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Abstract

Background: The human 90-kDa heat shock protein (HSP90) functions as a dimeric molecular chaperone. HSP90 identified
on the cell surface has been found to play a crucial role in cancer invasion and metastasis, and has become a validated anti-
cancer target for drug development. It has been shown to self-assemble into oligomers upon heat shock or divalent cations
treatment, but the functional role of the oligomeric states in the chaperone cycle is not fully understood.

Principal Findings: Here we report the crystal structure of a truncated HSP90 that contains the middle segment and the
carboxy-terminal domain, termed MC-HSP90. The structure reveals an architecture with triangular bipyramid geometry, in
which the building block of the hexameric assembly is a dimer. In solution, MC-HSP90 exists in three major oligomer states,
namely dimer, tetramer and hexamer, which were elucidated by size exclusion chromatography and analytical
ultracentrifugation. The newly discovered HSP90 isoform HSP90N that lacks the N-terminal ATPase domain also exhibited
similar oligomerization states as did MC-HSP90.

Conclusions: While lacking the ATPase domain, both MC-HSP90 and HSP90N can self-assemble into a hexameric structure,
spontaneously. The crystal structure of MC-HSP90 reveals that, in addition to the C-terminal dimerization domain, the
residue W320 in the M domain plays a critical role in its oligomerization. This study not only demonstrates how the human
MC-HSP90 forms a hexamer, but also justifies the similar formation of HSP90N by using 3D modeling analysis.

Citation: Lee C-C, Lin T-W, Ko T-P, Wang AH-J (2011) The Hexameric Structures of Human Heat Shock Protein 90. PLoS ONE 6(5): e19961. doi:10.1371/
journal.pone.0019961

Editor: Andreas Hofmann, Griffith University, Australia

Received January 6, 2011; Accepted April 16, 2011; Published May 25, 2011

Copyright: � 2011 Lee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the National Science Council of Taiwan (NSC97-3112-B-001-035-B4 to A.H.-J.W.). The funder had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ahjwang@gate.sinica.edu.tw

Introduction

Heat shock protein 90 (HSP90) is an ATPase-dependent

chaperone and the molecular chaperone functions as a dimer.

HSP90 is responsible for managing protein folding and quality

control in the crowded environment inside the cell. It participates

in activating and stabilizing more than 200 ‘‘client’’ proteins

involved in post-translational folding, protein stability, activation

and maturation of cellular proteins, which are essential to cell-

cycle control and signaling. HSP90, HSP70 and co-chaperones

form a dynamic complex known as the HSP90 dynamic machine

[1], which is regulated by co-chaperones and post-translational

modification, e.g., phosphorylation, nitrosylation and acetylation

for client protein interaction and ATPase activity. The yeast

HSP90-Sba1 complex structure provides a view of HSP90 in the

ATP-bound state, demonstrates the conformational changes in the

N-terminal domain and reveals how the co-chaperone Sba1

recognizes the ‘‘closed’’ state of HSP90 dimer, that confirms the

ATPase-coupled molecular clamp mechanism of HSP90 chaper-

one [2–3]. Many oncoproteins are HSP90 client proteins,

including EGFR, AKT, MMP2 and BCR-ABL. They depend

on its protein folding machinery to avoid misfolding and

degradation in cancer cells. HSP90 inhibition offers a great

promise in the treatment of a wide variety of solid and

haematological malignancies. Therefore, HSP90 has been a target

for anticancer drugs, and several classes of compounds have been

and are being developed to modulate its activity for therapeutic

benefit [4–5].

The HSP90 proteins are highly conserved and five human

isoforms have been identified, including two cytosolic isoforms

HSP90a and HSP90b, a glucose-regulated protein (GRP94) in the

endoplasmic reticulum, a tumor necrosis factor receptor-associated

protein 1 (Hsp75/TRAP1) in the mitochondrial matrix, and a

newly discovered isoform HSP90N [6]. These isoforms exhibit

different domain structure and cellular location, and may have

different client protein substrates [4,7]. Recent studies also indicate

that many types of cells express HSP90 on the cell surface and

secrete HSP90 into the extracellular space to carry out important

extracellular functions [1,8].

The conserved HSP90 structure consists of three domains: an

N-terminal (N) domain that contains the co-chaperone binding

motif and an ATP and drug binding site that binds the natural

compounds geldanamycin and radicicol; a middle (M) domain that

is responsible for binding to co-chaperone and client proteins; and

a C-terminal (C) domain that contains a dimerization motif, a

second drug-binding site, and a conserved MEEVD pentapeptide

at the C-terminus, which is recognized by the co-chaperone

HSP70/HSP90 organizing protein (Hop) [9]. This C domain was

predicted to contain a second nucleotide-binding site, which has
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been shown to bind to novobiocin, epilgallocatechin (ECGC) and

taxol [10]. However, neither the apo-form crystal structure nor

any complex structure has been reported for the M and C domains

of human HSP90. The isoform HSP90N is a plasma-membrane-

associated protein in poorly-differentiated colorectal cancers with

metastasis [11]. Specifically, HSP90N lacks the N-terminal

nucleotide-binding domain which is replaced by a 30-residue-

long hydrophobic motif, but it shares the 509 amino acids in the

C-terminal region with HSP90a [6,12–13].

HSP90 exists as a homodimer, and the dimers tend to associate

into tetramers, hexamers, and even higher oligomers. It has been

reported that the oligomeric forms of HSP90 are present in the

cytosol of mammalian cells [14]. The heat-induced HSP90

oligomer can bind to its substrates and prevent their irreversible

aggregation, and the self-oligomerization of HSP90 may have a

pivotal role in protecting cells from thermal damages by its

chaperone function [15–16]. HSP90 oligomerization can be

induced by heat treatment, the presence of nonionic detergents

or addition of divalent cations, such as magnesium and calcium.

The heat-induced oligomerization can be inhibited by ATP and

geldanamycin, both bind to the same pocket in the N-terminal

domain [15,17–18]. HSP90 association into tetramer, hexamer

and dodecamer forms, as induced by Mg2+ ion, demonstrated

that the building block for its oligomerization is a dimer. In

particular, the hexamer with a cozy nest-shape was obtained by

negative staining TEM tomography [18]. In addition, the divalent

cation-induced oligomerization is accompanied by the instan-

taneous loss of its molecular chaperone function [19]. The

functional roles of HSP90 oligomers in the chaperone cycle are

not clearly understood, therefore the oligomerization process and

the oligomeric structures are studied here. In this study, we

determined the crystal structure of a human HSP90 that contains

the M and C domains (MC-HSP90) in a hexameric assembly.

The oligomerization sites are located in the M domain and also

involve the dimerizing C domain. The hydrodynamic properties of

MC-HSP90 and HSP90N in solution were also examined. The

results clearly showed that MC-HSP90 exists in three major states:

dimer, tetramer and hexamer. HSP90N also showed a dimeric

and two higher oligomer states as did MC-HSP90 under similar

conditions. The hexameric structure of MC-HSP90 provides a

clue to how the possible oligomers of HSP90N establish their

functional architecture.

Results

Crystals and Structures of MC-HSP90
The N-terminal truncated HSP90 (MC-HSP90, residues 293–

732) containing the middle segment and carboxy-terminal domain

was crystallized in three different forms, C2221, P21 and R32. A

fourth crystal form of P6322 was obtained using a modified MC-

HSP90-Ct (residues 293–697) in which the C-terminal 35 residues

were also truncated. The crystals were obtained using different

protein preparations or under different crystallization conditions.

For the C2221 and P21 crystals, obtained under similar conditions,

the protein solution was pre-incubated with cis-dichloro(ethylene-

diamine)platinum(II) (cis-DEP) and cisplatin, respectively, before

crystallization setup. The R32 crystals were obtained by using an

additive solution in the crystallization drops. The P6322 crystals

were grown under low pH conditions, also with an additive. (See

Materials and Methods for details.) All crystal structures were

determined by molecular replacement (MR) method, but only the

C2221 and P21 crystals were refined to 3.0 Å and 3.05 Å

resolutions, respectively (Table 1), with three and six molecules

of MC-HSP90 per asymmetric unit. The R32 and P6322 crystals

have one molecule per asymmetric unit. The protein molecules in

all crystal forms show a hexameric architecture with triangular

bipyramid geometry in the protein assembly, and in the latter two

forms (R32 and P6322) the molecular triad and dyads are further

expressed as crystallographic symmetry elements (Figure 1). If the

protein solutions were not pre-incubated with the platinum

compounds before the crystallization drop setup or the additive

solution were included only in the drops, the protein could still be

crystallized but with poor crystal quality; those crystals only

diffracted to about 6 Å resolution and the structure could not be

determined.

The refined models of MC-HSP90 in the two different space

groups of C2221 and P21 contain nine independent polypeptide

chains in total. The N-termini start at residues 294–297, and the

C-termini stop at residues 697–699, depending on the corre-

sponding electron densities for the individual subunits. The residue

293 and the last 33 residues, plus the His-tag, were not observed,

probably because they were highly flexible. Other disordered

regions were located in residues 349–357, 394–404 and 611–629.

Three molecules had an additional disordered region in residues

558–613, which also showed high temperature factors in the other

molecules. In an attempt to obtain better crystals, we constructed a

C-terminal tail truncated MC-HSP90-Ct, but the resulting P6322

crystals did not show any improvement in the diffraction

resolution. The R32 crystal showed additional electron densities

for most of these regions, but they could not be modeled with

certainty due to the poor diffraction resolution. These two

structures could only be refined to 3.5 Å resolution, yielding R

values of about 30% and Rfree of about 35%.

In the current structure, each molecule folds into three major

domains (Figure 2A): a large middle (LM) domain (residues 293–

469), a small middle (SM) domain (residues 470–547), and the C-

terminal (C) domain (residues 548–732). The structure of the LM

domain starts with a 310-helix, which is followed by a three-layer

architecture of a-b-a sandwich and a helical coil. It encompasses

two disordered loops comprising residues 351–358 and 396–404.

The SM domain is also folded into an a-b-a sandwich

architecture, and contains a sulfate-binding site. The sulfate was

hydrogen bonded to the side chains of R510, K513 and H514

within helix a7, which is close to the C domain (Figure 2A). The C

domain begins with an amphipathic loop, which shows high B-

values (Figure 3A), and contains a curved a-helix, a three-stranded

b-sheet, a three-helix coil and an extended disordered arm

between helix a10 and strand b11 (residues 617–629). Beyond

residue 697, the structure is disordered.

Structure-based Sequence Alignment
Two determined 90-kDa chaperone structures, yeast HSP82

and canine GRP94 [3,20] were chosen for comparison with the

middle and C-terminal domains of human HSP90. Sequence

alignment shows that human MC-HSP90 and yeast MC-HSP82

have about 60% identity in 438 residues. The core domain and

loops regions are highly conserved, but the C-terminal extension is

variable (Figure 4B). The MC-HSP90 monomer superimposes

well on the MC domain of yeast HSP82 (PDB: 2CG9) and yields

an rmsd of 0.91 Å for 219 Ca atoms. Human MC-HSP90 and

canine GRP94 (PDB: 2O1V) have only about 49% identity in 414

residues of the MC domain. When the domain structures are

superimposed, the rmsd value is 1.02 Å for 241 Ca atoms. Both

yeast HSP82 and canine GRP94 show structural similarity to the

human HSP90 in the MC domain (Figure 3B).

In the absence of the N-terminal ATPase domain, co-chaperone

and client proteins, MC-HSP90 structure contains several

disordered regions, which correspond to four functional loops:

Structure of Human HSP90
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an amphipathic loop (residues 347–360), a middle segment

catalytic loop (residues 395–406), an extended loop (residues

616–630) and the C-terminal tail (residues 698–732). To confirm

the presence of disordered loops and C-terminal tail in the crystal,

the C2221 crystal was harvested and dissolved for in-gel trypsin

digestion and MALDI-MS analysis. In this experiment, the N and

C-terminal tail segments and the residues comprising the

amphipathic loop, as well as the extended loop, can all be

identified in the MASS spectra. However, in the catalytic loop,

only the residues 395–400 could be identified (Figure 4B) by our

experimental procedure. In the yeast HSP82/Sba1 complex

structure, the equivalent regions of these disordered segments

were not observed either, except for the middle segment catalytic

loop, because it contained the catalytic residue R380 (equivalent to

R400 of human HSP90) bound to a nucleotide, which stabilized

the loop [3].

Structural Features and Comparison
It has been proposed that HSP90 functions as a dimer, and the

C-terminal domain is involved in the major dimeric interactions

[21]. The previously determined 90-kDa chaperone structures also

supported this [3,20]. Here, in the truncated MC-HSP90

structure, the protein subunits are arranged into a parallel

homodimer with a left-handed helical twist. Each protomer

extends from its C-terminal helix coil at the central axis of the

dimer to form a ‘‘Twisted V’’ shape, which corresponds to the

‘‘open’’ state of HSP90 structure. In the open end, the distance is

about 30 Å between the Ca atoms of N373 from the two

protomers, and it is about 70 Å between the two N-terminal

residues K294 (Figure 2B). Helices a12 and a13 in the C-terminal

domain of two dyad symmetry related protomers are folded into a

four-helix bundle. The interaction interface consists of both

hydrophobic and hydrophilic contacts, which is the most

Table 1. Data collection and refinement statisticsa.

Additive compounds cis-DEP cisplatin

Data collection

Wavelength (Å) 1.0 1.0

Space group C2221 P21

Cell dimensions (Å, u) a = 162.70, b = 304.55, c = 87.62, a = 157.90, b = 90.87, c = 167.09,

b = 115.85

Resolution (Å) 30-3.0 (3.11-3.0) 30-3.05 (3.16-3.05)

Observed reflections 186,922 291,396

Unique reflections 43,634 82,281

Rsym (%) 5.8 (45.1) 5.8 (36.2)

I/s(I) 17.9 (3.5) 19.6 (5.1)

Completeness (%) 99.6 (99.3) 98.8 (99.4)

Redundancy 4.3 (4.2) 3.5 (3.5)

Z 3 6

Refinement

Resolution (Å) 30-3.0 30-3.05

No. of reflections Rwork/Rfree 39,180/2,185 72,417/4,017

Rwork/Rfree (%) 20.9/25.2 20.4/25.9

No. of atoms

Protein 9,197 17,827

SO4 15 30

Water 133 281

Avg B factor (Å2)

Protein 90.7 82.3

SO4 138.6 124.3

Water 92.0 85.9

RMSD

Bond lengths (Å) 0.012 0.012

Bond angles (u) 1.405 1.399

Ramachandran statistics (%)b

Most favored 88.6 89.9

Additionally allowed 9.6 9.2

Generously allowed 1.5 0.5

Disallowed 0.4 0.4

aValues corresponding to the highest resolution shell are shown in parentheses.
bThe stereochemistry of models were validated with PROCHECK.
doi:10.1371/journal.pone.0019961.t001
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important stabilizing element for HSP90 dimerization. A surface

area of about 1,267 Å2 on each protomer is buried by its counter

protomer upon dimer formation (Figure 2C). Furthermore, when

the dimers are superimposed for the three-helix coil of C domain

(Figure 3C), the MC-HSP90 dimer shows an open-form in

contrast to the close-form yeast HSP82, differing from each other

by a large sway of the protomers. The loop region between the SM

and C domain, the ‘‘curved helix’’ (a9) and the extended loop

include helix a10 have large conformational changes, which result

in the domain shift of M domain. The flexible conformation of the

curved helix a9 and the connection loop between M and C

domain allow the middle domain to have a large domain shift for

the alternation between open and closed conformations of the

HSP90 clamp.

Quaternary Structure of MC-HSP90
The P21 crystal has three open-form MC-HSP90 dimers in an

asymmetric unit, which assemble into a triangular bipyramid

architecture being arranged in a right-handed fashion around a

pseudo 3-fold axis (Figure 2C and D). The other crystals, the

C2221 and R32 crystals of MC-HSP90 and the P6322 crystal of

MC-HSP90-Ct have fewer than six molecules in an asymmetric

unit, but they also contain this kind of hexameric assembly in the

crystals, suggesting that the hexamer is not just a result of

stabilization by favourable crystal lattice contacts. A top view of

the hexameric structure shows a trefoil-like shape, with the N-

terminal end of the monomer facing up and the C-terminal end

directing radially away from the center. The top view shows a

compact arrangement of the three monomers, which belong to

three different dimers. The contact between the monomers around

the 3-fold axis is facilitated by the N-terminal part of LM domain.

One subunit is in contact with both 3-fold symmetry-related

subunits via the inter-dimer interface, that buries about 531 Å2

surface area on a monomer for the hexamerization, the major

contact region is shown in Figure 5. The side chain of residues

W320 and R346 pack against a concave surface of the

neighbouring protomer (Figure 5A). The W320 side chain is

accommodated in a hydrophobic pocket formed by K294, P295

and W297, and also forms a hydrogen bond to the main chain

oxygen atom of R367 of the neighboring protomer. The side chain

of R346 is hydrogen bonded to the main chain oxygen atom of

R366 (Figure 5B). This interaction positions the LM domains

about the center of the complex, with N-terminnal end protruding

around the central 3-fold axis, three facing up and three facing

down. Viewed from the side, the hexameric structure appears to

have an elliptic shape. The middle domain is packed against one

another in the central core, and the C-terminal domain also

contacts one another at the rim.

Oligomer States of MC-HSP90 in Solution
In order to understand the oligomeric states of MC-HSP90 in

solution, size-exclusion chromatography and sedimentation veloc-

ity (SV) experiments were carried out to determine their molecular

size. The elution profile of size-exclusion chromatography for MC-

HSP90 shows two major peaks between the protein marker

thyroglobulin (669 kDa) and aldolase (158 kDa). It suggests that

MC-HSP90 contains at least two oligomeric states (Figure 6A). No

corresponding peak for the monomer was observed, indicating

that the monomeric species was not present or not detectable

under our experimental conditions. Based on the elution profile,

the two peaks were calculated to have molecular masses of about

252 and 408 kDa corresponding to approximately five and eight

subunits, respectively. However, MC-HSP90 is not a spherically

shaped globular protein and it is difficult to predict the molecular

Figure 1. Crystal packing of MC-HSP90 molceules. The pictures
of the (A) orthorhombic, (B) monoclinic, (C) rhombohedral, and (D)
hexagonal crystals are shown on the left side. The unit-cell contents of
the corresponding crystals are shown on the right. All of these crystals
contain structurally similar hexamers, which are shown in three different
colors and have a variety of arrangements in the unit cells. Although the
green models appear to be disintegrated, they indeed form intact
hexamers when associated with their symmetry-related mates from the
neighboring unit cells. Only the orthorhombic and the hexagonal
crystals (A and D) show some resemblance in packing, but they contain
proteins with different C-termini.
doi:10.1371/journal.pone.0019961.g001
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mass of its oligomeric states by size exclusion chromatography,

especially when it contains a flexible C-terminal tail. To obtain

further information of the oligomer state, the peak fractions and

those in the overlap region eluted from the size exclusion

chromatography were analyzed separately by analytical ultracen-

trifugation. Surprisingly, the continuous c(s) distribution suggests

that MC-HSP90 exists as three species in solution with

sedimentation coefficients of 5.3S, 8.3S and 11.6S (Figure 6B),

with a frictional ratio of 1.3. The calculated masses of 94.4 kDa,

189.6 kDa and 299.1 kDa, corresponding to dimer, tetramer and

hexamer, correlate very well with the actual molecular weights.

Based on the observed 3D structure of MC-HSP90 determined

in the P21 crystal, the sedimentation coefficient values of MC-

HSP90 at dimer and each oligomer states were calculated by using

Figure 2. Overall structure of MC-HSP90. (A) Ribbon representation of the MC-HSP90 monomer with a bound sulfate. The large middle (LM),
small middle (SM) and C-terminal domains (C) are indicated. The inset figure shows a sulfate bound to R510, K513 and H514. (B) Parallel homodimer
of MC-HSP90. Two protomers (blue and orange) extend from its C-terminal dimerization domain with ‘‘Twisted V’’ shape and are shown in ribbon and
translucent surface. The inner and outer distances between the open ends are indicated. (C) (D) Top view and side view of the hexameric MC-HSP90
structure. Six MC-HSP90 molecules assemble into a dextral hexamer. The N-termini are located on the top and bottom of the hexamer with 3-fold
symmetry. Each protomer is colored in separate colors (blue, green and orange) and half of hexamer is shown with translucent surface.
doi:10.1371/journal.pone.0019961.g002
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the computer program HYDROPRO [22], and compared with

the experimental values from the sedimentation velocity experi-

ments. As shown in Figure 7A, the atomic models of monomer,

dimer, tetramer and hexamer yielded sedimentation coefficients of

3.7S, 5.7S, 8.8S and 11.9S, respectively. These HYDROPRO

predicted S values for MC-HSP90 dimer, tetramer and hexamer

models were similar to the experimental results (Table 2). The

agreement between the calculated and experimental values

confirms the existance of MC-HSP90 in these oligomeric states.

Furthermore, during the gel-filtration separation and sedimenta-

tion velocity experiments, the MC-HSP90 oligomers did not

undergo rapid interconversion between one another. Otherwise

the redistribution of protein in different states would result in

similar pattern of the sedimentation velocity profiles, for some

equilibrium state. It indicates that the association and dissociation

between each state is irreversible or the equilibrium rate is very

slow due to large energy barriers.

As shown above, the residue W320 may play an important role

in the hexamer assembly. Here it was mutated into an alanine and

the resulting mutant protein W320A of MC-HSP90 was subjected

Figure 3. Comparison of HSP90 structures. (A) Disordered regions of MC-HSP90. The protomers A and B in the C2221 crystal are superimposed
with RMSD of 0.637 Å between 367 Ca atom pairs. The residue number of N- and C-termini and the terminal ends of disordered loops in protomer A
are indicated. The protein models are presented with ramped colors according to the B values. The start of the curved a-helix (a9) and the extended
arm (a10) at C domain show high temperature factors. (B) The monomer structure of human MC-HSP90 (orange) is superimposed on the MC domains
of closed-form yeast HSP82 (green) and open-form canine GRP94 (blue). (C) The dimer structure of human MC-HSP90 (orange) is superimposed on
the MC domains of close-form yeast HSP82 (green). (D) Stereo view of superposed hexameric structures. The human MC-HSP90 hexamer and the N-
terminal truncated yeast HSP82 (PDB: 2CGE) hexamer are superimposed. The protomers of Human MC-HSP90 dimer are colored in blue and orange,
respectively, and six protomers of yeast HSP82 are colored in green. See Video S1 for more comprehensive aspects.
doi:10.1371/journal.pone.0019961.g003
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Figure 4. Sequence alignment. (A) Schematic representation of human HSP90 and HSP90N. The functional domains (N, M, and C) and the residue
number are indicated. The N-terminal sequence (residues 1–99) of HSP90N is shown below and a predicted transmembrane helix is highlighted in
gray. (B) Structure-based sequence alignment of the MC domains of human HSP90, yeast HSP82 (PDB: 2CG9) and canine GRP94 (PDB: 2O1V). Residues
of a-helices, b-strands, and disorders are shown in red, blue, and gray, respectively, and those of identical residues are highlighted by gray boxes. The
secondary structural elements according to the human HSP90 structure are shown above the sequences, and the bars under the HSP90 sequence
indicate the segments which have been identified by MALDI-MS analysis. Two extra Ala residues at the N-terminus and the C-terminal His-tag also
have been identified, but are not shown in the figure. (C) Part of the M domain sequence from human HSP90 is aligned with other 90-kDa heat shock
proteins of Homo sapiens (Hs), Gallus gallus (Gg), Mus musculus (Mm), Macrocentrus cingulum (Mc), Drosophila melanogaster (Dm), Heterodera glycines
(Hg), Arabidopsis thaliana (At), Saccharomyce scerevisiae (Ss) and Canis lupus (Cl) for the regions near the W320 binding site. The residues involved in
M domain interaction in the human MC-HSP90 hexamer are marked with black stars.
doi:10.1371/journal.pone.0019961.g004
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to similar analyses as was the wild-type protein for its molecular

size distribution. The size-exclusion chromatography profile

showed a large shift of the oligomeric states toward the dimer

(Figure 6C). The subsequent SV analyses showed sedimentation

coefficients of 5.4S, 8.2S and 10.8S for three major oligomer

states, with corresponding molecular mass of 92.6 kDa, 185.0 kDa

and 278.6 kDa for dimer, tetramer and hexamer, respectively

(Figure 6D and Table 2).

Oligomer States of HSP90N
The HSP90 isoform HSP90N lacks the N-terminal ATPase

domain, which is replaced by a 30-residue segment, but the other

related domains are the same as HSP90a. HSP90N has the same

N-terminal hydrophilic region (residues 31–100), the middle client

protein binding domain, and the C-terminal dimerization domain

as does HSP90a. Thus the hexameric structure of MC-HSP90

should somewhat resemble the quaternary structure of HSP90N.

To test this hypothesis, size exclusion chromatography and

sedimentation velocity experiments were also conducted on

HSP90N. The size-exclusion chromatography elution profile

showed two broad peaks with molecular weight of about 309

and 473 kDa (Figure 6E). When the elution profile was compared

with that of MC-HSP90, it shows that the apparent molecular

sizes in both peaks are larger than those of the corresponding

Figure 5. Protomer interactions in the M domain. (A) A protomer is shown as an electrostatic surface that contains a concave cavity for residues
W320 and R346 packing with the neighboring protomer. (B) The major contacts of M domain between protomers, colored in blue and green, are
shown with stick models. (C) The corresponding region of M domain in the full-length yeast HSP82 (PDB 2CG9) is shown as a surface. F200 from the N
domain appears to take over the place of W320. (D) The contacting M and N domains in yeast HSP82 are colored green and pink, and the
corresponding interactions are depicted with stick models. T273, F292 and Y344 (not shown) form part of the hydrophobic pocket but are not
involved in direct contact.
doi:10.1371/journal.pone.0019961.g005
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oligomers of MC-HSP90. Protein solutions collected from the two

peaks and the overlap region were further analyzed for their

sedimentation coefficients. The sedimentation velocity profiles of

the low molecule weight peak and the overlap region show two

states with sedimentation coefficients of 6.3S and 8.7S have

calculated masses of about 118.8 kDa and 205.0 kDa (Figure 6F),

and have a frictional ratio of 1.3, which correspond to the dimer

and tetramer of HSP90N. However, the sample from the high

molecule weight peak has a broad distribution at SV analysis with

a major S value of 10.2S and has a frictional ratio of 1.30. The S

value is lower than the MC-HSP90 hexamer and corresponds to a

calculated mass of 280.4 kDa (Table 2). If the frictional ratio of

1.55 was used to analyze the S value of three oligomer states, it

yielded 6.32S, 8.43S and 10.43S for dimer, tetramer and hexamer

with molecular mass of 153.0, 267.4 and 371.7 kDa, respectively.

We surmise that the N-terminal 100 amino acid unstructural

region can endow HSP90N with a loose shape in the hexameric

state due to the flexible nature of the extra N-terminal segment,

and cause the density to decrease upon the formation of HSP90N

hexamer. The sedimentation velocity experiments also showed

that HSP90N exists in similar dimer and tetramer states as does

MC-HSP90.

The 3D models of hexameric HSP90N
The N-terminal extension region of HSP90N comprising of

residues 1–100 contains a hydrophobic helix, which was predicted

as a transmembrane helix by three web version prediction

programs. (See Materials and Methods for details.) The results

are highly consistent, though different prediction methods yielded

slight variations in the start and end points for the transmembrane

segment. According to the prediction results of the HMMTOP

program, the segment contains a transmembrane helix of 19

Figure 6. Oligomer states of MC-HSP90 and HSP90N. (A) (C) (E) The elution profiles of MC-HSP90, the mutant W320A, and HSP90N were
recorded using size exclusion chromatography column S300. The void volume (V0) and retention volume of protein molecular weight standards and
the positions of peaks (peak A and peak B) and overlap regions (region C) of proteins are shown above the curves. (B) (D) (F) The sedimentation
coefficient distribution profiles of the protein samples from peak A, peak C, and the overlap region (B) from S300. The predicted sedimentation
coefficients by SEDFIT for dimer, tetramer, and hexamer of MC-HSP90, W320A and HSP90N are indicated.
doi:10.1371/journal.pone.0019961.g006

Figure 7. MC-HSP90 assembly and models of HSP90N hexamer. (A) Assembly of MC-HSP90 hexameric structure. The process begins with a
monomer (orange) subunit associating with another monomer (green) to form a stable dimer as the building block. It continues with further
association of dimers via the N-terminal interface of M domain to form a possible dimer of dimers (or tetramer) and a stable hexamer. The occurrence
of tetramer might represent an intermediate. In the models of MC-HSP90 dimer, tetramer and hexamer shown here, the building blocks are paired
and indicated by the labels AA9, BB9 and CC9. (B) Top view and side view of HSP90N hexamer with 12 flexible polypeptide segments hanging around
the core structure. The protomers of hexameric HSP90N are represented by different colors, green, orange, blue, yellow, red, and megenta. The N-
terminal hydrophilic extension and C-terminal tail of the yellow protomer are labeled.
doi:10.1371/journal.pone.0019961.g007
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amino acids at residues 12–30 (Figure 4A). Based on the above

conclusions derived from the sedimentation velocity experiments

and the predictions of transmenbrane helix, a model was

constructed for the quaternary structure of HSP90N. In the

model (Figure 7B), six protomers of HSP90N with N-terminal

extension and C-terminal tail are assembled into a hexameric

structure, which has an architecture of triangular bipyramid

geometry as was observed for the MC-HSP90 hexamer. The core

structure is built by middle and C-terminal domain comprise

residues 294 to 695 from the six protomers, The N-terminal

extensions with the transmembrane helix are extended from the

N-terminus of M domain around the cental 3-fold axis, three

segments facing up and the other three facing down. The C-

terminal tails extend from the dimerization domain toward the rim

of the hexamer.

Discussion

It is well established that HSP90 C-terminal domain is required

for its dimerization [21], and the dimer is the building block of its

oligomeric structures [18,23]. On the structural level, the HSP90

oligomerization process was not clearly understood. In this study,

we describe the hexameric structures of N-terminal truncated

human HSP90, MC-HSP90 and MC-HSP90-Ct crystallized in

four crystal forms, P21, C2221, R32 and P6322, which have six,

three or one molecules in their asymmetric unit. The protein

molecules were assembled into a virtually identical hexameric

structure with triangular bipyramid geometry in all crystal forms.

Other similar hexameric architecture had been observed in the

crystal structures of N-terminal truncated yeast HSP82 (PDB:

2CGE) and Leishmania major HSP83-1 (PDB: 3HJC), which have

rmsd of 1.167 Å for 262 atoms (Figure 3D and Video S1) and

1.066 Å for 319 atoms when compared with the MC-HSP90

hexamer (P21 crystal form), respectively. However, this kind of

hexamer structure was not present in the crystal structure of N-

terminal truncated GRP94 (PDB: 2O1T). The triangular-

bipyramid hexamer is assembled by using six MC-HSP90

molecules. The C-terminal dimerization and the interactions from

the M domain contact make the formation of MC-HSP90

hexamer; each protomer provides the interface of about 1267 Å2

and 531 Å2 for the dimerization of MC-HSP90 monomer and

trimerization of MC-HSP90 dimer. Presumably dimerization

occurs prior to trimerization for hexamerization. The residues

W320 and R346 play the key roles for associating MC-HSP90

dimers into the hexamer. These two residues are conserved in

other 90-kDa heat shock proteins, including yeast HSP82 and

Leishmania major HSP83-1, but not found in canine GRP94, these

two redidues are Ser in GRP94 (Figure 4B and 4C).

In fact, W320 of human HSP90, equvalent to W300 of yeast

HSP82, was found to be required for interaction with the client

protein PKA/AKt [24]. W320 packs against the W19 and Y23 of

Aha1 in the M-HSP90-N-Aha1 complex structure [25], and the

binding site was involved in N and M domain conmunication in

yeast HSP82 with similar interactions (Figure 5). The aromatic

side chain of F200 in the N-terminal domain has hydrophobic

interactions with the pocket formed by T273, P275, W277, F292

and Y344 in the middle domain [3]. These residues in the 90-kDa

heat shock chaperones are hightly conserved in many species

(Figure 4C). In human HSP90, the hydrophobic pocket formed by

P295, W297 and F312 may allow binding to the residue F213

(conserved as F200 in yeast HSP82) for the N and M domain

communication. In addition, the pocket provides a specific

concave site for MC-HSP90 oligomerization. That the mutant

W320A showed a shift toward dimer formation but the tetramer

and hexamer did not disappear suggests the conservation of an

intact hydrophobic pocket, which can still interact with the alanine

side chain, although in a significantly weaker manner.

Hydrodynamic analysis indicated that MC-HSP90 has three

oligomer states in solution. The crystal structures and the program

HYDROPRO predictions indicate that the three states are dimer,

tetramer and hexamer. These even-numbered oligomers are the

main species observed. The architecture for each oligomer states of

MC-HSP90 are shown in Figure 6A. In the oligomerization process,

two MC-HSP90 molecules associated into a stable dimer by their C-

terminal domain. The dimer structure is the building block of MC-

HSP90 oligomers. Two MC-HSP90 dimers can associate into a

tetramer by their N-terminal contacts of M domain. After the

tetramer intermediate state is formed, the third dimer can insert into

the tetramer to form the complete hexamer with triangular

bipyramid geometry. HSP90 oligomerizes into tetramers and

hexamers at high temperature, and the even-numbered oligomers

seem to be active in binding and chaperoning unfolded proteins

[15]. HSP90 existing as oligomers in the cytosol had been

demonstrated, and that MC-HSP90 dimer oligomerizes into

tetramer and hexamer is in agreement with previous reports. The

truncated form carrying residues 290–732 of HSP90a tended to

form oligomers even without heat treatment, and the C-terminal

200 amino acids were capable of forming oligomers [14]. The heat-

induced oligomerization occurs upon the heat treatment at 50uC,

and ATP and ADP inhibit the oligomerization by stabilizing a

dimeric structure of HSP90 that is less sensitive to heat [23]. High

temperatures usually increase the entropy and promote the

hydrophobic interactions between proteins. It has been pointed

out that HSP90 oligomerization at high temperature may be driven

by hydrophobic interactions [23]. The hydrophobic contacts as

shown above between the side-chains of non-polar residues in the M

domain may represent one of the specific temperature-sensitive

interactions to modulate the oligomerization of HSP90.

Lacking the ATPase domain, two MC-HSP90 molecules are

associated into an ‘‘open’’ form dimer by its C-terminal helices

(residues 640–695), and the C-terminal tail truncated MC-HSP90-

Ct in the hexagonal crystal also has the open-form dimer (data not

shown). The open-form dimer is required for hexamer packing

and is responsible for the ATPase-coupled molecular clamp

mechanism of HSP90 chaperone [3], whose opening and closing

by transient N-terminal dimerization are directly coupled to the

ATPase cycle [2], and also involves the co-chaperone p23/Sba1

recruitment [3]. The N domain and M domain of HSP90 are

separated by a flexible link of about 60 residues, thus the

interactions between these two domains are essential for the

formation of close-form HSP90. The linker allows N-domain

movements for different intersubunit interactions.

Table 2. Sedimentation coefficient results and molecule
weights.

MC-HSP90
MC-HSP90
W320A HSP90N

Sa S MWb S MWb S MWb

Dimer 5.71 5.33 94.4 5.42 92.6 6.27 118.8

Tetramer 8.92 8.34 189.6 8.16 185.0 8.70 205.0

Hexamer 11.87 11.61 299.1 10.84 278.6 10.20 280.4

aThe S values predicted by atomic coordinates model of MC-HSP90 using the
software HYDROPRO.

bThe calculated molecular weights by sedimentation velocity experiments.
doi:10.1371/journal.pone.0019961.t002
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HSP90N also shows three oligomer states in solution. It lacks

the N-terminal ATPase domain and contains the amino acids

224–732 of HSP90a. But it retains the linker and has an additional

hydrophobic segment at its N-terminus. Based on the crystal

structure and hydrodynanic properties of MC-HSP90, the three

oligomer forms should be the dimer, tetramer and hexamer and

have similar quaternary structures to MC-HSP90. The hexameric

structure of HSP90N reconstructed by modeling is shown in

Figure 7. HSP90N hexamer has a similar core structure as MC-

HSP90, but the 12 flexible segments of additional N-terminal (100

residues) and C-terminal tails (35 residues) make it a disheveled

sphere, resulting in the decrease of protein density and

sedimentation coefficients in the hydrodynamic analysis. In the

present study of MC-HSP90 and HSP90N, it is shown that in the

lack of ATPase domain HSP90 self-oligomerizes into a hexameric

structure, and the presence of N-terminal transmembrane segment

does not affect the oligomerization of MC domains at room

temperature. Heat-induced oligomerization is affected by the

modulators ATP and ADP that are known to bind to the ATPase

domain and affect HSP90 function [23]. Thus, the ATPase

domain may play a central role in the heat-induced oligomer

dissociation for its chaperone function.

In summary, we have determined the crystal structures of

middle and C-terminal domain (MC-HSP90) of human HSP90a.

The structure reveals a hexameric assembly with triangular

bipyramid geometry, in which the building block is a dimer. In

addition to the four-helix bundle formed by the C-terminal

dimerization domain, the residue W320 and the hydrophobic

pocket in the middle domain provide the major interactions for the

oligomerization. Size exclusion chromatography and analytical

ultracentrifugation experiments indicated that MC-HSP90 not

only forms the functional dimer, but also exists in tetrameric and

hexameric states in solution. HSP90N in the dimer, tetramer and

hexamer states were also elucidated here. The hexamer structure

of MC-HSP90 presented here illustrates the possible oligomer

structures of HSP90N. For cancer therapies, inhibitor/drug

development has been focused on inhibition of the N-terminal

ATPase domain of HSP90, such as the purine mimetic PU24FC1,

geldanamycin (GA) and 17-allylamino-17demethoxygeldanamycin

(17-AAG) [26]. Here, the hexameric structure of MC-HSP90

reveals the possible oligomeric states of HSP90 for its chaperone

activity. The interaction sites at oligomerization and domain

communications could be the new targets for structure based

design of anti-cancer drugs to inhibit the HSP90 and HSP90N

activity.

Materials and Methods

Preparation of MC-HSP90, MC-HSP90-Ct, and HSP90N
For HSP90 production, a pCMV6-XL5 plasmid (OriGene

Technologies, Inc) containing a full length cDNA of the human

heat shock protein 90a gene (NM_005348.2) was used as the initial

DNA template. The DNA fragments of HSP90 with an N-terminal

Factor Xa cleavage site and a C-terminal His-tag were generated

using PCR amplification with primers 59-CGCGGATCCAT-

TGAGGGTCGCGCTGCTATGCCTGAGGAAACCC-39 (for-

ward, encoding the Factor Xa cleavage site and two extra Ala

residues (underlined)) and 59-CCGCTCGAGT TAGTGATGGT-

GATGGTGATGGTCTACTTCTTCCATG-39 (reverse, encod-

ing the C-terminal His-tag (underlined)), and then cloned into a

pGEX-6p-1 vector (GE Healthcare) at the BamH I and Xho I sites.

This full length HSP90 construction (residues 1–732), termed

pGEX-6p-1-HSP90, was used as the DNA template for making the

plasmids of MC-HSP90 (pGEX-6p-1-MC-HSP90), MC-HSP90-Ct

(pGEX-6p-1-MC-HSP90-Ct) and HSP90N (pGEX-6p-1-HSP90N).

The gene encoding MC-HSP90 (residues 293–732) and MC-

HSP90-Ct (residues 293–697) were cloned using the same

forward primer (59-CGCGGATCCATTGAGGGTCGCGCT-

GCTACAAAGCCCATCTGG-39) which also encodes a Factor

Xa cleavage site and two extra Ala residues. The HSP90N

plasmid (pGEX-6p-1-HSP90N) was constructed by overlap

PCR method, using six forward primers (59-TTATTTTCTT-

TATTGGAGTTATTTTAAGGAACGTGATAAAGAAGTAA-

GCGATGATGAGGC-39, 59-GTAAAGTTGAATGTAGTTT-

TCTTTATTTTCTTTATTGGAGTTATTTTAAGGAACG-39,

59-GTAATTGTAATTTTTGTGTTAGTAAAGTTGAATGT-

AGTTTTCTTTATTTTCTTTATTGG-39, 59-GGGTGAAAA-

AGCAAGTTATTGTAATTGTAATTTTTGTGTTAG-39, 59-

CGCGCTGCTATGGGTGAAAAAGCAAGTTATTGTAAT-

TG-39 59-CGCGGATCCATTGAGGGTCGCGCTGCTATG-

GGTGAA-39) to synthesize the DNA encoding the Factor Xa

cleavage site, the extra Ala residues, and the 30 N-terminal

amino residues of HSP90N. In both constructs of pGEX-6p-1-

MC-HSP90 and pGEX-6p-1-HSP90N, the pGEX-6p-1-HSP90

plasmid was used as the initial template, and a reverse primer,

59-CCGCTCGAGT TAGTGATGGTGATGGTGATGGTC-

TACTTCTTCCATG-39 was used. For pGEX-6p-1-MC-

HSP90-Ct a different reverse primer of 59-CCGCTCGAGT-

TAATGGTGATGATGGTGATGGTGATGACCCAGACCA-

AG -39 was used. Mutagenesis of MC-HSP90 W320A was

made using the Quick-change site directed mutagenesis kit

(Stratagene) on the recombinant plasmid pGEX-6p-1-MC-

HSP90 with the following pair of oligonucleotides: forward,

59-GAG CTTGACCAATGACGCTGAAGATCACTTGGCA-

G-39; reverse, 59-CTGCCAAGTGATCTTCAGCGTCATTG-

GTCAAGCTC-39.

Each of the HSP90 plasmids (pGEX-6p-1-MC-HSP90, pGEX-

6p-1-MC-HSP90-Ct, and pGEX-6p-1-HSP90N) was transformed

separately into Escherichia coli BL21 (DE3) cell (Novagen) for

protein overexpression. MC-HSP90 protein was pre-purified by

chromatography using a nickel-nitrilotriacetic acid (Ni-NTA)

column (Qiagen) and a glutathione column (GSTrap FF, GE

Healthcare). The glutathione S-transferase (GST) -tagged protein

was digested by Factor Xa protease at 4uC for 24 hours in

150 mM NaCl and 50 mM Tris, pH 8.0, and then the cleaved

MC-HSP90 was separated by ion-exchange chromatography on a

HiTrapTM 26/10 QFF column (GE Healthcare). The protein was

eluted at 350–400 mM NaCl, 50 mM Tris-HCl, pH 8.0.

Uncleaved MC-HSP90 and free GST were eliminated by flowing

through a GSTrap FF column, and pure MC-HSP90 was

collected in the flow-through fractions. The MC-HSP90-Ct and

HSP90N proteins were purified by similar protocols, in which the

first gluthathione column was omitted in both cases and the QFF

column was replaced by a second Ni-NTA column for MC-

HSP90-Ct. The mutant protein W320A was expressed and

pufiried as was the wild-type MC-HSP90. The purified proteins

were then dialyzed against a solution of 50 mM Tris-HCl, pH 8.0,

1 mM EDTA and 1 mM dithiothreiol (DTT), and then

concentrated using a 30 kDa filter (Amicon Ultra filter, Millipore)

to about 12 mg/ml for stock at 280uC.

Crystallization and Data Collection
The crystals of MC-HSP90 were grown by the sitting-drop

vapor diffusion method. A solution of 2.5 M ammonium sulfate,

and 0.1 M Tri-sodium citrate at pH 5.4–5.8 was used as the

reservoir. Three crystal forms C2221, P21 and R32 were obtained

using different crystallization droplet preparations. For the C2221

and P21 crystals, the protein solutions were pre-incubated with
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solutions containing the platinum additive cis-dichloro(ethylene-

diamine)platinum (II) and cisplatin, respectively, at a molar ratio of

1:2 for one hour at 20uC. The mixed protein-Pt solutions (1.5 ml)

were then combined with the reservoir (1.0 ml) for crystallization

droplet set-up. The crystallization droplet of R32 crystal were

prepared by mixing 1.5 ml of the protein solution with 1 ml

reservoir solution and 0.5 ml additive solution, Silver Bullets

No. 18 which contains 0.33% w/v 2,6-Naphthalenedisulfonic acid

disodium salt, 0.33% w/v 2-Aminobenzenesulfonic acid, 0.33%

w/v m-benzenedisulfonic acid disodium salt, and 0.02 M HEPES

sodium pH 6.8 (Hampton Research). MC-HSP90-Ct crystals were

crystallized in the P6322 space group, with a reservoir solution of

2.6 M ammonium sulfate, 0.1 M Tri-sodium citrate at pH 5.0 and

the additive solution of Silver Bullets No. 70 (0.2% w/v anthrone,

0.2% w/v benzidine, 0.2% w/v N-(2-acetamido)-2-aminoethane-

sulfonic acid, 0.2% w/v phenylurea, 0.2% w/v b-Alanine, 0.02 M

HEPES sodium pH 6.8) (Hampton Research). All crystals were

flash-frozen with 13–15% glycerol (vol/vol) as a cryo-protectant

and the diffraction patterns were recorded at cryogenic temper-

atures. The diffraction data of C2221, P21 and R32 crystals of MC-

HSP90 were collected at the wavelength of 1.000 Å from the

synchrotron beamline NW12 of Photon Factory (PF) in Japan,

using an ADSC Quantum-210 charge-coupled diode (CCD)

detector. Data of the P6322 crystal of MC-HSP90-Ct were

collected at the wavelength of 0.900 Å from the synchrotron

beamline BL44XU of SPring-8 in Japan, using an MX-225 CCD

detector. All data were processed and scaled using the program

HKL2000 [27].

Structure Determination and Refinement
The C2221 crystal structure was determined by molecular

replacement using the program Molrep of the CCP4 program

suite [28] and the structure of yeast HSP82 MC domains (2CGE)

was used as a search model. The orthorhombic crystal form has

three molecules in an asymmetric unit.

The P21 and R32 crystal structures of MC-HSP90 and the

P6322 crystal structure of MC-HSP90-Ct were solved using

Molrep, with the partially refined C2221 crystal structure as the

search model. The monoclinic crystal form has six monomers in

an asymmetric unit, and both rhombohedral and hexagonal

crystal forms have one molecule in an asymmetric unit.

Throughout the refinement, 5% of randomly selected data were

set aside for cross validation with Rfree values. Manual

modifications of the models were performed using the program

XtalView [29] and Coot [30]. Difference Fourier (Fo-Fc) maps

were calculated to locate the solvent molecules.

The C2221 crystal structure was refined for individual atomic

positions and temperature factors, and the model yielded Rwork/

Rfree values of about 22/27 using the program Crystallography

and NMR System (CNS) version 1.2 [31]. The models derived

from the CNS refinement were further refined using Refmac5

[32], including individual isotropic B-factor refinement and

translation-libration-screw (TLS) refinement [33] and yielding

Rwork/Rfree values of 20.9/25.2.

The monoclinic crystal structure was refined with strong NCS

restraints and refined to Rwork/Rfree values of 24/30 for all data at

3.05 resolution. After addition of solvent molecules, NCS restraints

were removed and the model was refined for individual atomic

positions and temperature factors, yielding Rwork/Rfree values of

about 23/28 using the program CNS. The model was further

refinemet using Refmac5, including individual isotropic B-factor

refinement and TLS refinement, from which the Rwork/Rfree values

of 20.4/25.9 were obtained.

Data collection and final model statistics are shown in Table 1.

The molecular figures were produced by using UCSF Chimera

[34]. The atomic coordinates and structure factors of the C2221

and P21 crystal structures have been deposited in the Protein Data

Bank with accession codes 3Q6M and 3Q6N, respectively.

Size Exclusion Chromatography
The protein solutions (100 ml) of MC-HSP90 and HSP90N at

final concentrations of 7–10 mg/ml were loaded separately onto a

Sephacryl S-300 HR (GE Healthcare) size exclusion chromatog-

raphy column of 1 cm6120 cm (Econo-column, Bio-Rad). The

column was equilibrated with a buffer solution of 50 mM Tris-

HCl, pH 8.0, and eluted at a flow rate of 0.5 ml/min at room

temperatures. OD280 was monitored for the eluted solution. The

elution volume corresponding to each oligomer types were then

selected for analytical ultracentrifugation analysis. Thyroglobulin

(669 kDa), aldolase (158 kDa) and ovalbumin (43 kDa) included in

the Gel Filtration Calibration Kits (GE Healthcare) were used as

the markers to estimate the molecular weight.

Analytical Ultracentrifugation
Sedimentation velocity (SV) experiments were performed at

45,000 rpm using a 4-hole AnTi60 rotor at 20uC in a Beckman

Optima XL-I AUC equipped with absorbance optics. The MC-

HSP90 and HSP90N samples collected from the gel-filtration

column were diluted to a final concentration of 0.3 mg/ml using

100 mM Tris-HCl buffer. Standard 12-mm aluminum double-

sector centerpieces were filled with protein solution, and the

reference cell contained the blank buffer. Quartz windows were

used with absorbance optics (OD280) in a continuous mode

without averaging. No time interval was set between scans. Data

were analyzed with a c(s) distribution of the Lamm equation

solutions calculated by the program SEDFIT Version 12.1b

(http://analyticalultracentrifugation.com). The software Sednterp

(http://www.jphilo.mailway.com) was used to estimate protein

partial specific volume (Vbar), buffer density (0.99966 g/ml) and

buffer viscosity (0.010167 poise) at 20uC. The Vbar value of MC-

HSP90 is 0.7375 ml/g, and that for HSP90N is 0.7342 ml/g. For

the sedimentation coefficient (S) values predictions of MC-HSP90

oligomer states, the atomic coordinate models of MC-HSP90

dimer, tetramer and hexamer were extracted from the P21 crystal

structure and were used to calculate the S values by the software

HYDROPRO, in which all user adjustable parameters were left at

the default values [22].

In-gel Protein Digestion and Mass Spectrometry
The protein bands on a 1D SDS-PAGE gel were manually

excised to dehydrate with acetonitrile for 10 mins, vacuum dried,

rehydrated with 55 mM DTE in 25 mM ammonium bicarbonate,

pH 8.5, at 37uC for 1 h, and subsequently alkylated with 100 mM

iodoacetamide in 25 mM ammonium bicarbonate, pH 8.5, at

room temperature for 1 h. The pieces were then washed twice

with 50% acetonitrile in 25 mM ammonium bicarbonate, pH 8.5

for 15 min each time, dehydrated with acetonitrile for 10 min,

dried, and rehydrated with a total of 25 ng of sequencing grade,

modified trypsin (Promega, Madison, WI) in 25 mM ammonium

bicarbonate, pH 8.5, at 37uC for 16 hr. Following digestion,

tryptic peptides were extracted twice with 50% acetonitrile

containing 5% formic acid for 15 mins each time with moderate

sonication. The extracted solutions were pooled and evaporated to

dryness under vacuum. For MALDI-MS, the samples were pre-

mixed 1 : 1 with a matrix solution (5 mg/ml cyano-4-

hydroxycinnamic acid in 50% acetonitrile, 0.1% v/v TFA, and

2% w/v ammonium citrate) and spotted onto a 96-well format
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MALDI sample plate. The data-directed obtain on the quadrupole

time-of-flight (Q-TOF) Ultimat MALDI instrument.

Membrane Topology Prediction and 3D Modeling
The amino acid sequence for HSP90N (ACCESSION:

AAC25497) was downloaded from GenBank (http://ncbi.nlm.

nih.gov). The web-versions of three different topology prediction

methods were used to predict the topology of N-terminal residues

1–100 of the HSP90N protein: HMMTOP (http://www.enzim.hu/

hmmtop/), TMHMM (http://www.cbs.dtu.dk/services/TMHMM-

2.0/), and TMpred (http://bioweb.pasteur.fr/seqanal/interfaces/

toppred.html). All these methods were used in the single sequence

mode and all user adjustable parameters were left at their default

values. Graphics of the 3D models of the hexameric HSP90N was

produced with UCSF Chimera [34] using the solved MC-HSP90

hexamer structure of the P21 crystal as a template.

Supporting Information

Video S1 Hexamer structural comparison. The video

shows the superposition of human MC-HSP90 hexamer and the

N-terminal truncated yeast HSP82 (PDB: 2CGE) hexamer. The

protomers of human MC-HSP90 in the same dimer are colored in

blue and orange, and all protomers of yeast HSP82 are colored in

green.

(MOV)
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19. Jakob U, Meyer I, Bügl H, André S, Bardwell JC, et al. (1995) Structural

organization of procaryotic and eucaryotic Hsp90. Influence of divalent cations

on structure and function. J Biol Chem 270: 14412–14419.

20. Dollins DE, Warren JJ, Immormino RM, Gewirth DT (2007) Structures of

GRP94-nucleotide complexes reveal mechanistic differences between the hsp90

chaperones. Mol Cell 28: 41–56.

21. Minami Y, Kimura Y, Kawasaki H, Suzuki K, Yahara I (1994) The carboxy-

terminal region of mammalian HSP90 is required for its dimerization and

function in vivo. Mol Cell Biol 14: 1459–1464.

22. Garcı́a De La Torre J, Huertas ML, Carrasco B (2000) Calculation of

hydrodynamic properties of globular proteins from their atomic-level structure.

Biophys J 78: 719–730.

23. Chadli A, Ladjimi MM, Baulieu EE, Catelli MG (1999) Heat-induced

oligomerization of the molecular chaperone Hsp90. Inhibition by ATP and

geldanamycin and activation by transition metal oxyanions. J Biol Chem 274:

4133–4139.

24. Sato S, Fujita N, Tsuruo T (2000) Modulation of Akt kinase activity by binding

to Hsp90. Proc Natl Acad Sci U S A 97: 10832–10837.

25. Meyer P, Prodromou C, Liao C, Hu B, Roe SM, et al. (2004) Structural basis for

recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery.

EMBO J 23: 1402–1410.

26. Koga F, Kihara K, Neckers L (2009) Inhibition of cancer invasion and

metastasis by targeting the molecular chaperone heat-shock protein 90.

Anticancer Res 29: 797–807.

27. Otwinowski Z, Minor W (1997) Processing of x-ray diffraction data collected in

oscillation mode. Methods Enzymol 276: 307–326.

28. Bailey S (1994) The CCP4 suite: programs for protein crystallography. Acta

Crystallogr. D Biol Crystallogr 50: 760–763.

29. McRee DE (1999) XtalView/Xfit – a versatile program for manipulating atomic

coordinates and electron density. J Struct Biol 125: 156–165.

30. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics.

Acta Crystallogr D Biol Crystallogr 60: 2126–2132.

31. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, et al. (1998)

Crystallography and NMR system: a new software suite for macromolecular

structure determination. Acta Crystallogr D Biol Crystallogr 54: 905–921.

32. Murshudov GN, Vagin AA, Dodson EJ (1997) refinement of macromolecular

structures by the maximunlikelihood method. Acta Crystallogr D Biol Crystal-

logr 53: 240–255.

33. Winn MD, Isupov MN, Murshudov GN (2001) Use of TLS parameters to model

anisotropic displacements in macromolecular refinement. Acta Crystallogr D Biol

Crystallogr 57: 122–133.

34. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al.

(2004) UCSF Chimera–A visualization system for exploratory research and

analysis. J Comput Chem 25: 1605–1612.

Structure of Human HSP90

PLoS ONE | www.plosone.org 14 May 2011 | Volume 6 | Issue 5 | e19961


