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ABSTRACT

A new method for measuring distances between
points in the AraC-DNA complex was developed and
applied. It utilizes variable lengths of single-stranded
DNA that connect double-stranded regions contain-
ing the two half-site binding sequences of AraC.
These distances plus the protein interdomain linker
distances are compatible with two classes of
structure for the dimeric AraC gene regulatory
protein. In one class, the N-terminal regulatory arm
of one dimerization domain is capable of interacting
with the DNA-binding domain on the same polypep-
tide chain for a cis interaction. In the other class, the
possible arm-DNA-binding domain interaction is
trans, where it adds to the dimerization interface.

INTRODUCTION

Much is known about the extensively studied Escherichia
coli L-arabinose operon regulatory protein, AraC (1). The
structure of its N-terminal dimerization domain including
most of its 18 residue N-terminal arm has been determined
both with and without arabinose bound (2,3), and has
been related to function of the protein in a number of
genetic and physical studies (4-8). Although the structure
of the C-terminal, DNA-binding domain of AraC has not
been directly determined, its approximate structure can be
inferred because it is homologous to the MarA and Rob
proteins, whose structures when bound to DNA have been
determined (9,10). The approximate position and relative
orientation of the two DNA-binding domains with respect
to the dimerization domains in the arabinose-free state is
also unknown. The objective of this work has been to
determine constraints on the possible positions and
orientations of these domains.

Multiple studies (7,11-15), have shown that in vivo, in
the absence of arabinose, AraC protein binds principally
to the O, and I, half-sites (Figure 1A) that are separated
by several hundred base pairs rather than binding to the
adjacent /; and I, half-sites. Such distal binding forms a
DNA loop that represses the nearby ara ppsp and pc
promoters. Binding of arabinose, deletion of the arm or
most mutations in the arm cause AraC to shift from

binding O, and I; to instead to bind to /; and I, (14,15).
Binding in this mode activates transcription of the ara
Ppap Ppromoter. In vitro, the addition of arabinose
increases the affinity of AraC protein for binding to
adjacent DNA half-sites including direct repeat half-sites,
inverted repeat half-sites and direct repeat half-sites
separated by an additional 11 base pairs (12).
Apparently, in the absence of arabinose, the N-terminal
arms play an essential role in holding the DNA-binding
domains in positions and orientations that favor looping
of DNA by binding to well separated DNA half-sites and
disfavor binding to half-sites located near one another,
(Figure 1A). Addition of arabinose frees the DNA-
binding domains and allows them to reorient and
reposition. This allows the domains to bind easily to
adjacent direct repeat half-sites and reduces the protein’s
propensity for looping.

Several additional facts are consistent with the above
picture. First, connecting the two AraC DNA-binding
domains by a peptide linker (16), or dimerizing them with
a leucine zipper (17), yields proteins that bind adjacent
half-sites and induce the ara pp4p promoter but do not
loop and repress. Second, arabinose affects the affinity of
AraC for binding to two adjacent half-sites, but has little
effect when the half-sites are connected by a flexible linker
of sufficient length (16), (Figure 1B). That is, arabinose
does not alter the intrinsic DNA-binding affinity of the
individual DNA-binding domains of AraC, whereas it
does alter their collective affinity for binding to two rigidly
connected and adjacent half-sites.

The importance and involvement of the N-terminal
arms of AraC in the arabinose response is demonstrated
by the existence of arm deletions and arm mutations that
reduce or eliminate the DNA looping (4,8,11). It is also
demonstrated by the fact that arabinose has no significant
effect on the core dimerization domain structure (2,3),
leaving changes in the N-terminal arm as the most
probable direct response to the binding of arabinose.
Overall then, it appears that the principal factor determin-
ing the DNA-binding behavior of AraC protein is the
positioning of the DNA-binding domains with respect to
the dimerization domains and that the arms play a major
role in positioning the DNA-binding domains in the
absence of arabinose. Therefore, before the molecular
and physical details of arm action on positioning the
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Figure 1. (A) Schematic of the arabinose operon in the absence of arabinose when AraC protein represses expression from pg,p by forming a loop
between the araO, and aral; half-sites. The arm—DBD interaction is represented here as cis although for convenience in drawing, the structural
details are highly stylized. The araO; site and the p promoter regulate expression of the AraC gene itself. In this representation in the presence of
arabinose, the N-terminal arms of AraC bind over arabinose, thereby freeing the DNA-binding domains to bind to the adjacent aral; and aral, half-
sites. Induction of the pg,p promoter results from this binding. (B) Illustration of how DNA with a flexible connector between two /; half-sites can
bind DNA in the presence or absence of arabinose with similar affinities. (C) Schematic structures of the head-to-tail, head-to-head and tail-to-tail
DNA constructs that are used to determine the corresponding distances in AraC.

DNA-binding domains can be studied and understood,
it is necessary to determine where the DNA-binding
domains are positioned with respect to the dimerization
domains.

In the work reported here, we develop and apply a
method involving special DNA substrates for the mea-
surement of distances between points in the AraC protein—
DNA complex. We used the method to estimate values for
three distances that separate parts of the protein-DNA
complex when the complex is in the minus arabinose state.
The acceptable ranges of the determined distances, the
length of the linker connecting the dimerization and
DNA-binding domains and the requirement that the
N-terminal arms be able to contact the DNA-binding
domains, restrict the possible positions and orientations of
the DNA-binding domains with respect to each other and
lead to two basic potential structures. In one of these, the
DNA-binding domains are positioned such that the
N-terminal arm on one dimerization domain can contact
the DNA-binding domain of the same subunit in what is
called a cis interaction. In the other, the arm on one
dimerization domain contacts the DNA-binding domain
of the other subunit for a trans interaction. In both cases,
the DNA-binding domains liec on the same side of the
protein’s core consisting of the two dimerization domains.

MATERIALS AND METHODS
Tape measure DNA

DNA oligonucleotides were from Integrated DNA
Technologies, Coralville, Towa, USA. For the head-to-
tail DNA, 1,-6-1;, the top strand was, 5-ACCCTAGCA
TTTTTATCCATAAGAC
CCATAGACCCTAGCATTTTTATCCATAAGACC.
To each end of this oligonucleotide were hybridized two
25-base oligonucleotides, leaving in the middle a stretch of
six bases of single-stranded DNA. For convenience in

describing other sequences, consider the three parts: first,
the double-stranded region with a top-strand sequence
of 5~ ACCCTAGCATTTTTATCCATAAGAC, next, the
single-stranded spacer region, 5-CCATAG, and finally,
the second double-stranded region with a top-strand
sequence of 5-ACCCTAGCATTTTTATCCATAAG
ACC. The underlined region indicates the bases of the /;
site that are contacted by AraC protein. The double-
stranded regions were made by annealing slightly less than
stoichiometric amounts of complementary sequence, 5-GT
CTTATGGATAAAAATGCTAGGGT containing the
fluorophore Cy5 on the 5 end. The 1;-12-1;, 1;-18-1; and
1;-24-1; DNA molecules were similar, but with single-
strand spacers of sequence 5-CTACTGGCATAG, 5-CT
ACTGGTTCATGCATAG and 5-CTACTGGTACCGT
CTCATGCATAG, respectively. The sequences of the
single-stranded regions were chosen to possess no second-
ary structure at the temperatures and salt concentrations
used in the experiments.

In the head-to-head DNA, I;-6-r1,, the second double-
stranded region was changed to 5-CAGCTATGGACA
TAATTGCTGACAGC by altering the sequence of the
full-length oligonucleotide, and by annealing an oligonu-
cleotide of complementary sequence as well as the
fluorescent-labeled oligonucleotide complementary to the
first double-stranded region. If the sequence of the first
double-stranded region were merely inverted to form the
sequence of the second double-stranded region on this
DNA, the long oligonucleotide would possess self-
complementary 25-base regions and the two shorter
oligonucleotides would be self-complementary as well,
both of which could greatly interfere with the formation of
the desired DNA tape measure molecule. Therefore, in the
17-base region of DNA that is contacted by AraC, four
bases that contribute little to the binding energy of AraC
were altered (18), changing the sequence of the contacted
region from 5-TAGCATTTTTATCCATA to 5-CAG
CAATTATGTCCATA, where the underlined bases
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have been altered. Additionally, five bases outside the
contacted region were also altered. Finally, the resulting
25-base sequence was inverted, yielding the sequence
presented above. The 6, 12, 18 and 24-base single-stranded
regions in this series possessed the same sequences as the
single-stranded regions in the /;-x-1; series.

In the tail-to-tail DNA molecules, it was the first
double-stranded region that was inverted. Its sequence
and that of the single-stranded spacer regions were as
described above.

Unlabeled competitor DNA was a modification of the
native I;-I, AraC-binding site in which the I, half-site
has been changed to the tighter binding /; half-site (11).
The sequence of the top strand of this DNA is
5-GCCATAGCATTTTTATCCATAAGATTAGCATT
TTTATCCATACCT, where the two I; half-sites have
been underlined.

AraC protein

Partially purified, >90% pure, AraC for these experiments
was prepared as described (19), dialyzed to remove
arabinose, and stored at 4°C.

DNA tape measurements

Dissociation rates were measured in 70 ul of binding
buffer, 10 mM Tris—acetate pH 7.4, I mM EDTA, 1 mM
DTT, 5% glycerol, 0 or 50 Mm arabinose, and KCI was
between 75 and 175mM depending on the linker length.
Salt concentration had no affect on the presence or
absence of an arabinose effect on dissociation rates. Salt
concentration was adjusted to place dissociation rates in
convenient ranges for experimental measurement. 5'Cy5-
labeled DNA was present at 2-5 x 107" M, and AraC at
1.5x 107" M. After 5min for equilibration, all further
binding of AraC was blocked by the addition of the
unlabeled 7;,-1; competitor DNA to a concentration of
1.5x 107°M. After intervals similar to those indicated,
(Figure 2), 10 ul volumes were removed and added to 30 pl
of 10mM Tris—acetate pH 7.4, IlmM EDTA, 25mM
L-arabinose. From this, 10ul were immediately loaded
onto 2" x 3" 6% acrylamide 0.1% methylene-bis-acryla-
mide horizontal gels containing 10 mM Tris—acetate pH
7.4, TmM EDTA and subjected to electrophoresis at
50 v for a total of 45min. Three minutes after loading,
circulation of buffer from one reservoir to the other of
the two-chamber horizontal gel apparatus was begun to
prevent electrode reactions from altering the pH.
Following separation, DNA bands were imaged on a
GE Typhoon 9410 fluorescence scanner and quantitated
with Image] software (20,21). For measurement of the
dissociation rates from the various DNAs, the relative
amounts of protein—-DNA complex at the different time
points were determined for at least four time points.
Scatter in these points yielded dissociation rates with a
standard error of <10%. First-order exponential decay
constants were determined with KaleidaGraph 4 software.

Model construction

PDB file 2ARC was used for the structure of the
dimerization domain and 1BL0O was used as an analog
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Figure 2. Representative data showing arabinose-dependent dissocia-
tion of AraC from rl,/-6-1;, performed in 150 mM KCI, and arabinose-
independent dissociation from r/;/-24-I; DNA performed in 125mM
KCI. The labeled lanes indicate the times allowed for dissociation.

for the DNA-binding domain plus bound DNA. Using the
molecular mechanics program CHARMM (22), a DBD
with bound DNA was randomly positioned and oriented
anywhere within 100 A of the dimerization domain. Its
symmetry-related partner was generated. Restraining
potentials of the following form were established,
E(R) = 0.5K x (R — Ryin)* for R<Ruin, E(R)=0 for
Rmin<R<Rpax and  E(R) = 0.5K X (R — Ray)®  for
Ryax <R, where R is the distance between the two
atoms in angstroms. K was 30kcal/mol A%, To hold the
N-terminus of the DBDs near the C-terminus of the
dimerization domain, the two constrained atoms were
the alpha carbon of residue 168 of the dimerization
domain and the alpha carbon of residue 9 of the MarA
protein, corresponding to residue 175 of AraC, and
Ruin = 5 and Ry, = 15 for each subunit. For the head-
to-head distances, the two constrained atoms were O’'4 of
residue 401 on DNA strand A and O’4 of residue 401 on
DNA strand C with R,;, = 45 and R, = 60. For the
tail-to-tail distances, the two constrained atoms were O’4
of residue 423 of DNA strand A and O’4 of residue 423 of
DNA strand C with R,,;, = 55 and R,,,x = 70. For the
head-to-tail distances, the two constrained atoms were O'4
of residue 401 of DNA strand A and O’4 of residue 423
of DNA strand C and between O'4 of residue 401 of
strand C and O’4 of residue 423 of strand A with
Ruin = 55 and Ry, = 70. The energies of trial structures
were taken as the sum of the inter-atomic interaction
energies as calculated by the normal CHARMM poten-
tials plus that produced by the restraining forces as
defined above.



RESULTS
Measuring distances with a DNA tape measure

As discussed in the introduction, arabinose shifts the
ability of AraC to bind to two DNA half-sites by altering
the rigidity with which the DNA-binding domains are held
with respect to each other. This mechanism is in contrast
to shifting the DNA-binding affinity by changing the
intrinsic DNA-binding affinity of the individual domains
without changing their relative positions. In the absence of
arabinose, the DNA-binding domains of AraC are held
such that the protein prefers DNA looping. Hence, when
looping is not possible and AraC binds to adjacent half-
sites in double-stranded DNA in the absence of arabinose,
the DNA-binding domains must overcome these posi-
tional constraints. The energy for this bending or
restructuring of AraC comes from the strength of the
protein—-DNA interactions. As a result, AraC binds to
such DNA significantly less tightly than if the DNA-
binding domains had not been constrained. When
arabinose is present, the DNA-binding domains are less
constrained, and the protein binds to the adjacent DNA
half-sites more tightly.

Consider the binding of AraC to a special DNA
consisting of two double-stranded half-sites connected
with a long and flexible single-stranded linker. If the linker
is of sufficient length to span the separation of the DNA-
binding domains in the minus arabinose state, (Figure 1B),
then the protein can bind to this DNA tightly both in the
presence and absence of arabinose (16). That is, its
binding affinity to such DNA should be largely arabinose
independent. This behavior provides a means to measure
the distance separating parts of the DNA in the minus
arabinose state. When the single-stranded flexible linker
connecting the two DNA-binding sites is too short to span
the distance separating the DNA-binding domains, DNA
binding by the protein will display increased arabinose
dependence. On the other hand, when the linker can span
the distance, a significantly smaller arabinose dependence
will be seen. Using a collection of DNA samples with
different lengths of single-stranded linker permits deter-
mination of the minimum separation distance.

A DNA half-site to which a DNA-binding domain of
AraC binds is not symmetric, (Figure 1A). Consequently,
a ‘head’ and ‘tail’ end of the DNA-binding half-site can be
defined and the head-to-head, head-to-tail and tail-to-tail
distances are meaningful and distinguishable. This would
not be the case if the binding half-sites were symmetric.
The three different end-to-end distances in the AraC-
DNA complex can be measured individually by construct-
ing DNA tape measure molecules with different lengths of
single-strand connector and the appropriate half-site
orientation, (Figure 1C).

To construct the head-to-tail set of DNA tape measure
molecules, single-stranded regions of 6, 12, 18 and 24
bases were connected to the two double-stranded 7, half-
site regions. To minimize end effects on AraC binding, in
all cases, four additional base pairs were provided at each
end beyond the 17 bp AraC-/; contact region (12). For the
head-to-head DNA constructs, the second I; site was
inverted. As this inversion generates a sequence and its
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inverse-complement on the same strand, hairpin or
lollypop structures are possible. To minimize their
formation, the bases outside the second AraC-binding
half-site were altered. In addition, 4 bp in the middle of the
AraC contact site whose identity has a minimal effect on
AraC binding (18), were also altered. The changes are
shown in the Materials and Methods section. The
resulting altered and reversed half-site is denoted as r/;’.
For tail-to-tail DNA constructs, the first half-site was
reversed and the second remained unchanged. If we
denote /;-x-I; as DNA containing the AraC half-sites in
the head-to-tail orientation separated by x bases of single-
stranded linker, 7;-x-rI; contains the sites in head-to-head
orientation, and r/,/-x-I; contains the sites in tail-to-tail
orientation.

The DNA migration retardation assay is a convenient
method for separating free DNA from AraC-bound DNA
(13). Accurate determination of the amounts of free DNA
and protein—DNA complex in solution requires ‘freezing’
the state of the system so that no further association or
dissociation occurs while the samples are being loaded
onto the gel or during their electrophoretic separation.
Control experiments showed that additional association of
AraC with the fluorescent-labeled DNA at the end of the
incubation period could be blocked by the addition of a
10-fold excess of unlabeled 7;-I; DNA. Further dissocia-
tion of AraC from the labeled DNA at the end of the
incubation period was reduced to negligible amounts by
two means. First, the salt concentration was reduced by
dilution with buffer that contained no salt. This is effective
because the dissociation rate of AraC from DNA (19),
like that of most DNA-binding proteins, is strongly
dependent on the salt concentration. Second, arabinose
was added, thereby reducing the dissociation rate of AraC
from DNA molecules by lessening the rigidity of AraC.
The increased flexibility allows both DNA-binding
domains of the protein to freely contact DNA-binding
sites. Following these additions, samples were immediately
loaded on gels. Once samples are within the gel, little
dissociation occurs (13).

The affinity of AraC for its native binding site, 1;-1, or
the much tighter binding [;-1; site, is too great to allow
convenient direct measurement of the equilibrium-binding
constant with fluorescent-labeled DNA. While equilib-
rium competition-binding experiments were possible, the
variation in affinity created by the different lengths of
single-strand linker separating half-sites and by changing
the orientation of a half-site would have added complex-
ity. We therefore chose to extract the needed information
from binding and dissociation kinetics. Experiments
showed that the association rate of AraC for I;-6-1I; and
I;-24-1; DNA, both in the presence and absence of
arabinose were within a factor of two of one another
(data not shown). Thus, as is seen for many DNA-binding
proteins, the forward rate constant does not significantly
change as the binding affinity is changed by alteration of
the DNA-binding site or effector binding to the protein.
We therefore measured the dissociation rates of AraC
from the different DNAs. These measurements can be
performed at easily detected concentrations of DNA, and
because AraC could be added at significant excess, the
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Figure 3. Dissociation of AraC from the tape measure DNA containing
different lengths of single-stranded linker between the two double-
stranded regions containing /; sites. Shown is the ratio of the
dissociation rates in the presence and absence of arabinose as
a function of the single-strand linker length connecting the two I;
half-sites.

measurements are insensitive to variations in the activity
or stability of the protein.

The results of typical separations used in the determina-
tion of the dissociation rate constants are shown,
(Figure 2). In the data shown, it can be seen that the
presence of arabinose significantly affects the dissociation
rate of AraC from rI;/-6-1;, tail-to-tail DNA with a six-
base flexible linker, but that arabinose does not signifi-
cantly affect the dissociation rate from rf,/-24-1; DNA.
For all experiments, the ratio of bound DNA to total
DNA was determined by quantitation of the fluorescent
bands, and the dissociation rate constants were deter-
mined by fitting the data to a first-order kinetic decay
equation. The ratio of the dissociation rates in the
presence and absence of arabinose for each of the DNAs
used in the experiment are shown, (Figure 3). Based on the
lengths at which the arabinose dependencies begin to
change, the head-to-tail and tail-to-tail distances can be
estimated to be around 18 bases, and the head-to-head
distance to be around 15 bases.

Modeling domain locations in AraC

Construction of models that are consistent with the single-
stranded lengths determined in the previous section
requires converting from bases of single-stranded DNA
to physical distances. Full extension of single-stranded
DNA is opposed by the thermal motion of the polymer
elements and by base—stacking interactions so that the
theoretical relationship between force and extension is not
simple. Therefore, we used experimental data derived from
single molecule experiments to estimate the distance
ranges. We estimate that the probable lengths of the
flexible single-stranded segments employed in our experi-
ments are 3—4 A/base (23). Thus, we restrained the head-
to-head distances to be values in the range of 45 and 60 A
(15 bases), and the tail-to-tail as well as the two head-to-
tail distances to be between 55 and 70A (18 bases).
Models possessing straight-line distances corresponding to

the single-stranded regions of the test DNA molecules that
were outside these ranges were increasingly penalized.

An additional restraint incorporated in the models is the
length of the linker that connects each dimerization
domain to its DNA-binding domain. Based on the
structures of the dimerization domain of AraC (2,3), and
the DBD homolog, MarA (10), this linker is about seven
residues in length. Therefore, the physical distance used in
the model building between the last residue, Asnl168 of the
dimerization domain, and the first residue of the DNA-
binding domain, Metl175 (residue 9 of MarA), was taken
to lie in the range of 5-15A.

We also assumed that each of the DNA-binding
domains would interact similarly with the rest of the
protein. Since the dimerization domain possesses a 2-fold
axis of symmetry, the DNA-binding domains and conse-
quently, the entire modeled protein, will also possess a
2-fold axis of symmetry.

Manual attempts at positioning and orienting the
DNA-binding domains so as to satisfy the four distance
constraints described above proved to be awkward,
innacurate and subjective. Therefore, we turned to
computer construction of models. Systematic considera-
tion of possible placements of the DNA-binding domains
followed by energy minimization with the explicit inclu-
sion of the single-stranded DNA proved to require far
more computational power and sophistication than are
justified by the experimental data. We therefore searched
for acceptable structural models by the following method.
The molecular mechanics program CHARMM (22) was
programmed to work with the dimerization domain from
AraC and a homolog of the DNA-binding domain of
AraC, MarA bound to its 17-base binding site with four
additional base pairs extending from each end. One such
DNA-binding domain plus DNA was randomly placed
anywhere within 100 A of the center of the dimerization
domain in a random orientation. The program then
constructed the symmetry-related partner subunit, and
calculated the energy of the resulting complex subject to
the inter-atomic potentials of CHARMM and distance
constraints corresponding to the length of single-stranded
DNA between the appropriate ends of the DNA
molecules. These distance constraints were implemented
as potentials favoring the desired distances as described
in Materials and Methods section. The lowest energy
structure from 2000 trial structures was then energy
minimized using a Monte Carlo search, but with separate
translation and rotation steps of 1 A and 1° and using the
Metropolis criterion with a temperature of 300° for
accepting proposed structures with energy higher than
the current minimum. Of the 100 independent structures
that were constructed and examined ~25 positioned the
DNA-binding domains such that they could be contacted
by the N-terminal arms. These can be summarized as
falling into two basic classes. In one of these, the possible
arm—DBD interaction is within the same subunit and can
be described as cis interaction, and in the other, the
interaction is between the two subunits, and is a trans
interaction. Representatives from the two classes are
shown in Figure 4.



Figure 4. Schematic showing the two general models for positioning the
two DBDs of AraC that are consistent with the DNA tape measure
distances determined for AraC. The figure on the left places the DNA-
binding domain from one subunit near the N-terminal arm of the other
subunit, and thus frans arm-DBD interactions are possible.
The figure on the right depicts a structure compatible with cis
interactions. In both figures, the tail region of the 7, half-site binds
to the end of the DNA-binding domain that lies closer to the
dimerization domain.

DISCUSSION

In addition to techniques like X-ray diffraction or NMR
that can be used to determine protein structures, several
techniques, including fluorescence resonance energy trans-
fer, mechanical triangulation (24) and chemical cross-
linking can sometimes be used for the determination of
particular inter-residue distances in proteins. Here we
describe the application of a new technique for determin-
ing distances between points in AraC—DNA complex. The
method relies on two properties of the protein. First, the
affinity of a single DNA-binding domain of AraC for an
individual half-site is arabinose independent. Second and
more important, the method utilizes the fact that the
relative positions of the DNA-binding domains in AraC
are restrained in the absence of arabinose and relatively
unrestrained in the presence of arabinose (8,11,25). In this
method, a segment of variable length single-stranded
DNA connecting two double-stranded half-sites of the
protein is used as a DNA tape measure. Consequently, if
the single-stranded DNA segment is sufficiently long to
span the distance between the restrained DNA-binding
domains, then the DNA can bind tightly to AraC in the
absence as well as in the presence of arabinose.
Conversely, if the single-stranded DNA is too short to
span the distance, the DNA can bind tightly only in the
presence of arabinose. A collection of DNAs with
different linker lengths allows approximate determination
of the length of the single-stranded DNA needed to span
the distance separating different ends of the DNA-binding
sites in the minus arabinose state of AraC.

Conversion from the number of single-stranded bases in
the DNA tape measure to a physical distance requires
knowledge of the force versus extension properties of
single-stranded DNA. Single molecule experiments show
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that single-stranded DNA begins to show_substantial
resistance to further extension above ~3.5A/base (23).
Therefore, we used a range between 3 and 4 A/base in
estimating distance ranges. A more precise conversion
value depends on the stiffness of the protein and the
tightness with which the protein binds to DNA. As more
experience is gained with the distance measurement
method, it is likely that more accurate and precise values
will result.

Three distances were measured in the work described
here. One was the separation of the head of one AraC-
binding half-site and the head of the other AraC-binding
site, 1.e. the head-to-head distance. In addition, the head-
to-tail and tail-to-tail distances were measured. These
three distances plus the probable length of the linker
connecting the dimerization and DNA-binding domains
of AraC restrict the possible locations of the DNA-
binding domains with respect to each other and with
respect to the dimerization domains. If we assume that the
interactions between the dimerization domains and the
DNA-binding domains are identical for the two subunits,
then the positions of the DNA-binding domains will retain
the same 2-fold symmetry as is possessed by the
dimerization domain. This plus the distance restraints,
the fact that the dimerization and DNA-binding domains
cannot overlap, and the fact that the N-terminal arms
must be able to interact with the DNA-binding domains
limit the possible structures to variants of the two forms
shown in Figure 4. In one, the predominant arm-DBD
interactions are cis. That is, they are between the arm on
one dimerization domain and the DNA-binding domain
of the same subunit. In the other case, the predominant
interactions are trans. In both cases, the DNA-binding
domains are inclined with respect to each other and both
are located on the same face of the pair of dimerization
domains in contrast to the 2D representation that is
usually used to summarize the arm—domain interactions of
the protein. In the latter, as in Figure 1A, the arm—DNA-
binding domain interactions are depicted as trans for
convenience in drawing. Although the magnitudes of the
uncertainties in the determination of the dissociation rates
from the different DNASs can be estimated as ~10%, the
uncertainties in the physical lengths of the single-stranded
DNA segments cannot at this point be easily estimated.
Despite this, the distance determinations seem to exclude
the arrangements of the domains of AraC and the DNA as
are represented in the schematic of Figure 1A, and require
a 3D arrangement like those shown in Figure 4.

The data of Figure 3 suggest that the head-to-head
distance in the AraC complexes is somewhat shorter than
the head-to-tail or tail-to-tail distance. The same basic
structures were found however, in the modeling if these
distances were modeled as 45 and 55A, 50 and 55A 55
and 60 A, or 45-55A and 55-65A, 45-55A and 45-55A
or 55-65A and 55-65 A. Thus, any effect of a somewhat
shorter head-to-head distance is not reflected in the model
building performed here. Both the cis and trans structures
appear equally plausible at this point.

In summary, the experiments reported in this article
provide the approximate positions and orientations of the
DNA-binding domains of AraC with respect to the
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dimerization domains in the minus arabinose conforma-
tion of the protein. The fact that the DNA-binding
domains are not planar, but instead are inclined at ~90°
with respect to each other facilitates DNA loop formation
in supercoiled DNA and bears on in vitro studies of DNA
looping in the ara system. Furthermore, knowledge of the
approximate positioning of the DNA-binding domains
with respect to the N-terminal arms that control them will
facilitate study of the arm interactions.
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