumoniae and S. enterica,
clustering was evaluated from 99% to 75% k-mer similarity, and from 99% to 95% for
M. tuberculosis (see Fig. S6 in the supplemental material).

As expected, when the clustering thresholds decrease in k-mer similarity, the model
performances also begin to decrease (Fig. 3). This happens because as the clusters
become larger and more inclusive, the genetic distance between strains in the training
and testing sets are increasing. Going from no clustering to clustering with the lowest
similarity threshold, the average AUCs drop approximately 10% for K. pneumoniae and
S. enterica and approximately 2% for M. tuberculosis. This trend is also observed when
the analysis is repeated using a k-mer similarity that is based on the individual sequen-
ces of each subalignment, rather than the entire chromosomal alignment (data not
shown). These results indicate that the random forest models can learn the underlying
phylogeny and use this information to aid the phenotype prediction.

As the clustering becomes more inclusive, the decrease in performance is not uni-
form across species and antibiotics (see Fig. S7 in the supplemental material). For
instance, in K. pneumoniae, ciprofloxacin and levofloxacin have the largest number of
subalignments with AUCs of .0.80 at 75% clustering, for M. tuberculosis pyrazinamide

FIG 1 The effect of subalignment length on model performance. The y axis depicts model performance for subalignment-based models as area under the
receiver operating characteristic curve (AUC) values, and the x axis depicts subalignment nucleotide length (in kilobases). Error bars represent the standard
deviation of multiple random samples for each length. The number of random samples for each subalignment is shown in Table S1P in the supplemental
material. A separate set of 5-fold cross-validated models was computed for each subalignment and antibiotic.
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retains the largest number of informative subalignments at 95% clustering, and for S.
enterica, chloramphenicol and streptomycin have the largest number of informative
subalignments at 95% clustering (Fig. 4). The higher accuracies for certain antibiotics,
such as ciprofloxacin and levofloxacin in K. pneumoniae, may be due to chromosomally
encoded AMR genes, epigenetic effects, or the time at which the AMR gene or muta-
tion became fixed in the population. For instance, previous work in Neisseria has dem-
onstrated larger epistatic effects relating to ciprofloxacin relative to those related to
other antibiotics (32).

Some subalignments contain broadly conserved AMR signals. When similar
strains are prevented from occurring in both the training and testing sets, we observe
an expected decrease in subalignment model performances. However, we also observe
large standard deviations in the average AUCs for the subalignment models, even at
the lower similarity thresholds (Fig. 3). This implies that some of the subalignments
that retain high AUCs contain sequence signatures that are conserved and are being
learned even when the strains are less closely related. We reasoned that these suba-
lignments are likely to contain sequence signatures that are more phylogenetically
widespread within the species and could be regions that cooccur with AMR or that are
involved with AMR-related functions. We chose to examine these highly performing
subalignments in greater detail.

To attempt to distinguish the subalignments containing genes encoding proteins
with well-characterized functions from those that are poorly characterized, we plotted
the subalignments with AUCs of .0.80 at each clustering threshold based on their

FIG 2 Subalignment model accuracies by chromosomal location with alignment conservation. (Top) AUCs of every subalignment-based model are plotted
based on their position in the whole chromosomal alignment. Peaks corresponding with antimicrobial resistance (AMR) genes and valleys corresponding
with low alignment conservation are denoted with asterisks and are described in greater detail in Fig. S5 and Tables S1H and S1I in the supplemental
material. (Bottom) The alignment conservation for each whole chromosomal alignment. The y axis depicts the percentage of sequences with a nucleotide
in each column, and the x axis depicts chromosomal alignment position.
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chromosomal alignment positions (see Fig. S8 in the supplemental material). We
searched within each subalignment for genes that are known to encode functions that
are involved in AMR, virulence, or membrane transport. This was done by comparing
the genes to the PATRIC (33), Comprehensive Antibiotic Resistance Database (CARD)
(34), Virulence Factor Database (VFDB) (35), National Database of Antibiotic Resistant
Organisms (NDARO) (36), and Transporter Classification Database (TCDB) (37) resour-
ces. We chose to look for virulence factors and transporter genes because these func-
tions often correlate or cooccur with AMR (38–40). The subalignments were then col-
ored in the plot based on whether they contain one of these genes (Fig. 5 and Fig. S8).
Overall, there is an enrichment in AMR, virulence factor, and transporter genes in this
set of subalignments (see Tables S1J to S1L in the supplemental material). There are
also many subalignments that do not have an annotated AMR, virulence, or transporter
gene (see Tables S1M to S1O in the supplemental material). M. tuberculosis has the few-
est highly predictive subalignments, and most of these have AMR or virulence factor
matches. In all three species, there are cases where subalignments are predictive for
several antibiotics, possibly indicating a protein function relating to a class of antibiot-
ics. The informative subalignments do not tend to cluster based on their coordinates
in the reference chromosome and instead appear to be spread out over the reference
chromosome.

Many of the subalignments that retain high AUCs in spite of the clustering do not
contain annotated AMR, virulence factor, or transporter genes (Tables S1M to S1O).
These regions could have a previously unrecognized role in AMR or may be important
cocorrelates with AMR in the evolution of resistant strains. For example, in both K.
pneumoniae and S. enterica, we observed high-AUC subalignment models that con-
tained the gene encoding the chaperone protein HscA. HscA is a member of the Hsp70
family and is known for its role in maturation of iron-sulfur-cluster-containing proteins
(41, 42). Although hscA is not known as an AMR gene, a study tracking the acquisition
of resistance mutations in Salmonella has documented single-nucleotide polymor-
phisms (SNPs) in hscA (43), so a role in AMR could be plausible. In comparison, DnaK,
which is another Hsp70, has a role in survival under unfavorable conditions such as ex-
posure to oxidative stress, heavy metals, and antibiotics (44). Additionally, we detected
many AMR-related mutations in metabolic genes, including in genes encoding sulfur
acceptor protein, cysteine desulfurase, and 3-mercaptopyruvate sulfur transferase. Cysteine
desulfurase is known for its role in protection from oxidative stress, which might also be im-
portant for protecting the bacterium from antimicrobial stress (45). Recently, Collins and col-
leagues detected metabolic mutations that confer AMR for streptomycin, ciprofloxacin, and

FIG 3 Results of clustering similar genomes on subalignment model performance. All samples were clustered based on their k-mer similarity in the whole
chromosomal alignment at various k-mer identity thresholds. Samples belonging to the same cluster were restricted to either the test or the training sets
of each 5-fold cross-validation. Data are the average accuracies with standard deviations of 5-fold cross-validations for 971 Klebsiella pneumoniae (5 kb),
1,066 Salmonella enterica (5 kb), and 441 Mycobacterium tuberculosis (10 kb) subalignments, respectively.
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carbenicillin in pathogenic bacteria using in vitro analyses. Overall, our analysis identifies 10
of the 17 metabolic genes originally found by Collins et al., including cycA, gltB, mltA, rsxC,
sucA, dppA, yqiK, bcsC, mdfA, and rpoB (46). Taken together, these detected genes point to a
relationship between stress conditions and AMR and provide potential targets for further
phenotypic characterization at the bench.

DISCUSSION

In this study, we built models for predicting AMR phenotypes for K. pneumoniae, M.
tuberculosis, and S. enterica using short chromosomal subalignments that were 5 to 10
kb in length (approximately 0.1 to 0.2% of the length of the reference chromosomes).
Overall, these models have average AUCs that are 5 to 12% lower than the AUCs for
models that are based on the whole chromosomal alignments. As the subalignment
length increases, the performance of the models also tends to increase. These results

FIG 4 The number of subalignments and corresponding to a given model AUC for each antibiotic. Genomes were clustered based
on similarity, and samples belonging to the same cluster were restricted to either the testing or the training sets in each fold of the
5-fold cross-validation. A clustering threshold of 75% k-mer similarity is shown for K. pneumoniae, and a clustering threshold of 95%
is shown M. tuberculosis and S. enterica. Results for additional thresholds are shown in Fig. S7 in the supplemental material.
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are consistent with previous work by Nguyen et al. that showed that AMR phenotypes
can be predicted using small sets of conserved genes (26). Using the short subalign-
ments, we plotted the model performances, based on their coordinates on the refer-
ence chromosome, with a fairly high degree of resolution. In all three organisms, the
data show relatively consistent AUCs across the chromosome, with specific regions
yielding high- and low-performing models. For instance, in K. pneumoniae and S. enter-
ica, we observed that the poorly performing subalignments included insertions, such
as phage and mobile elements. These also tended to correspond with areas of low
alignment conservation. In M. tuberculosis, most of the regions with dramatically high
prediction performances contain known AMR genes, such as those encoding DNA-
directed RNA polymerase beta subunit (rpoB), catalase-peroxidase (katG), and integral
membrane indolylacetylinositol arabinosyltransferase (embA, embB, and embC), which

FIG 5 Protein-encoding gene functions for subalignments with high AMR prediction accuracies. Each panel includes predictive
subalignments with AUCs of .0.8 after clustering the strains at a given k-mer similarity threshold. Points represent each
subalignment, and they are plotted based on the corresponding position on the reference chromosome. Subalignments are
colored according to hits for AMR (green), virulence (blue), and transporter genes (orange), respectively. If a subalignment
contains multiple gene categories, the color will appear as a mixture. Subalignments that do not produce hits in any of the
known AMR-related genes are colored in pink. Results for high-scoring subalignments at other clustering thresholds are shown in
Fig. S8 in the supplemental material.
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confer resistance to rifampin, isoniazid, and macrolides, respectively (47–49). Although
it is unsurprising that the subalignments containing the AMR genes have high model
performances, we were surprised by the large number of subalignments with residu-
ally high AUCs, many of which contained no annotated functions relating to AMR.

In order to understand how genome similarity influences the accuracy of these
models, we clustered the strains based on the k-mer similarity using the whole chro-
mosomal alignments. We then prevented similar sequences from existing in both the
training and testing sets for each fold of the 5-fold cross-validation. The AUCs dropped
gradually as the clustering became more inclusive, indicating that the models rely on
sequence similarity. This is consistent with previous studies that have performed simi-
lar experiments to control for the effects of related strains in ML models (10, 11, 21,
26). However, we also found that there were many subalignments that retained high
AUCs in spite of the clustering, which indicated the presence of sequence signatures
that were more strongly conserved relative to their background similarity. These
regions were enriched in AMR, virulence, and transport-related functions. Although the
cooccurrence between AMR, virulence factors, and mutations in transporters is well
known (38–40), we also observed several regions that did not have an obvious role in
AMR, virulence, or transport, which merit further analysis.

The ability to predict AMR phenotypes over the genome clearly differs by antibiotic,
with the subalignment models for some antibiotics having better overall performances
than those of others. This can be seen in the color banding pattern of the plots in Fig. 2.
For example, in K. pneumoniae, the AUCs for the 5-kb amikacin models were only 3% lower
than those for the whole chromosomal alignment-based model, whereas for trimetho-
prim-sulfamethoxazole, there was a 20% drop. This difference can also be seen in the sub-
alignments that remained predictive after k-mer similarity was used to prevent similar
sequences from occurring in the training and testing sets. For example, for K. pneumoniae,
a large number of the subalignments that were accurate after this filtering step had high
AUCs for predicting ciprofloxacin and levofloxacin phenotypes, followed by those for ami-
kacin and tobramycin. On the other hand, only two predictive subalignments were
obtained for trimethoprim-sulfamethoxazole at 99% k-mer similarity. Previous studies have
shown that certain antibiotics may have a larger epistatic impact on the genome than
others (50), which might result in the signal that is being detected by the models.
However, we note that filtering the subalignments based on sequence similarity may not
have entirely eliminated other potentially nonrandom effects, such as biased strain sam-
pling or linkage disequilibrium, which could also cause this difference (51, 52).

Using short chromosomal subalignments to predict AMR phenotypes presented a
few drawbacks that are worth noting. First, we used a clustering approach that was
based on the k-mer similarity of the whole chromosomal alignment rather than on the
k-mer similarities of each individual subalignment. When we clustered based on suba-
lignment similarity, we obtained similar results, but balancing the sets became more
difficult due to a lack of diversity in many subalignments. Another drawback of using
an alignment-based modeling approach is that it has the potential to result in very
large matrix files as the diversity of the training sequences increases. This could even-
tually limit the number of strains or species that could be used in an alignment-based
model, although we did not encounter this problem in this study. In comparison, the
size of a k-mer-based matrix is usually scoped to the number of possible k-mers of a
given length. Overall, the benefit of using alignment-based models is that they clearly
preserve feature importance down to the nucleotide position in the alignment.

The results of this study suggest that a complete genome sequence may not be
necessary for predicting AMR phenotypes. However, the antibiotic, subalignment size,
and the region of the genome sequence used in the model have clear impacts on the
accuracies that can be obtained. This may eventually inform the development of bioin-
formatic workflows that can make predictions using incomplete genome sequence
data. For instance, using read mapping against a known region of a reference genome
sequence could be a potentially fast and appealing way to predict AMR in the
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incomplete genomes that are often found in metagenomic samples, although there
would be potential drawbacks, including the reduced accuracy of partial genome mod-
els and the need to ensure that similar strains can be adequately differentiated.
Nevertheless, the approach outlined in this study provides a potential way forward,
and AMR may be only one of many phenotypes that might be predicted in this way.

In conclusion, this study offers a unique approach for identifying AMR-predictive
regions in bacterial chromosomes and may eventually provide a means for under-
standing and predicting the chromosomal changes that accompany the evolution of
resistance.

MATERIALS ANDMETHODS
Data sets. Three bacterial species were selected for this study, K. pneumoniae, M. tuberculosis, and

S. enterica (nontyphoidal serovars). Genomes for 1,664 K. pneumoniae, 16,906 M. tuberculosis, and 5,268
S. enterica isolates were downloaded from the Pathosystems Resource Integration Center (PATRIC) in
October 2019 (27, 33). Metadata information, including susceptibility and resistance determinations (48)
and MICs, was downloaded from the PATRIC FTP site (ftp://ftp.patricbrc.org/RELEASE_NOTES/PATRIC
_genomes_AMR.txt). MIC data were converted into sensitive (S) and resistant (R) phenotypes for K. pneu-
moniae, using Clinical and Laboratory Standards Institute (53) guidelines (53). For M. tuberculosis, interpre-
tations were based on World Health Organization (WHO)-defined critical concentrations from the original
studies (54, 55). For S. enterica, CLSI and United States Food and Drug Administration (56) guidelines were
used to interpret MIC values (56).

The large number of M. tuberculosis and S. enterica isolates were downsampled to ;2,500 and ;2,000
diverse genomes, respectively, to keep the number of genomes per antibiotic relatively consistent and to
reduce computational overhead. Downsampling was performed using whole-genome k-mer distances
using overlapping 8-mer oligonucleotides, as in Nguyen et al. (14). KMC (version 2.3.0) (57) was used to
compute k-mers, and clustering was performed using the cluster.AgglomerativeClustering function from the
Python Scikit-learn library (version 0.19.2) (58) by setting affinity to “l1” and linkage to “complete.” The list
of isolates and AMR phenotypes is provided in Tables S1A to S1C in the supplemental material. Due to low
counts, the intermediate phenotypes were not modeled in this study. Poor-quality genomes were
removed from the analysis based on low chromosomal alignment coverage (,50%), defined as having
extreme genome lengths (two times longer than the reference genome or shorter than the half of the ref-
erence genome) or poor genome quality scores based on the PATRIC genome quality tool (59).

Alignment generation. The assembled genomes for each isolate were globally aligned to the chro-
mosome of a relevant high-quality reference genome. In this case, we chose Klebsiella pneumoniae
subsp. pneumoniae HS11286 (PATRIC identified [ID] 1125630.4; GenBank accession number CP003200.1),
Mycobacterium tuberculosis H37Rv (PATRIC ID 83332.12; GenBank accession no. AL123456.3), Salmonella
enterica subsp. enterica serovar Typhimurium strain LT2 (PATRIC ID 99287.12; GenBank accession num-
ber AE006468.2). Reference genomes were based on the NCBI reference genome collection (60). Global
alignments were generated using KMA (version 1.2.0) (61) with the following parameters: “-dense
-ref_fsa -ca -mem_mode -mrs 0 -Mt1 1 -e 1.0.” The KMA tool produces output files that include the map-
ping information, alignment statistics, and the consensus alignment against the template. The “dense”
option prevents the insertion of gaps into the consensus sequence. This preserves contiguity of the ref-
erence chromosome and prevents the subsequent matrix files from becoming sparse.

Subalignments were generated by randomly sampling continuous regions of the global chromo-
somal alignment by choosing an arbitrary starting point. When experiments used many subalignments,
the total length of the sampled subalignments was not allowed to exceed the length of the reference
chromosome, to help prevent oversampling of the same regions. In practice, this means that a larger
number of short subalignments than long subalignments could be generated (see Table S1P in the sup-
plemental material).

Model generation and cross-validation. For each species, a matrix was generated from either the
global chromosomal alignment or the subaligned regions where the rows represent each isolate, the
columns represent the positions of the alignment, and the entries are DNA nucleotides for each position.
To decrease the matrix size, alignment columns having no variation were removed from consideration,
since they provide no discriminative information. We used one-hot encoding to convert nucleotide
sequence data into combinations of one(s) and zero(s) as described by Aytan-Aktug et al. (10). The utils.
to_categorical function in the Python Keras library (version 2.2.4) (62) was used to perform the one-hot
encoding.

Unless otherwise stated, the models generated in this study are binary classifiers that predict suscep-
tible or resistant phenotypes for a single antibiotic. If genomes had intermediate or unknown pheno-
types for a given antibiotic, they were excluded from the training, testing, and validation sets for the
corresponding model. Random forest (63) was chosen for the machine learning algorithm in this study
because it is a robust tree-based method that is relatively easy to interpret and has been used with
good effect in in many studies for regression and classification purposes (10–12, 28). The Python Scikit-
learn package (version 0.19.2) ensemble.RandomForestClassifier was used for generating the models (58).
Unless otherwise stated, we chose to use the random forest parameters defined previously (10), which
set the number of trees to 200, and used default settings for the remaining parameters. Additionally, the
class weight was set to “balanced” in this study. This adjusted the class weights according to the class
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frequencies in the input data and was intended to help prevent biased predictions caused by class
imbalances. The chosen parameters are intended to be optimal for the majority of the models, although
it may be possible to find a more ideal set of parameters for any given subalignment.

Standard 5-fold cross-validations were performed for each model using a training, a testing, and a
held-out validation set to monitor models for overfitting. Unless otherwise stated, the average test per-
formances are reported as area under the receiver operating characteristic curve (AUC) values with a
standard deviation. In experiments where a subalignment was sampled multiple times, we report the
average of all tests with a standard deviation. Model performances were assessed using the AUC, macro
F1 scores, and Matthews correlation coefficient (MCC) using the Scikit-learn package (version 0.19.2)
(58). Major error (ME) and very major error (VME) rates were also used as metrics. Major errors are
defined as susceptible isolates that are classified as being resistant, and very major errors are resistant
isolates that are classified as being susceptible.

Clustering subalignments. Machine learning models can learn AMR phenotypes based on the ge-
nome similarity or correlations between training, test, and validation subsets (21, 26). To explore how ge-
nome similarity effects the machine learning predictions, we clustered the aligned sequences using the KMA
index (version 1.3.7) (61). KMA uses the 16-mer oligonucleotide k-mers and the Hobohm-1 algorithm to gen-
erate clusters (63). Whole alignments that are similar to each other within a certain similarity threshold
(between 75 and 99% k-mer similarity) were clustered, and the corresponding subalignments were kept in
the same partition of the 5-fold cross-validation. Thus, the isolates sharing similarity greater than the given
threshold were only used in either the training or testing sets. To help prevent biased predictions due to
imbalances between cluster sizes, each subalignment was weighted in inverse proportion to the cluster size.
No hold-out set was used in this analysis in order to maximize the number of clusters that could be tested.

The genes encoded within subalignments that had high model performances were evaluated for a
potential role in AMR. These subalignments were aligned to the PATRIC (33), CARD (34), and NDARO (36)
databases to identify AMR genes, VFDB (35) and Victors (64) to identify virulence factors, and TCDB (37)
to identify transporter genes. Furthermore, to explore the precise AMR-related subalignment positions,
we calculated feature contributions to the AMR predictions using random forest’s feature importance
implementation. The most informative 10 features were considered per fold.

Tree generation. Distance matrices were computed for the whole chromosomal alignments using
KMA (version 1.3.7) using the k-mer distance option. KMA calculates input distances using 16-mers and
accepts inputs in single indexed file. Input sequences were indexed using “-NI,” “-Sparse TG,” and “-nbp”
parameters. Distance trees were constructed using CCPhylo (version 0.0.15) (65), which generates a neigh-
bor-joining tree, and visualized using iTOL (version 4) (66).

Data availability. The Python 2.7.15 scripts used for this project are available on Bitbucket (https://
bitbucket.org/deaytan/aligned-fragments/). All genomes and metadata can be accessed through the
PATRIC resource (https://www.patricbrc.org) using the genome identifiers given in Tables S1A to S1C.
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