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Abstract 

Background:  Prostate cancer (PCa) is a fatal malignant tumor among males in the world and the metastasis is a 
leading cause for PCa death. Biomarkers are therefore urgently needed to detect PCa metastatic signature at the early 
time. MicroRNAs are small non-coding RNAs with the potential to be biomarkers for disease prediction. In addition, 
computer-aided biomarker discovery is now becoming an attractive paradigm for precision diagnosis and prognosis 
of complex diseases.

Methods:  In this study, we identified key microRNAs as biomarkers for predicting PCa metastasis based on network 
vulnerability analysis. We first extracted microRNAs and mRNAs that were differentially expressed between primary 
PCa and metastatic PCa (MPCa) samples. Then we constructed the MPCa-specific microRNA-mRNA network and 
screened microRNA biomarkers by a novel bioinformatics model. The model emphasized the characterization of sys-
tems stability changes and the network vulnerability with three measurements, i.e. the structurally single-line regula-
tion, the functional importance of microRNA targets and the percentage of transcription factor genes in microRNA 
unique targets.

Results:  With this model, we identified five microRNAs as putative biomarkers for PCa metastasis. Among them, 
miR-101-3p and miR-145-5p have been previously reported as biomarkers for PCa metastasis and the remaining three, 
i.e. miR-204-5p, miR-198 and miR-152, were screened as novel biomarkers for PCa metastasis. The results were further 
confirmed by the assessment of their predictive power and biological function analysis.

Conclusions:  Five microRNAs were identified as candidate biomarkers for predicting PCa metastasis based on our 
network vulnerability analysis model. The prediction performance, literature exploration and functional enrichment 
analysis convinced our findings. This novel bioinformatics model could be applied to biomarker discovery for other 
complex diseases.
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Background
Prostate cancer (PCa) is one of the common malignant 
tumors worldwide. In western countries, it has become 
the second major cause of cancer death among men [1]. 
The incidence and mortality of this disease were also 
increasing in Asia during the last decade [2]. At present, 
the degree of PCa is stratified as low- or high-risk based 
on the Gleason score, prostate-specific antigen level and 
other clinical indices. However, such classification seems 
to be insufficient to monitor PCa progression, especially 
at the time of metastasis initiation [3]. The early detec-
tion of PCa metastatic signature is crucial for evaluat-
ing PCa outcome, therefore screening key molecules as 
biomarkers for predicting PCa metastases is of clinical 
significance.

MicroRNAs are a group of endogenous, small non-
coding RNAs with approximately 22–24 nucleotides in 
length [4]. They regulate gene expression through base-
paring with target messenger RNAs (mRNAs) at the post-
transcriptional level and thereby play important roles in 
a number of important cellular processes [5]. Extensive 
efforts have been made to identify reliable microRNAs 
as biomarkers because microRNAs are remarkably sta-
ble and specific to be detected in tissues, blood as well as 
other bodily fluids [6–8]. The expression level of circulat-
ing microRNAs also exhibits characteristic alteration in 
individuals with different pathological settings [9].

Currently, substantial investigations are devoted to 
discovering microRNA biomarkers for PCa metastasis 
evaluation, most of which are experimental. Firstly the 
differentially expressed (DE) or dysregulated microR-
NAs from large-scale microRNA expression data were 
extracted as outliers and then the candidates were further 
validated by low-throughput experiments, such as real-
time PCR, etc. [3, 10, 11]. Although experimental meth-
ods are powerful enough to detect the abnormal change 
of microRNA expression between different condition 
groups, e.g., primary PCa (PPCa) and metastatic PCa 
(MPCa) [12], it is not easy to identify the driver or key 
molecules at the systems level. As we known, the mecha-
nism of PCa metastasis is complex, where the dysregula-
tion of microRNAs tends to be highly heterogeneous due 
to the genetic and environmental factors [13, 14].

Nowadays, computational approaches based on sys-
tems biology and network science are well performed 
on detecting microRNA or gene signatures for the diag-
nosis and treatment of complex diseases such as cancers 
[15, 16], diabetes [17] and neurodevelopmental disorders 
[18]. In particular, Zhang et al. introduced a correlation 
and clustering based framework to identify microRNA-
mRNA network modules for differentiating PPCa and 
MPCa subtypes [19]. We here aim to develop a novel 
bioinformatics method to screen single microRNA 

biomarkers for predicting PCa metastasis, which is pro-
pitious to PCa prognosis and therapy.

In our previous studies, we proposed a network-based 
bioinformatics model called Pipeline of Outlier Micro-
RNA Analysis (POMA) to detect microRNA biomarkers 
for cancer diagnosis and prognosis [20–22]. The model 
integrates microRNA/mRNA expression data with the 
structural information of microRNA-mRNA regulatory 
network. Two measurements, i.e., number of single-line 
regulation (NSR, the number of genes that uniquely reg-
ulated by a single microRNA) and transcription factor 
(TF) gene percentage (TFP, the percentage of TF genes 
targeted by a single microRNA), were defined to quantify 
the regulatory power of independent microRNAs. These 
features characterize network systems vulnerability 
because the abnormal change of unique regulatory rela-
tionships cannot be compensated by other interactions. 
Statistical evidences demonstrated that microRNAs with 
significantly high NSR and TFP values are more likely to 
be biomarkers [20, 21]. In this study, we improved and 
updated the model as MicroRNA Biomarker Discovery 
(MicroRNA-BD) by analyzing the network vulnerability 
and considering the functional importance of genes that 
are uniquely regulated by given microRNAs. We then 
applied the model to screen key microRNAs as biomark-
ers for predicting PCa metastasis. The schematic pipeline 
of the MicroRNA-BD model is shown in Fig. 1.

Methods
Data collection
The microRNA and mRNA expression dataset for bio-
marker prediction (GSE21036 [23] and GSE3325 [24]) 
were downloaded from gene expression omnibus (GEO) 
[25]. Among them, GSE21036 was generated by Agi-
lent-019118 Human microRNA Microarray 2.0 G4470B, 
and contained microRNA expression data from 142 pros-
tate tissue samples. Here 113 of the samples including 99 
PPCa and 14 MPCa were extracted for further analysis. 
The mRNA expression dataset GSE3325 was performed 
on Affymetrix Human Genome U133 Plus 2.0 Array, 
5 and 4 individual samples for PPCa and MPCa were 
selected, respectively. Moreover, another independent 
dataset GSE26964 [26] with 6 PPCa and 7 MPCa samples 
from Capitalbio mammal microRNA V3.0 platform was 
selected for result validation. The details are summarized 
in Table 1.

Besides, the previously reported PCa microRNA bio-
markers were manually collected and integrated from: 
(1) the review for PCa microRNAs by Vanacore et  al. 
[27], (2) NCBI PubMed using the retrieval terms as 
“(prostate cancer[tiab]) AND (microRNA*[tiab] OR 
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Fig. 1  The schematic pipeline for MPCa microRNA biomarker identification. LIMMA linear models for microarray data analysis; eBayes the empirical 
bayes; adj.p value adjusted p value; FC fold change; DE differentially expressed; MicroRNA-BD microRNA biomarker discovery; NSR number of 
single-line regulation; TFP transcription factor gene percentage; UTP percentage of transcription factor genes in microRNA unique targets; ROC 
receiver operating characteristic curve; GO Gene Ontology; MPCa metastatic prostate cancer

Table 1  Summary of the microRNA and mRNA dataset used in this study

PPCa primary prostate cancer; MPCa metastatic prostate cancer

Category RNA type GEO accession Platform Sample source Number 
of samples 
(PPCa/MPCa)

Prediction microRNA GSE21036 GPL8227 Prostate tissue 113 (99/14)

mRNA GSE3325 GPL570 Prostate tissue 9 (5/4)

Validation microRNA GSE26964 GPL8469 Prostate tissue 13 (6/7)
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miRNA*[tiab]) AND (biomarker*[tiab] OR marker*[tiab] 
OR indicator*[tiab] OR predict*[tiab])”.

Differentially expressed microRNAs (DE‑microRNAs) 
and mRNAs (DE‑mRNAs) extraction
The DE-microRNAs and DE-mRNAs were extracted 
based on the comparison of their expressions between 
PPCa and MPCa samples using the empirical bayes 
(eBayes) method in linear models for microarray data 
analysis (LIMMA) R package [28, 29]. The Benjamini–
Hochberg false discovery rate method was applied to 
adjust raw p values [30]. For the gene that is related to 
multiple probes, we assigned it to the probe that had the 
most significant variation across its expression profile. 
The adjusted p value (adj.p value) < 0.05 and |log2fold-
change| > 1 were chosen as the cut-off.

MPCa‑specific microRNA‑mRNA network construction
The MPCa-specific microRNA-mRNA network was 
constructed in two steps: First, a human microRNA-
mRNA network (termed as the reference network) 
was built based on both experimentally validated and 
computationally predicted microRNA-mRNA regula-
tory data. Compared with our previous work [20, 21], 
the microRNA-mRNA pairs were updated and moreo-
ver, the latest nomenclature of microRNAs in miRBase 
(Release 21) [31] was fully considered before network 
reconstruction. Here the experimental data were mined 
from miRTarBase (version 4.5) [32], TarBase (version 6.0) 
[33], miRecords (version 4.0) [34], and miR2Disease [35] 
whereas the predicted data included information from 
HOCTAR (version 2.0) [36], ExprTargetDB [37], and 
starBase (version 2.0) [38]. To reduce the false positive 
rate, microRNA-mRNA pairs validated by low-through-
put experiments, e.g, real-time PCR etc. were consid-
ered in this study while the predicted pairs were selected 

only when they existed at least in two of the three com-
putational prediction databases. In the second step, the 
DE-microRNAs and DE-mRNAs were mapped onto 
the reference to extract the MPCa-specific microRNA-
mRNA network.

Biomarker microRNA identification based on network 
vulnerability analysis
As illustrated in Fig.  2, the microRNA-mRNA relation-
ship can be classified into four types based on their 
regulatory modes. The POMA model proposed in our 
previous studies pays more attention to the single-line 
regulatory power of microRNAs and focuses on the bio-
logical functions of their targets [20, 21]. After analyz-
ing the sub-structure of microRNA-mRNA network, we 
found that microRNAs still held the potential to uniquely 
regulate genes with crucial functions, e.g., transcription 
factor (TF) genes. As an example, the TF gene G_10 in 
Fig.  2 is uniquely regulated by M_4. The alteration of 
single-line regulation is not compensated, and TFs are 
often key players in many important biological processes, 
thus it is reasonable to assume that the dysregulation of 
such regulatory patterns is more likely to alter the system 
stability and eventually cause the systematic disorder. To 
strengthen the importance of microRNA regulation on 
TF genes, we here applied a novel parameter called the 
unique-regulated TF gene percentage (UTP). Numeri-
cally, it is equivalent to the percentage of TF genes in the 
microRNA unique targets. Finally, our previous model 
POMA was improved as MicroRNA-BD to identify 
microRNA biomarkers with the following three measure-
ments for network vulnerability characterization.

Step 1:	� NSR (number of single-line regulation) meas-
urement is the number of genes that are 
uniquely regulated by a single microRNA. 

Fig. 2  Schematic description of microRNA-mRNA regulatory types. Four types were defined here, i.e., TF or non-TF genes regulated by multiple or 
single microRNAs. For example, G_1 was uniquely regulated by M_1 whereas TF gene G_5 was co-regulated by M_2 and M_3. The co-regulatory 
sites are robust since one of the regulations altered can be compensated by others. Here the unique regulatory sites, i.e., single-line regulations, 
are considered as the vulnerable structure in the network. Meanwhile, microRNAs that target more TF genes seem to be functionally important. M 
microRNA; G gene; TF transcription factor
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MicroRNAs with significantly high NSR val-
ues (p value < 0.05, Wilcoxon signed-rank test) 
were extracted based on the analysis of MPCa-
specific microRNA-mRNA network

Step 2:	� TFP (transcription factor gene percentage) 
measurement is the percentage of TF genes 
targeted by a single microRNA. MicroR-
NAs with significantly high TFP values (p 
value < 0.05, Wilcoxon signed-rank test) were 
selected from those screened in Step 1;

Step 3:	� UTP (unique-regulated TF gene percentage) 
measurement is defined as the percentage of 
TF genes in microRNA unique targets. Micro-
RNAs with UTP > 0 in Step 2 were identified as 
candidate biomarkers.

Performance evaluation
We performed the receiver-operating characteristic 
(ROC) analysis on both prediction and validation micro-
RNA datasets to evaluate the performance of identified 
microRNA biomarkers for classifying MPCa and PPCa. 
The ROC curve and the area under curve (AUC) were 
drawn and calculated for each of the identified microR-
NAs using the R package ‘epicalc’ [39]. The percentage 

of the reported MPCa microRNA biomarkers in the pre-
dicted set was defined as prediction precision to quantify 
the performance of the model.

Functional enrichment analyses
To validate the association between the targets of can-
didate microRNA biomarkers and PCa metastasis, we 
performed Gene Ontology (GO) annotation, Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [40] pathway 
analyses and Ingenuity Pathway Analysis (IPA) [41] using 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID, version 6.7) [42] and IPA program 
[41], respectively. Here the targets of identified micro-
RNA biomarkers were retrieved from human microRNA-
mRNA network and Benjamini–Hochberg method was 
used to adjust raw p values for enrichment analysis. The 
top ten significantly enriched terms (adj.p value < 0.05) 
were selected and further studied for their correlations 
with PCa metastasis through literature validation.

Results
Biomarker microRNAs for predicting PCa metastasis
A total of 67 literature reported PCa microRNA bio-
markers were manually collected (see Additional file  1). 
The human microRNA-mRNA network included 48,868 
regulatory pairs among 618 microRNAs and 9526 genes/

Fig. 3  Topological and functional characterization of reported PCa microRNA biomarkers. a NSR distribution of reported PCa microRNA biomarkers 
and all microRNAs in human microRNA-mRNA network. b TFP distribution of reported PCa microRNA biomarkers and all microRNAs in human 
microRNA-mRNA network. The statistical significance was calculated using Kolmogorov–Smirnov test. NSR number of single-line regulation; TFP 
transcription factor gene percentage; PCa prostate cancer
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mRNAs. As shown in Fig.  3, Additional files 1 and 2, 
respectively, PCa biomarker microRNAs had significant 
regulatory power in the network, which convinced the 
priori evidence for biomarker discovery [20, 21]. More-
over, more than 53.7% (36/67) of these microRNAs had 
UTP > 0, which was approximately twice greater than that 
in the whole network (27.5%, 170/618).

Based on the selected sample data, 91 DE-microR-
NAs and 970 DE-mRNAs were statistically identified. 
The MPCa-specific microRNA-mRNA network con-
tained 505 microRNA-mRNA regulatory pairs among 
65 microRNAs and 263 mRNAs (see Additional file  3). 
Seven microRNAs, i.e., miR-204-5p, miR-101-3p, miR-
145-5p, miR-198, miR-152, miR-130a-3p and miR-363-3p 
tended to have significantly high NSR and TFP values in 
MPCa-specific microRNA-mRNA network (see Addi-
tional file  4). The UTP measurements for miR-130a-3p 
and miR-363-3p are 0, therefore, the remaining five 
microRNAs, i.e., miR-204-5p, miR-101-3p, miR-145-5p, 
miR-198, and miR-152 were screened as putative bio-
markers for predicting PCa metastasis after MicroRNA-
BD filtration.

As shown in Table 2, four of the identified microRNAs, 
i.e., miR-204-5p, miR-101-3p, miR-145-5p, and miR-
152, were significantly down-regulated in MPCa group 
whereas miR-198, was over-expressed in MPCa samples 
compared with PPCa. The ROC curves for their PCa 
metastasis prediction performance were shown in Fig. 4. 
In the prediction set GSE21036 and another independ-
ent validation set GSE26964, the AUC ranged from 0.70 
to 0.99 and from 0.71 to 0.93, respectively. Overall, miR-
145-5p, miR-204-5p, and miR-152 achieved the best per-
formance (AUC > 0.80) on PPCa and MPCa subtyping, 
and the AUC distribution of the five microRNAs in two 
datasets was highly consistent, which indicated the pre-
dictive power of the identified microRNA biomarkers for 
discriminating between MPCa and PPCa.

Literature validation of the identified microRNA 
biomarkers
All of the five microRNAs were involved in PCa patho-
genesis according to PubMed literature reports. In par-
ticular, two microRNAs (40%, 2/5), i.e., miR-145-5p and 
miR-101-3p, have been reported as potential biomark-
ers for human PCa metastasis [27, 43, 44]. As a tumor 
suppressor microRNA, the down-regulation of miR-
145 (namely miR-145-5p) could cause cell invasion and 
migration in PCa progression [27]. Huang et al. showed 
that miR-145 regulated the characteristics of cancer stem 
cells and played important roles in the progression of PCa 
bone metastasis [45]. Moreover, miR-145 is a direct target 
of p53, and the loss of wild-type p53 could promote PCa 
bone metastasis by partially repressing miR-145 expres-
sion [46]. Chakravarthi et  al. showed that the loss of 
miR-101 (namely miR-101-3p) may affect the expression 
of SUB1 and lead to the activation of known oncogenes 
driving PCa metastasis [47]. Besides, miR-204-5p and 
miR-152 were also associated with PCa progression and 
metastasis. Lin et  al. [48] found that miR-204-5p was a 
tumor suppressor and could promote apoptosis through 
regulating BCL2 in PCa cells. Todorova et  al. studied 
the effect of miR-204 (namely miR-204-5p) modula-
tion on important TFs for PCa bone marrow metastasis 
and uncovered that this microRNA was dysregulated in 
MPCa in vitro [49]. Theodore et al. analyzed the micro-
RNA expression profile data and found the ethnic differ-
ence of miR-152 expression between African American 
(AA) and Caucasian PCa patients. On the other hand, 
the epigenetic regulation of miR-152 and DNMT1 may 
contribute to the aggressiveness of PCa tumors, espe-
cially to AA PCa patients [50]. Last but not least, miR-
198 was found to be up-regulated in high grade (Gleason 
score ≥ 8) PCa tumors, which would help recognize the 
aggressive behavior of PCa [51]. However, the filtered 
two microRNAs, i.e., miR-130a-3p and miR-363-3p, did 
not show any reliable correlation with PCa metastasis 
so far. In summary, MicroRNA-BD outperformed pre-
vious models and improved the microRNA biomarker 

Table 2  Details for the identified microRNA biomarkers

PPCa primary prostate cancer; MPCa metastatic prostate cancer; adj. p value adjusted p value; FC fold change; NSR number of single-line regulation; TFP transcription 
factor gene percentage; UTP percentage of transcription factor genes in microRNA unique targets

microRNA ID Adj.p value (PPCa vs 
MPCa)

log2 (FC) Target number NSR TFP UTP

miR-204-5p 3.43E−08 − 2.0896 21 13 0.2857 0.3846

miR-101-3p 1.26E−08 − 1.0684 24 3 0.2917 0.3333

miR-145-5p 8.00E−25 − 3.2157 12 3 0.2500 0.3333

miR-198 7.67E−05 1.2564 12 5 0.3333 0.2000

miR-152 3.67E−08 − 1.0146 17 6 0.2941 0.1667
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prediction precision from 28.6% (2/7) to 40% (2/5) in this 
case study.

We further evaluated the relationship between the tar-
gets of identified microRNA biomarkers and PCa metas-
tasis. As illustrated in Fig. 5, the TF gene STAT1, which 
was uniquely regulated by miR-145-5p in the MPCa-
specific microRNA-mRNA network, could be activated 
by Endoglin. In the study, Endoglin was shown to sup-
press the cell invasion of PCa and inhibit PCa metasta-
sis [52]. Meanwhile, several uniquely-regulated non-TF 
genes, such as DDR2 and MRC2, also participated in the 
PCa metastatic progression [53, 54]. For instance, DDR2 
regulated the promoter activity of parathyroid hormone-
related protein and thereby facilitated the bone metasta-
sis of PCa [53]. In addition, EMP1 suppressed PCa cell 
proliferation and invasion by regulating caspase-9 and 
VEGFC protein [55], and it was co-regulated by miR-
101-3p, miR-204-5p and miR-152 in the network. Some 
other co-regulated genes, including PTEN and MYC, 
were also functional during PCa evolution [56, 57].

Gene ontology (GO) annotation
The GO analysis was performed using the online tool 
DAVID at three levels, i.e., biological process (BP), cel-
lular component (CC), and molecular function (MF). 
The statistically significant terms (adj.p value < 0.05) of 
each level were summarized in Additional file  5. Here 
we mainly focused on the top ten significantly enriched 
terms for in-depth analyses. As shown in Table 3, at the 
BP level, the most significant terms were closely relevant 
to cell cycle, metabolic processes and cell death. Accumu-
lating evidence demonstrated that a number of genes as 
well as non-coding RNAs played functions in PCa metas-
tasis by dramatically activating or inhibiting the cell cycle 
process [58–60]. Wang et  al. analyzed the gene expres-
sion data of castration-resistant PCa and found that the 
identified regulatory modules were also enriched in the 
phosphorus metabolic process [61]. At the CC level, the 
enriched terms were mainly concentrated on nuclear 
lumen, nucleoplasm, and organelle lumen. Nucleophos-
min (NPM1) is a nucleoprotein and associated with 

Fig. 4  ROC analysis for the identified microRNA biomarkers. The AUC distribution in the prediction set GSE21036 and another independent 
validation set GSE26964 ranged from 0.70 to 0.99 and from 0.71 to 0.93, respectively. Red curve: GSE21036; blue curve: GSE26964. PPCa primary 
prostate cancer; MPCa metastatic prostate cancer; ROC receiver operating characteristic curve; AUC​ area under the curve
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tumor growth. Destouches et  al. showed that the phos-
phorylated NPM1 may interact with androgen receptor 
in nucleoplasm, which is biologically important in PCa 
progression [62]. At the MF level, most enriched terms 
were linked with molecular activities, including tran-
scription regulator activity, transcription repressor activ-
ity, transcription activator activity, etc. Grubb RL et  al. 
found that the transcription regulatory protein STAT3 
differed statistically in PCa with high Gleason grade (≥ 8) 
[63]. Xiao et al. showed that the loss expression of PLZF, 
a transcription repressor in oncogenesis, correlated with 
PCa tumor aggressiveness [64], which highlighted the 
functional importance of transcription repressor activity 
in PCa metastasis.

Pathway enrichment analysis
To investigate the functional mechanisms of the five 
microRNA candidates, we performed the KEGG and 
IPA pathway enrichment analysis on their targets using 
DAVID and IPA program, respectively. The significantly 

enriched terms (adj.p value < 0.05) were listed in Addi-
tional files 6 and 7, respectively. Here the top ten sig-
nificant terms were mainly selected for further literature 
exploration. As shown in Fig.  6a, the most meaningful 
KEGG terms were Axon guidance, Pathways in cancer, 
Cell cycle, Prostate cancer, and MAPK signaling path-
way. Ding et al. found that Semaphorin 4F (S4F), which 
played important roles in embryologic axon guidance, 
was a key regulator in the tumor microenvironment and 
a biomarker of aggressive PCa [65]. McNair et al. uncov-
ered that the cell cycle-coupled expansion of AR activity 
promoted the progression of PCa and was related to the 
development of PCa metastases [66]. As shown in Fig. 7, 
the targets enriched in the prostate cancer pathway had 
close relations with cell cycle. They potentially medi-
ated the process of cell proliferation and cell survival. 
Two tumor suppressors, i.e., PTEN and p27 (CDKN1B), 
which showed the prognostic or therapeutic value in PCa 
metastasis and recurrence [56, 67], were functionally reg-
ulated by the identified microRNAs. 

Fig. 5  Identified biomarker microRNAs and their targets in MPCa-specific microRNA-mRNA network. Elliptic, triangular and rectangular nodes 
represent microRNAs, TF genes and non-TF genes, respectively. Nodes in grey represent genes that are uniquely regulated by single microRNAs in 
the network. MPCa metastatic prostate cancer; TF transcription factor
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As shown in Fig. 6b, several pathways were also signif-
icantly enriched in IPA, such as molecular mechanisms 
of cancer, axonal guidance signaling, and ERK/MAPK 
signaling etc. Substantial efforts have convinced that 
the MAPK signaling was involved in the progression of 
advanced or metastatic PCa [68–70]. As illustrated in 
Fig. 8, the targets of identified biomarkers were almost 
enriched in the hubs of ERK/MAPK signaling, which 
demonstrated the regulatory power of these microR-
NAs. Chen et  al. reviewed the relation between PI3K/
AKT signaling and PCa tumorigenesis and pointed out 
that this pathway regulated tumor cell invasion during 
the metastasis of PCa cells [71]. Kassi et  al. reported 
that glucocorticoids could mediate the transcriptional 
regulation of genes which were functional in PCa cell 
growth, inflammation, differentiation, apoptosis, and 
metastasis, and the glucocorticoids receptor signaling 

participated in PCa through cross talking with other 
signaling cascades [72]. Another well-studied pathway 
associated with PCa development is TGF-β signaling. It 
is reported that the TGF-β pathway held the potential 
to maintain tissue homeostasis and was functional dur-
ing cancer cell proliferation [73]. Bonci et al. found that 
the concomitant decrease of miR-15/16 and increase 
of miR-21 could abnormally activate TGF-β signaling, 
leading to the invasion, migration and distant bone 
metastasis of PCa cells [12]. Zhang et al. demonstrated 
that the TGF-β pathway was significantly enriched by 
genes in the identified biomarker modules for PCa 
subtyping [19]. In this study, as illustrated in Addi-
tional files 7 and 8, respectively, the TGF-β signaling 
was also shown statistical significance as the target of 
the five microRNAs. Moreover, TGFBR1 and TGFBR2, 
two transforming growth factor beta receptors with 

Table 3  Top ten significant GO terms enriched by targets of the identified microRNA biomarkers

GO gene ontology; BP biological process; CC cellular component; MF molecular function; adj.p value: adjusted p value

Category GO terms Number of enriched genes Adj.p value

BP Mitotic cell cycle 60 3.52E−07

Phosphorus metabolic process 112 4.00E−06

Phosphate metabolic process 112 4.00E−06

Regulation of apoptosis 97 3.51E−06

Positive regulation of cell proliferation 61 2.83E−06

Cell cycle process 75 3.16E−06

Regulation of programmed cell death 97 2.92E−06

Regulation of cell death 97 3.02E−06

Cell cycle 93 4.11E−06

Regulation of transcription from RNA polymerase II promoter 88 6.10E−06

CC Nuclear lumen 162 1.17E−13

Nucleoplasm 110 7.25E−12

Organelle lumen 182 1.05E−11

Membrane-enclosed lumen 183 2.45E−11

Intracellular organelle lumen 176 5.37E−11

Nucleoplasm part 77 1.95E−10

Intracellular non-membrane-bounded organelle 212 5.33E−06

Non-membrane-bounded organelle 212 5.33E−06

Chromatin remodeling complex 18 3.26E−05

Nucleolus 72 1.81E−04

MF Transcription regulator activity 163 1.16E−09

Transcription repressor activity 50 1.35E−06

Transcription factor binding 67 4.45E−06

Transcription activator activity 56 1.36E−05

Transcription factor activity 100 1.41E−04

Protein kinase activity 68 5.01E−04

Transcription cofactor activity 46 1.07E−03

Protein serine/threonine kinase activity 50 3.67E−03

DNA binding 190 5.00E−03

Phosphoprotein phosphatase activity 25 8.40E−03
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the power of transferring TGF-beta signal from the 
extracellular space to the cytoplasm, were closely regu-
lated by these microRNAs, which could strengthen the 
importance of our findings.

We noticed that the targets of the identified microR-
NAs were also correlated with bladder cancer, glioma, 
pancreatic cancer and colorectal cancer, which indicated 
the similarity of pathogenesis between PCa metastasis 
and other cancers. For example, TRAP1/Hsp75 has been 
reported to be a molecular marker in metastatic PCa. Li 
et al. proved that the expression of TRAP1 was increased 

in glioma compared with its normal controls, and it could 
be a useful prognostic factor in glioma management [74]. 
The RNASEL germline variants were associated with not 
only familial PCa, but also pancreatic cancer, which indi-
cated the potential mechanisms between pancreatic can-
cer and PCa development [75].

Discussion
PCa is a commonly diagnosed cancer among males 
around the world. While the overall survival rate has 
increased these years, the metastasis is still a leading 

Fig. 6  Pathway enrichment analysis for targets of the identified microRNA biomarkers. The statistical significance level (adj. p value) was negative 
10-based log transformed. a The top ten significant KEGG terms. b The top ten significant IPA terms. adj.p value adjusted p value; KEGG Kyoto 
Encyclopedia of Genes and Genomes; IPA ingenuity pathway analysis
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cause of PCa death [76]. The early detection of metastatic 
signature is important for monitoring PCa prognosis and 
helping design personalized therapeutic strategies. It is 
widely acknowledged that microRNAs are a class of func-
tional regulators in biological processes and have good 
sensitivity and specificity to be biomarkers for disease 
initiation and progression [77].

In this study, we integrated microRNA/mRNA expres-
sion data with network structural knowledge and 
improved the bioinformatics model to screen candidate 
microRNA biomarkers for predicting PCa metastasis. 
Compared with the previous work, we updated the ref-
erence microRNA-mRNA network by carefully inte-
grating recently reported human microRNA-mRNA 
associations based on microRNA nomenclature. Besides 
the single-line regulatory power (NSR) and biological 
roles of microRNAs (TFP), we considered the functional 
importance of genes that are uniquely regulated by single 
microRNAs in this model. It is reasonable that the single-
line regulatory site in the network is relatively vulnerable 
and TFs are important regulators in various biological 
activities. The incorporative analysis of structural and 

functional characteristics in microRNA-mRNA regula-
tion would strengthen the evalutaion of microRNA regu-
latory power. Hence we defined a new parameter called 
UTP to quantify the special regulation of given micro-
RNAs, that is, the percentage of TF genes in microRNA 
unique targets.

Based on this computational model, a total of five 
microRNAs, i.e., miR-204-5p, miR-101-3p, miR-145-5p, 
miR-198, and miR-152, were identified as candidate bio-
markers for PCa metastasis prediction. Among them, 
miR-145-5p and miR-204-5p were validated as tumor 
suppressor microRNAs, and their down-regulation could 
disorder cell cycle processes and finally result in PCa 
invasion [27, 48]. More importantly, miR-145-5p and 
miR-101-3p have been reported as biomarkers for eval-
uating PCa metastasis previously [43, 44]. The remain-
ing three were also confirmed to be connected with the 
development of metastatic or high-grade PCa according 
to PubMed literature searches. Compared with POMA 
solely using NSR and TFP as filters, the MicroRNA-BD 
model improved the prediction precision from 28.6% 
(2/7) to 40% (2/5) in this case study. Furthermore, the 

Fig. 7  The prostate cancer pathway enriched in KEGG. Objects with pentagrams are acting locus by mapped genes. KEGG Kyoto Encyclopedia of 
Genes and Genomes
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AUC values for the prediction performance of the five 
microRNAs, respectively, ranged from 0.70 to 0.99 and 
from 0.71 to 0.99 in two datasets, i.e., the prediction set 
and another independent validation set, which indicated 
the power of the identified biomarkers for PCa prognosis 
and metastasis tracking.

We further investigated the pathogenic mechanisms 
of the identified microRNAs in PCa metastasis through 
GO and pathway enrichment analyses. The cell cycle 
process, for example, is one of the most significant terms 
enriched in GO and KEGG pathway, which supported 
the pivotal view of cell cycle-mediated PCa carcinogene-
sis [66, 78, 79]. The prostate cancer pathway, ERK/MAPK 
signaling, and TGF-β signaling are well-studied in PCa 

metastasis, and we found that most of the targets of iden-
tified microRNA biomarkers were the key components 
of these pathways, meanwhile, some tumor suppressor 
genes, e.g., PTEN and p27, were regulated by the iden-
tified microRNAs. In addition, the remaining pathways, 
such as axonal guidance [65], PI3K/AKT signaling [71], 
glucocorticoids receptor signaling [72], pancreatic cancer 
[75], and molecular mechanisms of cancer [80] etc., were 
all involved in PCa progression and metastasis according 
to previous reports.

Compared with the existing approaches for PCa 
metastasis investigation, our model detects micro-
RNA biomarkers based on statistical evidences from a 
combination of network sub-structural and functional 

Fig. 8  The ERK/MAPK signaling enriched in IPA. Objects with purple circles or triangles are acting locus by mapped genes. ERK extracellular 
signal-regulated kinases; MAPK mitogen-activated protein kinase; IPA ingenuity pathway analysis
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analyses. In the study of Zhang et al., five microRNA-
mRNA modules were identified for PPCa and MPCa 
respectively based on the correction and clustering 
analysis on microRNA and mRNA datasets [19]. Simi-
lar to this idea, our study also utilized microRNA-
mRNA network information. However, the network 
in our model was concentrated more as a biologi-
cal system, where special regulatory patterns altering 
its stability were concluded as the principle for bio-
marker prediction. Another major difference between 
the two approaches regards to the methodology for 
sub-network extraction. In contrast to the two types 
of network modules, i.e., PPCa- and MPCa-module, 
built in Zhang et  al. using clustering and condensing 
techniques, [19], our model constructed microRNA-
mRNA network specific to PCa metastasis in order 
to capture the changing signatures during PCa evolu-
tion, and only single microRNAs could be screened as 
candidate biomarkers for PCa subtyping. Consider-
ing the results, the miR-145-5p detected by our model 
was also involved in one of the modules in Zhang et al. 
[19], which convinced the underlying power of this 
microRNA for PCa metastasis predicting. From path-
way angles, both Zhang et al. [19] and Bonci et al. [12] 
demonstrated the importance of TGF-β signaling as 
microRNA targets in PCa progression and metastasis. 
As described in the section of ‘Pathway enrichment 
analysis’, we found that genes regulated by the five bio-
marker microRNAs were similarly enriched in TGF-β 
signaling, which indicated the pathway-level consist-
ency of results for PCa carcinogenesis decoding across 
these studies. Due to the complexity and diversity in 
PCa development, biomarker microRNAs identified by 
different methods tended to be highly heterogeneous. 
In systems biology viewpoints, living organisms are 
often treated as a holistic framework, thus identifying 
module or network biomarkers catering to the dynam-
ical nature of PCa pathogenesis for personalized prog-
nosis and treatment is our next-step action.

It should not be ignored that some limitations still 
existed in this study. Firstly, genes in the present model 
were treated equally. As we known, the importance of 
genes in different biological activities is not the same, 
more functional annotations need to be weighted rea-
sonably. Secondly, only TF genes were selected in the 
study, the specific knowledge to PCa metastasis could 
be considered in order to provide precise strategies 
for MPCa early detection and treatment. Thirdly, only 
618 microRNAs were recorded in our reconstructed 
human microRNA-mRNA network, the network scale 
should keep pace with the development of newly iden-
tified microRNA-mRNA associations. Last but the 
most important, we are trying to collect human PPCa 

and MPCa samples to further perform wet lab verifica-
tions for future carcinogenic exploration and transla-
tional application.

Conclusion
In this study, a total of five microRNAs, i.e, miR-204-5p, 
miR-101-3p, miR-145-5p, miR-198, and miR-152, were 
identified as candidate biomarkers for predicting PCa 
metastasis based on a novel bioinformatics model. The 
prediction performance, literature exploration and func-
tional enrichment analysis convinced our findings. More 
clinical validations are needed in our future translational 
application.
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