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In the last decade, the ubiquitin–proteasome system has emerged
as a valid target for the development of novel therapeutics.
E3 ubiquitin ligases are particularly attractive targets because
they confer substrate specificity on the ubiquitin system. CRLs
[Cullin–RING (really interesting new gene) E3 ubiquitin ligases]
draw particular attention, being the largest family of E3s. The
CRLs assemble into functional multisubunit complexes using a
repertoire of substrate receptors, adaptors, Cullin scaffolds and
RING-box proteins. Drug discovery targeting CRLs is growing
in importance due to mounting evidence pointing to significant
roles of these enzymes in diverse biological processes and human
diseases, including cancer, where CRLs and their substrates often
function as tumour suppressors or oncogenes. In the present

review, we provide an account of the assembly and structure
of CRL complexes, and outline the current state of the field in
terms of available knowledge of small-molecule inhibitors and
modulators of CRL activity. A comprehensive overview of the
reported crystal structures of CRL subunits, components and
full-size complexes, alone or with bound small molecules and
substrate peptides, is included. This information is providing
increasing opportunities to aid the rational structure-based design
of chemical probes and potential small-molecule therapeutics
targeting CRLs.
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INTRODUCTION

In the last decade the field of the UPS (ubiquitin–proteasome
system) has witnessed increasing attention of the scientific
community, especially as a result of the award of the 2004
Nobel Prize in Chemistry to Aaron Ciechanover, Avram Hershko
and Irwin Rose for the discovery of ubiquitin-mediated protein
degradation [1]. The breakthrough discovery highlighted the
importance of studies in this area and promoted substantial
funding allocation to support research on the subject. The overall
mechanism of the ubiquitin–proteasome pathway is regulated
by the sequential action of three enzymes (E1–E2–E3) [2,3].
The human genome encodes two E1-activating enzymes, 37
E2-conjugating enzymes and over 600 E3 ubiquitin ligases [4].
First, a ubiquitin molecule is chemically activated in an ATP-
dependent manner by an E1-activating enzyme forming a thioester
bond between the C-terminal glycine residue of ubiquitin and a

conserved cysteine residue of the E1. Next, ubiquitin is transferred
on to an E2-conjugating enzyme via a trans-thiolation reaction.
Finally, an isopeptide bond between the ε-amino group of a
substrate lysine residue and the C-terminal glycine residue of
ubiquitin is formed via E3 ligase-mediated catalysis, and then
between Ub molecules to form poly-Ub chains. As a result
of this three-step conjugating cascade, ubiquitinated substrates
can be recognized and degraded by the 26S proteasome in an
ATP-dependent manner or downstream cell signalling responses
are triggered [5,6]. Protein ubiquitination is reversible and the
isopeptide bond can be hydrolysed by protease enzymes called
deubiquitinases (DUBs), of which over 80 have been identified in
the human genome [7].

The UPS is growing in importance as a therapeutic target
as a result of being increasingly linked to human diseases,
including cancer, diabetes and inflammation [8–10]. Despite
demonstrated clinical and commercial success of proteasome
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inhibitors, several issues remain to be addressed with targeting
the proteasome therapeutically, including broad cellular impact,
potential risk of side effects and increasing resistance. An
attractive alternative approach would be targeting enzymes
upstream of the proteasome, particularly E3 ligases that confer
substrate selectivity on the UPS. The CRLs [Cullin–RING (really
interesting new gene) E3 ubiquitin ligases] constitute the main
family of E3s that signal substrates to proteasomal degradation
and represent promising therapeutic targets. The growing number
of solved CRL crystal structures is improving our understanding
of the assembly and function of these enzymes, providing more
opportunities for the rational structure-based design of small-
molecule inhibitors and modulators.

In the present review, we focus on current knowledge
concerning the structure and assembly of CRL complexes. We
then highlight recent efforts at identifying small-molecule ligands,
and discuss opportunities and challenges of targeting these
enzymes for drug discovery.

TYPES OF E3 LIGASES

The E3 ubiquitin ligases can be divided into two major families on
the basis of their assembly and mechanism of action: the HECT
(homologous with E6-associated protein C-terminus) domain
and the RING domain. HECT E3s accept ubiquitin (Ub) from
E2∼Ub to form a covalent thioester intermediate via a conserved
cysteine residue of the E3 itself before transferring ubiquitin on
to the substrate. In contrast, RING E3s directly transfer ubiquitin
to the substrate by bringing both E2∼Ub and the substrate in
close proximity to each other. The RBR (RING–between RING–
RING) ligases represent an additional family of E3s that combine
characteristics of both HECT and RING families, as they recruit
E2∼Ub conjugates by an N-terminal RING domain and then
transfer ubiquitin on to a HECT-type C-terminal catalytic cysteine
residue of the E3 before final transfer on to the substrate [11].

The RING domain was originally discovered in the protein
Ring1. Later, four independent groups established that the RING
protein Rbx1 (RING-box protein 1) serves as a CRL1 subunit
that recruits an E2 enzyme [12–15]. The distinctive feature
of RING E3s is a canonical structural motif that co-ordinates
two Zn2 + ions, Cys-Xaa2-Cys-Xaa9–39-Cys-Xaa1–3-His-Xaa2–3-
Cys-Xaa2-Cys-Xaa4–48-Cys-Xaa2-Cys (Xaa is any amino acid)
[16]. RING E3s constitute the largest superfamily of E3 ligases
that can be further categorized into two subgroups: CRLs and
APC/C (anaphase-promoting complex/cyclosome) [17].

Both CRL and APC/C are multisubunit complexes and share
some compositional resemblance. For example, they are both
constituted of adaptors and substrate receptor subunits, e.g. F-
box proteins for CRL [Skp2 (S-phase kinase-associated protein
2), Fbw7 (F-box and WD repeat domain-containing 7), β-
TrCP (β-transducin repeat-containing protein)] and activators
for APC/C [Cdc20 (cell division cycle 20) and Cdh1 (Cdc20
homologue 1)]. Although APC/C and PARC (p53-associated
parkin-like cytoplasmic protein) proteins share a degree of
structural similarity with CRLs, they will not be covered here.

CULLIN RING E3 UBIQUITIN LIGASES AND THEIR STRUCTURAL
ORGANIZATION

The CRLs comprise over 200 members, making it the largest
family of all E3s [18]. In some cell types, up to 20% of the
proteasome-dependent degradation of the proteome is mediated
by CRLs [19]. The evolutionarily conserved Cullin family has
seven key members that share similar structural architecture: Cul1,

Cul2, Cul3, Cul4A, Cul4B, Cul5 and Cul7. The classification of
CRLs is based on the type of Cullin protein in the complex.
This includes abbreviations such as SCF (Skp1–Cdc53–F-box
Cdc4) [20], ECS (EloBC–Cul2/5–SOCS-box, where EloBC is
ElonginB–ElonginC complex and SOCS is suppressor of cytokine
signalling) [21] and BCR (BTB–Cul3–Rbx1, where BTB is bric-
a-brac/tramtrack/broad complex) [22]. For clarity in the present
review, we consistently use the CRL1–CRL7 abbreviations
for CRL E3 ligases containing Cul1–Cul7 scaffold proteins
respectively. CRLs use modular subunit organization by utilizing
interchangeable adaptors, receptors, Cullin scaffolds and RING-
box domains to enable assembly of a large number of functionally
diverse E3 ligase complexes (Figure 1 and Table 1). The elongated
Cullin NTD (N-terminal domain) consists of three so-called
‘Cullin repeats’, each formed by five α-helices, and recruits
different substrate receptors either directly or via an adaptor
subunit. The interaction between the adaptor–receptor complex
and the Cullin NTD is often very tight and constitutes an important
structural element of the CRL assembly. The structural features
of each interface direct the selection of the correct subunits.
Of particular importance is a so-called LPXP motif within the
receptor subunit that forms a minor yet crucial supplementary
interaction with the Cullin NTD [21]. Examples of adaptor
proteins utilized in CRL assembly include Skp1, EloBC binary
complex, BTB and DDB1 (damage-specific DNA-binding protein
1). Notably, Skp1, ElonginC and BTB display a high level of
structural homology with each other and share a common fold that
is often termed the Skp1/BTB/POZ fold (POZ is pox virus and
zinc finger) [23]. In contrast, DDB1 differs from other adaptors
in that it is considerably larger in size and consists of multiple
distinctive β-propeller motifs.

Specificity of CRL activity is determined by substrate-
specific receptors that often function through selective recognition
of post-translational modifications in the substrates, including
phosphorylation and hydroxylation. Each receptor can potentially
bind multiple different substrates, therefore expanding the
functional range of CRL activity. Substrate receptors either
consist of an individual subunit, which typically recruits
the adaptor subunit(s) via an F-box, VHL (von Hippel–
Lindau)/SOCS-box or H-box domain, or can be merged with
the adaptor in a single polypeptide chain, i.e. BTB proteins
(Table 1).

The conserved globular CTD (C-terminal domain) of Cullin
serves as a docking site for RING-box proteins, such as Rbx1
or Rbx2. These proteins recruit a cognate ubiquitin-loaded E2
enzyme and subsequently promote the discharge of ubiquitin from
E2 directly on to a substrate. The interaction between E2 enzyme
and RING E3s is generally weak [24], but activity of the E3
ligase does not necessarily correlate with the stability of an E3–
E2 association. Often, the physiological E2 partner of a particular
E3 ligase is not known and empirical approaches are necessary to
identify it [16].

The individual members of the Cullin family will now be
described, with a particular focus on their assembly, structural
features and biological functions.

CRL1

The Cul1 gene (also known as Cdc53) was originally discovered in
Caenorhabditis elegans and budding yeast [25,26] and is therefore
considered the founding member of the family. Subsequently, the
archetypal example of CRL1, the protein complex Skp1–Cdc53–
F-box Cdc4, was characterized in yeast [20]. In this complex,
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Table 1 Subunit organization within the CRL family classified on the basis of the type of Cullins

Included are information on adaptor, substrate receptor and Rbx RING protein for each of the respective Cul1–Cul7 scaffolds. A schematic representation for each of the CRLs is provided.

Cullin protein Adaptor Substrate receptor subunit Example of receptors RING protein Schematic representation

Cul1 Skp1 F-box proteins Skp2, β-TrCP, Fbw, Fbxo, Fbxl Rbx1

Cul1

F-box
protein

Skp1

Rbx1

Cul2 EloBC VHL-box proteins VHL Rbx1

Cul2

VHL

EloB

EloC

Rbx1

Cul3 BTB BTB domain proteins KLHL, SPOP Rbx1

Cul3

Rbx1
BTB

Cul4A DDB1 DCAF/H-box proteins DCAF, DDB2, CSA, CDT2 Rbx1

Cul4

DCAF

DDB1

Rbx1

Cul4B DDB1 DCAF/H-box proteins DCAF, DDB2 Rbx1

Cul4

DCAF

DDB1

Rbx1

Cul5 EloBC SOCS-box proteins SOCS1–SOCS7 Rbx2

Cul5

SOCS-box
protein

EloB

EloC

Rbx2

Cul7 Skp1 F-box proteins Fbxw8 Rbx1

Cul7

Fbxw8

Skp1

Rbx1

Cullin

Receptor

Adaptor

RING-box

Figure 1 Cullin RING E3 ubiquitin ligases

(A) General subunit organization of E3 CRLs showing receptor, adaptor, Cullin scaffold and Rbx RING-box subunits. (B) The crystal structure of the canonical CRL1Skp2 complex with F-box protein
Skp2 as a substrate receptor (PDB code 1LDK).
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Figure 2 Assembly between substrate receptor ‘box’ domains and adaptor subunits

(A) F-box domain of receptor Skp2 in complex with adaptor Skp1 (PDB code 2ASS). (B) VHL-box domain of receptor VHL in complex with adaptor subunit ElonginC (PDB code 1VCB). (C)
SOCS-box domain of receptor SOCS2 in complex with ElonginC (PDB code 2C9W). The SOCS-box and VHL-box domains possess a high degree of structural similarity when complexed with
ElonginC. The adaptor subunits Skp1 and ElonginC are structurally homologous proteins that form conserved binding interfaces with the N-terminal H1 helix of F-box and the C-terminal H3 helix of
VHL-box/SOCS-box respectively.

adaptor Skp1, substrate receptor Cdc4, and scaffold Cdc53 (a
yeast orthologue of Cul1) assemble together to form the E3 ligase.

The high variety of receptor subunits within the CRL machinery
allows functional diversity and targeting of different substrates.
Generally, the NTD of the F-box proteins binds the adaptor
subunit and the C-terminal part recruits in the substrate. The 69
F-box proteins reported to date are divided into three subgroups
according to the structural feature of their substrate-binding
domain: 12 Fbxw proteins (containing a WD40 domain), 21
Fbxl proteins (leucine-rich motifs) and 36 Fbxo proteins (other
domains) [27]. The structural basis of substrate recognition
is mainly determined by post-translational modification of
short epitopes (degrons) of the substrate, e.g. phosphorylation,
hydroxylation or glycosylation [28].

One of the most studied members of CRL1 is constituted by
the Cullin scaffold bridging the RING-box protein Rbx1 and the
adaptor Skp1 bound to substrate receptor Skp2. The Cul1NTD

region that interacts with adaptor Skp1 is highly conserved in
different species, but not within the Cullin family. The NTD
of Skp1 interacts with Cul1, whereas its CTD binds the F-box
motif of the substrate receptor subunit (Figure 2A). The crystal
structure of Skp2F-box–Skp1–Cul1–Rbx1 complex provided the
first structural information on a full-length Cullin scaffold and
its interactions with other components of a CRL complex [29]
(Figure 1B).

The crucial role of CRL1Skp2 in many cancers was firmly
established in cellular and animal model studies. Skp2 is an
oncoprotein that is overexpressed in many cancers [30]. CRL1Skp2

specifically recognizes phosphorylated p27Kip1, which is its best-
characterized substrate to date. Skp2-dependent decrease in p27
levels was observed in cancer cells, leading to poor prognosis
[31]. Disrupting the Skp2-p27 interaction using small molecules
should inhibit p27 ubiquitination, resulting in an increase in p27
protein levels. In turn, this would be expected to reduce cancer
cells proliferation, therefore providing an attractive therapeutic
strategy.

In general, substrate ubiquitination depends solely on a fully
formed and active CRL. However, in some cases, alternative
factors may be required. It has been demonstrated that
ubiquitination of p27 by CRL1Skp2 requires the accessory protein
Cks1 (cyclin-dependent protein kinase regulatory subunit 1) that
interacts with Skp2 [32]. The crystal structure of Skp1–Skp2–
Cks1 in complex with a p27 phosphopeptide revealed that two
residues of p27 form key contacts with both Cks1 and Skp2
proteins: Thr187, which interacts with the phosphate specific
domains of Cks1, and Glu185, which is buried at the Cks1–

Skp2 interface [33]. In addition, substrate-assisted assembly
was recently reported for the Fbxl3–Skp1–Cul1 complex,
which requires substrate Cry1 for the in vivo formation of
CRL1Fbxl3 [34].

The wide range of receptor subunits and their targeted substrates
mean that CRL1s play crucial roles in numerous cellular
processes and physiological dysfunctions. Several prominent F-
box substrate receptors of CRL1, such as Skp2, β-TrCP, Fbw7
and Fbxl3, were shown to play significant roles in cancer and
other diseases [28]. Substrates of F-box proteins include protein
kinases, cyclins and many other factors involved in different
cellular processes, such as growth, signalling, differentiation and
development, as reviewed in [27]. Another important member
of the CRL1 subfamily, CRL1β-TrCP, demonstrates oncogenic
properties mainly due to overexpression of β-TrCP in different
types of cancer [35]. The β-TrCP receptor functions in the NF-
κB (nuclear factor κB) signalling pathway by ubiquitinating
IκB (inhibitor of NF-κB) that suppresses the NF-κB nuclear
localization signal and inhibits its interaction with DNA [36]. The
substrate-binding domain of β-TrCP comprises a β-propeller fold
formed by seven WD40 repeats that recognizes phosphorylated
degron motifs of substrates [37]. Moreover, β-TrCP targets β-
catenin, DEPTOR [DEP domain-containing mTOR (mammalian
target of rapamycin)-interacting protein] and other substrates
for proteasomal degradation resulting in inhibition of their
signalling pathways, thus playing key roles in cancer and
inflammatory processes [27]. Overall, there is a strong rationale
and solid scientific basis for the structure-based design of potent
CRL1 inhibitors given that these enzymes are structurally well
characterized.

CRL2 AND CRL5

Other members of the Cullin family employ similar subunit
architecture to that of the prototypical CRL1. Both Cul2 and
Cul5 utilize the same EloBC adaptor complex for the assembly
of functional CRL machineries. ElonginB and ElonginC proteins
were originally discovered in a complex with ElonginA that acts
to enhance the rate of RNA polymerase II elongation [38]. The
EloBC adaptor binds to the so-called SOCS-box domain of the
substrate receptor (Figures 2B and 2C). The broad class of SOCS-
box proteins inherit their name from the SOCS proteins, one of the
key substrate receptor classes for CRL5 that negatively regulate
the JAK (Janus kinase)/STAT (signal transducer and activator of
transcription) signal transduction pathway and perform important

c© The Authors Journal compilation c© 2015 Biochemical Society
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Figure 3 Assembly between adaptor subunits and Cullins

(A) Skp1–Cul1 (PDB code 1LDK). (B) BTB protein KLHL3–Cul3 (PDB code 4HXI). (C) ElonginC–Cul5 (PDB code 4JGH). The adaptor proteins bind the N-terminal surface of their respective Cullins
to form extended and predominantly hydrophobic interfaces.

functions in the immune response [39]. Interestingly, the motif
of ElonginA that is responsible for the recruitment of EloBC is
highly homologous with the SOCS-box.

Over 80 SOCS-box proteins have been reported to date,
including subclasses of proteins such as SOCS, VHL, ASB
(ankyrin repeat and SOCS-box), ElonginA, WSB (WD repeat
and SOCS-box) among others [40–42]. The SOCS-box proteins
recruit EloBC, Cullin and RING-box protein to form the E3 ligase.
The selection of Cullin scaffold occurs via the LPXP motif within
the so-called ‘Cullin box’ at the C-terminal end of the SOCS-
box [21]. A crystal structure of Cul2 in complex with EloBC and
a substrate receptor (e.g. VHL) would help in elucidating the
structural basis of selectivity for Cul5 rather than Cul2, but has
yet remained elusive (see Note added in proof).

The interface between SOCS-box domains and EloBC is
governed by hydrophobic interactions. The burial of hydrophobic
patches in part explains why EloBC complex is required for
stabilization of the otherwise disordered SOCS-box domain of
receptor proteins [43]. This is supported further by the observation
that the crystal structures of the full-size SOCS-box proteins have
to date been solved only in complex with EloBC, i.e. SOCS2–
EloBC [44], SOCS4–EloBC [45], SOCS2–EloBC–Cul5NTD [46]
and VHL–EloBC [47]. The majority of SOCS-box proteins recruit
Cul5–Rbx2 to constitute the CRL5 E3 ligases. However, owing to
minor differences in the Cullin box motif, some proteins such as
VHL engage Cul2–Rbx1 instead to form CRL2 complexes [48].
Substrate receptors of CRL2 therefore belong to a different class
termed VHL-box proteins.

The SOCS proteins consist of eight structurally homologous
members, SOCS1–SOCS7 and CIS [cytokine-inducible SH2 (Src
homology 2)-containing protein], that share a conserved C-
terminal SOCS-box motif and a central SH2 domain. Analogously
to when present in protein kinases, the SH2 domain recruits
phosphotyrosine-containing sequences of the substrate protein.
The SOCS proteins perform important roles in the immune
response and cancer [39,49]. For example, the SOCS2 member
negatively regulates growth hormone signalling by targeting GHR
(growth hormone receptor) for ubiquitination and proteasomal
degradation [44]. A recent study has showed that all components
of the CRL5SOCS2 complex [SOCS2, EloBC, Cul5, Rbx2 and
NEDD8 (neural-precursor-cell-expressed developmentally down-
regulated 8)] can be recruited from human cell lysates using
phosphorylated GHR peptides [50]. The recombinant full-size
complex was reconstituted in vitro from individual components
and the assembly and PPIs (protein–protein interactions) of
complexes of different sizes, including NEDDylated Cullins, were
characterized biophysically [50].

The ASB proteins also belong to the class of SOCS-box
proteins. The ASB subclass in humans consists of 18 members

that feature a C-terminal SOCS-box and a variable number of
ankyrin repeats at the N-terminus. The ankyrin repeat domain
serves as a PPI module to recruit the substrate protein. The
SOCS-box domain of the ASB family members recruits Cul5
via the EloBC adaptor complex to form an active E3 ubiquitin
ligase complex. Crystallographic and biophysical studies have
been conducted recently with one component of the ASB subclass,
ASB9, a protein of poorly characterized function but with a
potential link to disease [51,52]. These studies have revealed
an important structural basis for the Cul5 interaction specificity
and for the quaternary ASB9–EloBC–Cul5NTD protein complex
assembly [51,52].

VHL binds with EloBC and Cul2–Rbx1 to form CRL2VHL,
an E3 ligase that targets HIF-1α (hypoxia-inducible factor 1α)
for proteasomal degradation [53,54]. HIF-1α is a transcription
factor that plays a crucial role in oxygen homoeostasis and
tumour angiogenesis [55,56]. The key structural determinant
for recognition of HIF-1α by VHL is a hydroxyproline
residue of the substrate that is hydroxylated under normoxic
conditions in an oxygen-dependent manner [57]. As discovered
by mass spectrometric analysis, there are a number of receptor
proteins that form CRL2 complexes in addition to VHL, e.g.
LRR-1 (leucine-rich repeat protein 1) and FEM-1 proteins
[21,48].

CRL3

The general CRL architecture varies depending on the family
member. Remarkably, CRL3 utilizes substrate-specific adaptors
that implement a dual adaptor/receptor function within a single
polypeptide chain [22,58–60]. These proteins usually contain
several domains and are characterized by a common structural
motif called the BTB fold that binds the N-terminal end of
the Cul3 scaffold. The human genome encodes over 200 BTB
proteins [22] that were originally discovered in the bric-a-
brac, tramtrack and broad complex transcription factors of
Drosophila melanogaster [61]. Importantly, comparison with
other CRLs shows that BTB–Cul3, ElonginC–Cul2/5 and
Skp1–Cul1 interfaces are structurally analogous to each other,
although the interacting subunits are not interchangeable [59]
(Figure 3).

The functional domains of BTB proteins are fused into an
individual subunit; the BTB domain associates with Cul3–Rbx1,
whereas the receptor domains, such as the MATH (meprin and
TRAF homology, where TRAF is tumour necrosis factor receptor-
associated factor) motif, Kelch β-propeller repeat and zinc fingers
serve as substrate-recognition elements [23]. Interestingly, CRL3
complexes can dimerize via their BTB domains to acquire
two substrate receptors and two catalytic RING domains, as

c© The Authors Journal compilation c© 2015 Biochemical Society



370 E. Bulatov and A. Ciulli

demonstrated for SPOP (speckle-type POZ protein) that contains
both BTB and MATH domains [62]. Crystal structures of
KLHL3–Cul3NTD (where KLHL is Kelch-like protein) [63] and
KLHL11–Cul3NTD [64] have revealed the details of the molecular
interface between the BTB proteins and the Cul3 scaffold.

One of the most studied BTB proteins is Keap1 (Kelch-like
enoyl-CoA hydratase-associated protein 1). Keap1 contains a
Kelch motif for recognition of substrate Nrf2 (nuclear factor-
erythroid 2-related factor 2) transcription factor that plays an
important role in the oxidative stress response [65]. Structural
information on substrate recognition is also available for other
Kelch-domain receptors. CRL3 receptor subunits KLHL2 and
KLHL3 target for ubiquitination the substrate WNK4 (with
no lysine 4) kinase, which plays key roles in blood pressure
regulation [66]. The biological function of CRL3s, their substrates
and relevant disease implications, as well as the prospects of
therapeutic targeting of this subfamily of enzymes, have been
reviewed recently [67–69].

CRL4A AND CRL4B

Scaffold proteins Cul4A and Cul4B share over 80% similarity
at the sequence level, with the main difference being that Cul4B
contains an extended NTD. Despite being closely related, their
functional roles in human disease are very different. Cul4A is
mainly involved in oncogenesis, whereas Cul4B was found to
play a role in X-linked mental retardation [70]. Despite structural
similarities of both Cul4A and Cul4B to other members of the
Cullin family, there is a major difference in their architecture
compared with other CRLs. The CRL4 assembly employs
adaptor DDB1 that is significantly distinct from BTB, Skp1
and ElonginC proteins in terms of its structure, function and
larger size. The details of CRL4 assembly were revealed from
the crystal structures of DDB2–DDB1–Cul4A–Rbx1, DDB2–
DDB1–Cul4B–Rbx1 [71] and a virally hijacked SV5 (simian
virus 5) V protein–DDB1–Cul4A–Rbx1 complex [72]. The DDB1
adaptor is made up of three WD40 β-propeller domains (BPA,
BPB and BPC) and serves to recognize UV-induced damaged
DNA lesions. A pair of coupled BPA and BPC domains recruits
the DCAF (DDB1–Cul4A-associated factor) substrate receptor
subunit and a third flexibly connected BPB domain associates
with the Cul4 scaffold.

The DCAF protein class, also known as DWD (DDB1-binding
WD40) and CDW (Cul4–DDB1-associated WD40 repeat), share
a conserved structural WD40 β-propeller domain [73]. They were
originally found to bind the DDB1–Cul4A complex in a tandem-
affinity-assisted proteomics study [72]. Out of over 300 WD40-
containing proteins encoded in the human genome, there are
nearly 90 DCAFs that could potentially bind the DDB1 adaptor
and be incorporated into CRL4 as substrate-recognition subunits
[74]. Docking of DCAF receptors and viral proteins to the DDB1
adaptor occurs by means of a specific structural determinant:
the short helical H-box motif [75,76]. Another receptor motif,
the double-DXR box, plays an important role in the interaction
between DCAF and the DDB1 adaptor [72]. Examples of DCAF
proteins include DDB2, CSA (Cockayne syndrome A), Cdt2
(Cdc10-dependent transcript 2) and VPRBP (Vpr-binding protein,
where Vpr is viral protein R). DCAF proteins are involved
in DNA replication and damage repair, cell cycle and tumour
suppression [70,73,77]. Interestingly, CRL4DDB2 is significantly
different from other CRL family members in that it binds DNA;
however, the ultimate targets for ubiquitination are the proteins
located in close proximity [71]. Structural and biochemical
studies revealed that binding of damaged DNA to the DDB2

receptor of the CSN [COP9 (constitutive photomorphogenesis 9)
signalosome complex]–CRL4DDB2 complex leads to discharge of
CSN subunit 1 that is bound at the C-terminal site of the Cullin
scaffold (substrate-activated CSN release). The role of CSN as a
regulator of CRL activity was originally shown for CRL4DDB2 and
CRL4CSA ligases in studies using UV-induced DNA damage [78].
Surprisingly, F-box proteins β-TrCP and Fbw5 were reported
as substrate receptors for CRL4β-TrCP [79] and CRL4Fbw5 [80]
targeting inhibitors of mTOR signalling REDD1 (regulated in
development and DNA damage response 1) and TSC2 (tuberous
sclerosis protein 2) respectively. However, the structural basis of
the interaction between these particular F-box proteins and the
DDB1 adaptor has so far remained elusive.

CRL7

Cul7 was initially identified as a member of the Cullin family in
mass spectrometric and immunoprecipitation studies showing that
it forms a Fbxw8–Skp1–Cul7–Rbx1 E3 ubiquitin ligase complex
[81,82]. Although Cul7 comprises a Cullin homology domain
like other members of the family, it stands aside because of its
distinctive structural characteristics such as the significantly larger
size and the presence of Doc (also present in the APC-associated
protein Doc1/APC10) and CPH [conserved within Cul7, PARC
and HERC2, where HERC2 is HECT domain- and RLD (regulator
of chromosome condensation 1 protein-like domain) domain-
containing E3 ubiquitin protein ligase 2] domains. The Doc
domain of Cul7 is similar to the one in APC10 and HERC2
[83]. The CPH domain that is also conserved in PARC and,
interestingly, HERC2 was found to bind the tetrameric form of
p53 [84]. Overall, the multisubunit assembly of CRL7 is very
similar to CRL1 in that it involves the Skp1 adaptor, an F-box
protein receptor and Rbx1 [81]. However, unlike Cul1, Cul7
does not directly bind Skp1 alone, but only the Skp1–Fbxw8
complex.

Fbxw8 contains two functional domains (F-box and WD40
repeat) and it is the only F-box protein identified as a substrate
receptor subunit of CRL7 so far [85]. Interestingly, Fbxw8 was
discovered to mediate heterodimerization of CRL1 and CRL7
forming a high-order ubiquitin ligase complex that plays a
role in placental development [86]. Both RING subunits of the
resulting Rbx1–Cul1–Skp1–Fbxw8–Cul7–Rbx1 complex could
potentially be involved in the interaction with E2 and substrate
ubiquitination. Further immunoprecipitation studies revealed that
mutants of Fbxw8 lacking the F-box domain retained the ability
to bind Cul7, but not Cul1. In contrast, it was shown that
WD40-deficient mutants did not bind Cul7, but were still able
to interact with Cul1. Finally, mutants lacking the linker region
between F-box and WD40 domains could not bind either Cul1 or
Cul7. Overall, on the basis of these results, it was proposed that
Cul7–Rbx1 interacts with the WD40 domain region of Fbxw8
and Skp1–Cul–Rbx1 binds the F-box domain [86]. Therefore,
according to this model, it appears that, in principle, Cul7 does
not form any interaction with the Skp1 adaptor and instead directly
recruits the substrate receptor Fbxw8. However, detailed structural
information on the exact mode of the assembly has yet to be
obtained.

A few reported substrates of CRL7Fbxw8 include IRS-1 (insulin
receptor substrate 1) [87] that mediates the insulin signalling
processes, cyclin D1 that is involved in cell cycle progression
[88] and also the protein Grasp65 (Golgi reassembly stacking
protein 65) that plays a role in regulation of neuronal Golgi
morphogenesis and dendrite elaboration [89]. It was also
demonstrated that mutations in the Cul7 gene result in a number of
hereditary human diseases related to growth retardation [90,91].
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CRL REGULATION

In many cases, normal functioning of CRLs under physiological
conditions depends on the interplay between regulatory proteins
such as NEDD8, CAND1 (Cullin-associated NEDD8-dissociated
protein 1) and CSN. Together, these proteins alter the activity of
CRLs and modulate the association/dissociation cycles of CRL
subunits [92].

NEDD8

NEDD8 is a ∼9 kDa protein that shares over 50% sequence
identity with ubiquitin. NEDD8 is covalently conjugated to a
specific conserved lysine residue at the Cullin CTD in a process
termed NEDDylation [93,94]. Similarly to ubiquitin, the NEDD8
modification pathway involves its own set of dedicated E1 and E2
enzymes. NEDDylation was initially reported for Cul1 in yeast
[95,96]. NEDD8 modification is known to regulate CRL activity
and mediate ubiquitination of substrates. For example, NEDD8
was demonstrated to be essential for ubiquitination of p27 by
CRL1 [97] and also IκBα and β-catenin by CRL1β-TrCP [98].
NEDD8 modification was also reported to promote the binding
of E2∼Ub conjugates to CRL [99].

The crystal structures and SAXS data of Cul5CTD–Rbx1 and
NEDD8∼Cul5CTD–Rbx1 complexes shed crucial light on the
potential mechanism of action [100]. This study revealed that
Cullin NEDDylation reorients the modified Cullin subdomain
and dramatically alters the structural flexibility of the Rbx1 RING
domain. In this open form, Rbx1 moves away from its interaction
with the Cullin and partly closes the gap between the E2 and the
substrate. Further biochemical data support the hypothesis that
this conformational change stimulates ubiquitin transfer.

NEDD8-mediated regulation of CRL activity was demonstrated
for all members of the Cullin family, except for Cul7 [101,102].
Remarkably, on the basis of immunoprecipitation studies, Cul7
was reported not to be NEDDylated in cells, but the closely
related PARC (sometimes called Cul9) still undergoes NEDD8
modification [103]. The role of the NEDD8 conjugation pathway
in cancer has been reviewed extensively [104,105].

CAND1

CAND1 is a ∼136 kDa regulatory protein that reversibly binds
to unNEDDylated Cullin scaffold and modulates the CRL
assembly by competing with the adaptor subunit. This regulatory
mechanism was first shown for CRL1 [106–108]. NEDDylated
CRLs do not recruit CAND1. Conversely, CAND1 inhibits
NEDDylation by restricting access of NEDD8 to the conserved
acceptor lysine residue of Cullin [109]. CAND1 was reported
to substantially inhibit ubiquitination of substrate IκBα by
CRL1β-TrCP by interfering with the adaptor assembly [110]. The
same study showed CAND1 can interact with Cul1, Cul2,
Cul3, Cul4A and Cul4B. Later it was established that CRL1,
CRL4B and CRL5 have a significant level of interaction with
CAND1; however, other CRLs show only relatively low levels of
CAND1 association [111]. Crystal structures of CAND1–Cul1–
Rbx1 [112] and CAND1–Cul4B–Rbx1 [71] revealed that CAND1
binds by wrapping its ends around both the NTD and the CTD of
the Cullin scaffold.

Recently, it was demonstrated that CAND1 functions as an
exchange factor for the adaptor–receptor complex in CRL1 [113–
115]. According to the proposed models, CAND1 promotes the
dissociation of an incorporated adaptor–receptor complex and,
as a result, facilitates recruitment of another partner instead.

This process is postulated to determine the variable repertoire
of incorporated substrate receptors and thus to modulate the
functional activities of CRLs. Studies using FRET-based assays
demonstrated that CAND1 significantly enhances dissociation of
the adaptor–receptor complex from the Cullin scaffold [114]. It
was proposed that substrate binding stimulates NEDDylation,
which then blocks CAND1 association resulting in overall CRL
stabilization. However, once the substrate is ubiquitinated and
released for degradation, then subsequent deNEDDylation of
CRL is followed by CAND1 association that enables exchange of
the adaptor subunits. Another research group used quantitative
MS to show that CAND1 regulates the in vivo dynamics
of CRL assembly via exchange of F-box substrate receptors
[115]. Ultimately, an interesting hypothesis was proposed that
the main role of NEDD8 might not be in activating CRLs,
but rather in regulating the dynamics of substrate receptor
exchange [113].

CSN

NEDD8 modification is a reversible process and deNEDDylation
is conducted by an eight-subunit CSN complex that is another
CRL regulatory protein [116]. CSN-mediated cleavage of
the isopeptidic bond between NEDD8 and Cullin is carried
out by its CSN5 subunit containing the catalytic JAMM
(Jab1/MPN/Mov34 domain metalloenzyme) motif acting as a
zinc metalloprotease active site [117,118]. Recently, the crystal
structure of CSN revealed the multisubunit organization of the
protein complex [119]. The functionally important cycles of
NEDDylation/deNEDDylation of CRLs regulated by the CSN
have implications in cancer [120].

CRL OLIGOMERIZATION

In some cases, CRL activation and functioning requires
oligomerization of the E3 complex. The biological implications of
CRL oligomerization as found to date include activity regulation,
enhancement of substrate ubiquitination and mechanistic aspects
of ubiquitin transfer.

Oligomerization can occur via the adaptor, receptor or Cullin
scaffold, or their combinations. Examples include BTB proteins
such as the homodimeric adaptor SPOP in complex with
Cul3NTD and heterodimeric SPOP–SPOPL (SPOP-like) complex
that regulates CRL activity by determining its oligomeric state
[121]. A similar example describes high-order oligomerization of
SPOP that promotes substrate ubiquitination by CRL3SPOP [122].
Homodimerization of another BTB protein MEL26 (maternal
effect lethal 26) in CRL3MEL26 was reported to be important
for its E3 ligase activity [60]. Another BTB protein, KLHL3,
in complex with Cul3NTD was shown to homodimerize via
its BTB–BACK (BTB and C-terminal Kelch) domain [63].
A two-site model for substrate recognition was proposed for
CRL3KLHL11 based on the crystal structure of KLHL11–Cul3NTD

[64]. The F-box substrate receptors β-TrCP1 and β-TrCP2 can
form homo- and hetero-dimers via their the N-terminal regions
[123]. The homodimers CRL1β-TrCP1 −β-TrCP1 and CRL1β-TrCP2 −β-TrCP2

selectively target substrate IκBα for proteasomal degradation. In
addition, yeast F-box proteins Pop1p and Pop2p can homo- and
hetero-oligomerize to regulate diverse functional activity of the
E3 ligase [124,125]. Substrate receptor subunit DCAF1 can also
dimerize to enhance the activity of CRL4ADCAF1 [126].
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VIRAL HIJACKING OF CRLs

CRLs or their components can be hijacked by viral proteins to
manipulate the host cellular processes, and to exploit the host
UPS in order to promote viral replication [127,128]. Examples
of CRL hijacking have been reported for several viral proteins.
HIV-1 Vpu (viral protein U) protein binds the β-TrCP receptor of
CRL1 to target T-cell surface glycoprotein CD4 for proteasomal
degradation [129]. HIV-1 Vpr was found to associate with
CRL4AVPRBP and to trigger cell cycle arrest [130,131]. SV40 large
T-antigen was found to bind F-box receptor Fbw7 of CRL1 and
regulate the turnover of substrate cyclin E [132]. HPV (high-risk
human papillomavirus) E7 was shown to interact with the receptor
Skp2 and be targeted for ubiquitination by CRL1Skp2 [133].
Adenovirus proteins E4orf6 and E1B55K were shown to hijack
the EloBC–Cul5–Rbx1 complex and promote ubiquitination of
tumour-suppressor protein p53 [134].

Several types of paramyxoviruses, including HPIV-2 (human
parainfluenza virus type 2) and SV5 are able to hijack the
CRL4A machinery [135]. These viruses produce a conserved V
protein that recruits the DDB1 adaptor of CRL4A and promotes
ubiquitination of substrate STAT1 and its targeted proteasomal
degradation [136,137]. The crystal structure of DDB1 in complex
with V protein revealed the structural basis of the interaction
[138].

HIV-1 Vif (virion infectivity factor) protein suppresses the host
antiviral activity by hijacking the CRL5 machinery. Specifically,
Vif recruits the EloBC–Cul5–Rbx1 complex to form CRL5Vif

and induce proteasomal degradation of the substrate APOBEC3G
(apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-
like 3G), a host protein that functions as an antiviral factor by
inhibiting retrovirus replication [139]. The recently solved crystal
structure of Vif–CBFβ–Cul5–EloBC (CBFβ is core binding
factor β) uncovered the details of the hijacking mechanism [140].
The mechanism of viral hijacking was shown to involve extended
interaction with cellular transcription factor CBFβ that promotes
Vif-mediated degradation [141].

The area of viral CRL hijacking becomes more attractive
for drug discovery as the number of solved crystal structures
increases. Small-molecule inhibitors disrupting interaction of
viral proteins with the CRL machinery or blocking the activity of
the hijacked E3 ligase complex could lead to the development of
novel antiviral therapies.

DRUG DISCOVERY AND DEVELOPMENT STRATEGIES AND EFFORTS
TO TARGET CRLs

Drug discovery in the UPS has seen significant progress in the last
decade with the first-marketed proteasome inhibitors bortezomib
(Velcade®, Millennium Pharmaceuticals) [163] and more recently
carfilzomib (Kyprolis®, Onyx Pharmaceuticals) [164] being
approved by the U.S. FDA (Food and Drug Administration) for
treatment of multiple myeloma/mantle cell lymphoma. Although
proteasome inhibitors are reasonably selective against cancer
cells to induce apoptosis, they suppress proteasome-mediated
degradation of many proteins in the cell, leading to high risk
of toxic side effects. In addition, clinical evidence for growing
resistance against proteasome inhibitors is beginning to emerge
[165]. Therefore a narrower and more selective targeting of
the ubiquitination cascade upstream of the proteasome is being
widely accepted as a promising therapeutic approach that may
alleviate some of the limitations associated with proteasome
inhibitors. The E3 ubiquitin ligases, including the CRLs, capture
particular attention in this regard as they are responsible for the
specificity of substrate ubiquitination. On the other hand, one

must also consider that targeting proteasome activity could benefit
from target/pathway promiscuity and multiple mechanisms of
action, whereas blocking a single E3 (or a subgroup of E3s)
could be functionally overcome via compensatory cellular
pathways.

Targeting E3 ubiquitin ligases for drug discovery requires
perturbing their PPIs. PPIs are among the most promising
targets for therapeutic intervention [166,167], because of the
exquisite specificity of many PPIs and their important roles
in determining biological function. The use of small organic
molecules to modulate PPIs holds many advantages, because
of the greater bioavailability of small molecules compared with
nucleic acids, peptides or protein therapeutics, and the possibility
of oral delivery. However, targeting PPIs using small molecules
has traditionally been viewed as challenging because of the
perceived difficulty of gaining binding affinity from the large,
often featureless, binding interfaces [166,167]. This led to the
notion of E3 ligases as undruggable targets. However, targeting
E3 ligases with small molecules has been rewarded with some
success, particularly against PPIs such as IAP (inhibitor of
apoptosis protein)/caspase [168], MDM2 (murine double minute
2)/p53 [169,170], and VHL/HIF-1α [145–148]. These examples
give important precedent for the approach and have reinvigorated
new efforts against E3 as targets.

It has been proposed that E3 ligases, and CRLs in particular,
could be the ‘new’ kinases owing to the substantial therapeutic
and market potential of inhibitors for this class of proteins
[171]. Importantly, there are a number of issues to consider: (i)
unlike kinases, most E3 ligases do not possess a defined ligand-
binding site, therefore developing small-molecule inhibitors
could be challenging; (ii) most E3 ligases consist of multiple
independent subunits that work together in a complex, which
means that there could be a number of sites for potential
chemical intervention; and (iii) there is no general approach for
targeting E3 ligases and each protein will have to be addressed
individually according to its specific structural and functional
characteristics.

There is currently a growing interest in developing small
molecules against CRLs for clinical application, and this area
of research could become one of the most attractive for drug
discovery in the coming years. Targeting PPIs within CRLs poses
specific challenges, owing to the lack of a classical catalytic
active site and the large number of potential CRL substrates
that could give rise to specificity problems. On the other hand,
the complexity of the target system provides opportunities too.
For example, the diversity of protein interfaces and surfaces
that are accessible within the CRL multi-component complexes
provide many potential pockets for small molecules to bind to.
This could result in different biological effects and functional
outcomes. Small molecules could act directly by inhibiting
receptor–substrate interaction, disrupting CRL assembly, as well
as allosterically inducing conformational changes leading to
suppressed activity or altered ensemble dynamics [172]. In some
cases, potent ligands could exert their functional effect through
stabilization of certain PPIs within the complex, rather than
disruption [173]. Ultimately, this diversity increases opportunities
to identify multiple chemical series with different mechanisms of
action, thereby maximizing chances of success for drug discovery.
An alternative way to prevent CRL–substrate interaction is to
act upstream by blocking post-translational modification (i.e.
phosphorylation) of the substrate.

Interestingly, compounds that bind and recruit CRLs with high
affinity can have unusual, but highly promising, applications
as proteolysis-targeting chimaeric molecules (Protacs). Protacs
are a class of hetero-bivalent small molecules that promote
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ubiquitination and subsequent degradation of a target protein
of interest by simultaneously binding to and bringing together
both the E3 ligase and the target [174,175]. The most attractive
feature of Protacs as a potential therapeutic strategy is the ability
to remove the target protein from the cell, in addition to, or instead
of, inhibiting it.

Strategies for targeting CRLs that have been described in
the literature include: (i) in vitro screening using functional
assays, e.g. ubiquitination assays [176]; (ii) the use of computer
programs, e.g. ICM-Pocket Finder, for predicting potential
druggable pockets, including those at protein–protein interfaces,
and subsequent docking-based virtual ligand screening in silico
[177]; and (iii) rational structure-based and fragment-based design
[145,147]. Each approach has its own advantages, but also
drawbacks and limitations; for example, functional screening
does not provide direct evidence regarding the binding site of the
hits; computational methods for pocket prediction have limited
reliability and also require structural information, ideally of
bound complexes, to be available; fragment-based approaches
strongly rely on numerous biophysical techniques, require often
laborious structural optimization and tend to be limited by the low
ligand efficiency associated with small molecules targeting PPIs
[178].

In our opinion, structure-based drug design is one of the
most effective strategies for developing specific small molecules
targeting CRLs. Availability of structural data is the main
limitation of this approach given that crystallization of large
multisubunit protein complexes, especially full-size CRLs, can be
notoriously difficult. In addition, NMR spectroscopic studies can
be challenging due to the large size of the full complexes and their
multisubunit composition [179]. We performed a thorough search
within the PDB for crystal structures of CRLs, their individual
components and other related proteins published to date (data
summarized in Supplementary Table S1). This table could be
useful for new structure-based initiatives aiming at the rational
design of potent CRL inhibitors/modulators. Most of the solved
structures represent individual components or their complexes for
CRL1, CRL3, CRL4A/B and CRL5, with only a few examples
for CRL2 and no crystal structures for CRL7. The vast majority
of these structures provide structural information on substrate–
receptor, receptor–adaptor and adaptor–Cullin interfaces. As
described in the cases below, some of these interfaces are already
being targeted for potential therapeutic intervention. There are
only two examples of crystal structures containing substrate
receptor, adaptor, Cullin and Rbx subunits altogether: Skp2–
Skp1–Cul1–Rbx1 [29] and DDB1–DDB2–Cul4A–Rbx1 [71].
Structures containing full-length Cullin scaffold are only available
so far for Cul1–Rbx1 [29], DDB1–Cul4A–Rbx1 and Cul4B–
Rbx1 [71,72].

The E3–E2 interplay is responsible for ubiquitin transfer
and therefore is also considered to be attractive for small-
molecule modulation. In general, this interaction is rather weak
and labile, with KD values in the low micromolar range [24],
therefore even moderately potent, yet selective, ligands could
act as effective modulators of this PPI. To date, there are
only a few crystal structures of E3–E2 complexes available;
however, most of them are non-CRL E3 ligases, as reviewed
in [24,180], and will not be covered here. To the best of our
knowledge, the only exception is the recently reported structure
of the Rbx1–Ubc12∼NEDD8–Cul1–Dcn1 (where Ubc12 is
ubiquitin-conjugating enzyme 12 and Dcn1 is defective in Cullin
NEDDylation 1) complex [181]. The authors provided a structural
characterization of an intermediate NEDDylated complex that
aids the elucidation of the mechanism of NEDD8 ligation to
the Cullin scaffold and substrate ubiquitination. Importantly,

the overall architecture of the E3 machinery and its catalytic
activity were found to be substrate-regulated. The study represents
a major step forward in understanding the mechanistic details
of substrate ubiquitination via RING E3–E2∼UBL (UBL is
ubiquitin-like protein) complexes that had previously remained
elusive.

The small-molecule ligands of CRLs reported target different
components of the CRL complexes; however, in most cases, these
act as inhibitors by disrupting the substrate–receptor interface
(Figure 4 and Table 2). Several examples are covered in detail in
the next section.

TARGETING CRLs

CRL1Skp2

The growing evidence in support of the correlation between CRL
and cancer or other diseases leads to increased efforts to develop
potent inhibitors. The accumulated biological data for CRL1Skp2

lays out a solid rationale for stabilization of the substrate p27,
i.e. by targeting the p27–Skp2 PPI or other interfaces within
the CRL1Skp2. Research in this area has already successfully
employed virtual screening and other computer-aided methods.
Given the relatively large number of published crystal structures
of CRL1Skp2 components individually or in complex with other
proteins (Supplementary Table S1), we propose that a structure-
based drug design approach would be particularly attractive for
future development of potent inhibitors.

A set of compounds has been developed starting from a
virtual screening in silico for inhibitors of Skp2-mediated p27
degradation [144]. The authors applied the ICM PocketFinder
(Molsoft) program on the published crystal structure [33]
to examine the interface formed by receptor Skp2, substrate
p27 and the accessory protein Cks1 that is required for the
interaction. The approach is based on calculating volume/area
ratios to predict druggable surface pockets and was originally
described for F-box protein β-TrCP [177]. The pocket identified
at the Skp2–Cks1–p27 interface was then targeted by virtual
screening of 315000 compounds and followed up by the assay
validation. Four hits, C1, C2, C16 and C20, were confirmed to
stabilize p27 and inhibit its ubiquitination in a Skp2-dependent
manner. These small molecules are postulated to bind specifically
at the Skp2–Cks1 interface and disrupt the interaction with
p27. Later it was established that C2 and C20 increase the
nuclear levels of p27 and inhibit cancer cell proliferation [182],
suggesting that these compounds could be further optimized
into potent inhibitors to treat CRL1Skp2-dependent cancers.
Altogether, these proof-of-principle results confirm that the
CRL–substrate interface can be successfully targeted with small
molecules.

A high-throughput screening was used in the format of an
in vitro ubiquitination assay of CRL1Skp2 to identify the small
molecule CpdA (compound A) [142]. The authors propose that
the compound acts by disrupting the Skp1–Skp2 interface and
preventing Skp2 from incorporating into CRL1Skp2 as a substrate
receptor domain. CpdA specifically inhibits ubiquitination and
induces stabilization of p27Kip1, as well as several other substrate
proteins (p21Cip1 and p57Kip2). Interestingly, when CpdA was tested
in combination with bortezomib, the activity of each compound
was enhanced synergistically. However, CpdA demonstrated
relatively low potency in cells that might restrict its applicability
in vivo.

Another research group applied a high-throughput in silico
screening strategy to search for compounds that bind to Skp2
and disrupt its interaction with Skp1 [143]. Initially, a library of
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Figure 4 Chemical structures of published small-molecule modulators of CRL activity
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Table 2 Reported CRL inhibitors, their targeted subunits, mechanism of action and available X-ray crystal structures

N/A, not available.

Molecule ID Target Function/mechanism K D or IC50 PDB code Reference(s)

CpdA Skp2 of CRL1Skp2 Prevents Skp2 incorporation
into CRL1Skp2 E3 ligase,
possibly by disrupting
Skp1–Skp2 interaction

IC50 = 4.2–13.2 μM (against
several cell lines)

N/A [142]

Compound #25 Skp2 of CRL1Skp2 Inhibitor of Skp1–Skp2
interaction

N/A N/A [143]

C1, C2, C16, C20 Skp2–Cks1 of CRL1Skp2 Inhibitors of PPI between
Skp1–Cks1 and substrate
p27

N/A N/A [144]

Compound 15, Compound 7 VHL of CRL2VHL Disruptors of the interaction
between VHL and substrate
HIF-1α

K D = 5 μM (Compound 15),
185 nM (Compound 7)

3ZRC, 4W9H [145–148]

BC-1215 Fbxo3 of CRL1Fbxo3 Inhibitor of substrate Fbxl2
ubiquitination

IC50 = 0.9 μg/ml N/A [149]

SMER3 Met30 Binds to the Met30 receptor of
CRL1Met30 and inhibits
ubiquitination of substrate
Met4

N/A N/A [150]

GS143 β-TrCP1 of CRL1β − TrCP1 Inhibitor of substrate IκBα

ubiquitination
IC50 = 5.2 μM N/A [151]

Probe 8 TIR1 of CRL1TIR1 Disruptor of interaction
between TIR1 of CRL1TIR1

and substrate Aux/IAA

N/A 3C6N [152]

JA-Ile COI1 of CRL1COI1 Promotes interaction between
COI1 and substrate JAZ1

N/A N/A [153]

Thalidomide, lenalidomide,
pomalidomide

CRBN of CRL4ACRBN Modulators of CRL4A activity
via binding to CRBN
subunit

K D = 8.5 nM (thalidomide)
(by SPR [154]); 250 nM
(thalidomide), 178 nM
(lenalidomide), 157 nM
(pomalidomide) (measured
by FP [155])

4CI1, 4CI2, 4CI3, 4TZ4, 4TZU,
4TZC, 3WX2

[154–156]

CC0651 Cdc34 Inhibitor of E2-conjugating
enzyme Cdc34

IC50 = 1.72 μM (inhibition of
p27Kip1 ubiquitination)

3RZ3 [157,158]

Cdc34A∼Ub Stabilizes Cdc34A∼Ub
thioester link

IC50 = 18 μM (inhibition of
β-catenin ubiquitination)

4MDK

SCF-I2 Cdc4 Allosteric inhibitor of Cdc4
binding of phosphorylated
substrates

IC50 = 6.2 μM 3MKS [159]

MLN4924 NAE Forms a covalent adduct with
NEDD8 and inhibits NAE

IC50 = 4.7 nM 3GZN [19]

SRS-1a, SRS-22, SRS-43,
SRS-59, Cpd15, Cpd16

Keap1 of CRL3Keap1 Inhibitors of the interaction
between Keap1 and
substrate Nrf2

IC50 = 2.3 μM (SRS-1a),
7.4 μM (SRS-22), 1.1 μM
(SRS-43), 0.75 μM
(SRS-59), 118 μM
(Cpd15), 2.7 μM (Cpd16)

4L7B, 4L7C, 4L7D, 4N1B,
4IN4, 4IQK

[160–162]

120000 compounds was screened to identify 25 potential Skp2–
Skp1 interaction inhibitors. One molecule called Compound
#25 was firmly validated in an in vitro pull-down assay and
dose-dependent binding experiments. Compound #25 showed
selective binding to Skp2 and did not affect other adaptor F-
box proteins (e.g. Fbw7 or β-TrCP) that also interact with Cul1.
Although Compound #25 prevented the formation of the Skp2–
Skp1 complex and inhibited CRL1Skp2 activity, it could not disrupt
a pre-existing complex in vitro. The authors also demonstrated
that Compound #25 inhibited p27 ubiquitination by CRL1Skp2,
enhanced p27 levels and exhibited tumour-suppressing activity in
animal studies.

Interestingly, direct targeting with small molecules is not the
only way to modulate CRL activity. Two compounds, SMIP001
and SMIP004 (small-molecule inhibitor of p27 depletion 001 and
004), were found to down-regulate Skp2 by lowering its mRNA
levels and negatively affect CRL1Skp2 activity [183].

CRL1Fbxo3

F-box proteins are responsible for substrate recognition and
therefore represent very attractive drug targets, particularly at the
receptor–substrate interface. Recently, the benzathine derivative
BC-1215 was developed as an inhibitor of Fbxo3 protein that
blocked CRL1Fbxo3-mediated ubiquitination of substrate Fbxl2
[149,184]. The benzathine scaffold was identified from molecular
docking of 6507 approved/experimental drugs against Fbxo3. BC-
1215 disrupted the Fbxo3–Fbxl2 interaction and showed anti-
inflammatory properties in a mouse model of cytokine-driven
inflammation.

CRL1Cdc4

Although many of the CRL inhibitors directly target the substrate–
receptor interface, there is an interesting example of small
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Figure 5 Crystal structure of Skp1–Cdc4–SCF-I2 complex (PDB code 3MKS)

Left: the Cdc4–Skp1 protein complex and bound SCF-I2 ligand are shown as molecular surface representations. Right: the expanded inset shows the key residues of Cdc4 (light blue carbons)
forming the protein interface that binds SCF-I2 and the ligand chemical structure (yellow carbons); oxygen atoms are in red, and nitrogen atoms are in blue.

molecule SCF-I2 that exerts long-range allosteric modulation
of the yeast F-box protein Cdc4 to disrupt its interaction with
substrate Sic1 and prevent subsequent ubiquitination of Sic1
by CRL1Cdc4 [159] (Figure 5). The biplanar dicarboxylic acid
ligand SCF-I2 was discovered by screening a library of ∼50000
compounds using an FP (fluorescence polarization) assay. The
compound constitutes a racemic mixture; however, only the (R)-
( + ) enantiomer was found to bind Cdc4. Structural studies
revealed that SCF-I2 intercalates between adjacent blades 5 and
6 of the conserved WD40 β-propeller domain of Cdc4 in such a
way that it induces formation of its own binding pocket located
at ∼25 Å (1 Å = 0.1 nm) distance from the substrate-binding
site. Interestingly, this pocket is not present in the apo-form of the
Skp1–Cdc4 complex [185]. SCF-I2 was selective towards Cdc4
and showed only little effect on related F-box proteins including
the human orthologue of Cdc4 (Fbw7) and the yeast homologous
protein Met30. Although SCF-I2 demonstrated significant activity
in vitro, it failed to inhibit Cdc4 in vivo probably because of its
poor cell permeability. The authors propose that similar allosteric
approaches could be employed for developing inhibitors of other
WD40 domain proteins that serve as receptor subunits within
many CRLs.

CRL1Met30

Specific disruption of receptor–adaptor interfaces could be an
attractive alternative approach to targeting receptor–substrate
interactions. A selective CRL1Met30 inhibitor called SMER3
(small-molecule enhancer of rapamycin 3) was discovered in
a phenotype-based screen of an ∼30000 compound library in
yeast [150]. Further studies revealed that SMER3 functions by
binding to the Met30 substrate-recognition subunit and disrupting

its interaction with adaptor Skp1, therefore inhibiting the activity
of CRL1Met30 and preventing the ubiquitination of substrate Met4.
The inhibitor demonstrated high selectivity for Met30 when tested
against several other F-box proteins, including Cdc4 and Fbw7.

CRL1β-TrCP

Some NF-κB-regulated inflammatory and cancer processes are
mediated by CRL1β-TrCP through ubiquitination and degradation
of IκBα, a suppressor of NF-κB nuclear translocation. GS143,
a small-molecule inhibitor of CRL1β-TrCP, was identified in a
FRET-based high-throughput screening of ∼50000 compounds
[151]. The compound selectively prevented ubiquitination of
IκBα and demonstrated anti-inflammatory activity in cellular
studies. However, no information was provided to confirm direct
binding of GS143 to either β-TrCP or IκBα. The authors propose
that the compound’s mode of action could involve an interaction
with both β-TrCP and phosphorylated substrate IκBα.

CRL1TIR1

Auxin is a gene-regulatory plant hormone that is crucial for
CRL1TIR1-mediated ubiquitination and degradation of substrate
Aux (auxin)/IAA (indole-3-acetic acid) transcriptional repressor
proteins. Previously, a crystal structure was determined for a
Skp1–TIR1 complex (TIR1 is transport inhibitor response 1)
alone and with several auxin molecules bound [186]. It was
revealed that auxin binds in the substrate-binding pocket of TIR1
and promotes the further recruitment of Aux/IAA. Additionally,
a small molecule inositol hexakisphosphate was found bound
to TIR1, and presumed to be a cofactor of the auxin receptor.
Later, the same group reported the development of small-molecule
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Figure 6 Crystal structure of the Skp1–TIR1–Probe 8 complex (PDB code 3C6N)

Left: Skp1–TIR1 protein complex with bound Probe 8 ligand that blocks the interaction of TIR1 with substrate Aux/IAA. Right: the key TIR1 residues (grey carbons) and Probe 8 (yellow carbons) are
shown as sticks; oxygen atoms are in red, and nitrogen atoms are in blue.

inhibitors of the F-box protein TIR1 that serves as substrate
receptor domain of the CRL1TIR1 E3 ligase [152]. Substrate
Aux/IAA binds to the leucine-rich repeat domain of TIR1 in
an auxin-mediated manner. This suggested that auxin analogues
could potentially disrupt the interaction. Towards this aim, a
series of alkylated derivatives of a natural auxin, IAA, was
developed. One compound, called Probe 8, proved to be the
most potent in a pull-down assay and demonstrated a TIR1-
dependent auxin-antagonistic response in Arabidopsis thaliana.
Owing to its long alkyl chain, Probe 8 blocks the interaction
between TIR1 and Aux/IAA, as supported by the crystal structure
of TIR1 in complex with the small molecule (Figure 6). However,
no ubiquitination assay data was provided to confirm inhibitory
activity of Probe 8 towards CRL1TIR1. Nevertheless, the authors
suggest that disrupting the auxin-mediated interaction between
TIR1 and substrate Aux/IAA could modulate E3 ligase function
and potentially prevent the substrate from ubiquitination.

CRL1COI1

A small-molecule-mediated interaction between a CRL and its
substrate is not unique to the F-box protein TIR1. A similar
mechanism was also identified for its close homologue COI1
(coronatine-insensitive protein 1) and the jasmonate class of plant
signalling molecules [153]. Phenotypical studies in plants and the
yeast two-hybrid system were used to establish that a repressor
of jasmonate signalling, JAZ1 (jasmonate/ZIM domain protein 1,
where ZIM is zinc finger expressed in inflorescence meristem),
is the substrate of CRL1COI1. The plant hormone jasmonoyl-
isoleucine (JA-Ile) was demonstrated to promote the interaction
between the F-box protein COI1 and the substrate JAZ1, leading to
CRL1COI1-dependent ubiquitination and proteasomal degradation
of JAZ1. Although no inhibitors of the COI1–JAZ1 interaction
have been reported to date, it is reasonable to suggest that JA-Ile
could be used as a starting point for the development of such
compounds, in a manner resembling that of auxin analogue Probe
8, as described above.

CRL2VHL

HIF-1α is a transcription factor that is targeted for ubiquitination
and proteasomal degradation by the VHL E3 ligase CRL2VHL.
Blocking the activity of VHL would result in up-regulation of
HIF-1α which is an attractive therapeutic strategy in certain
diseases where triggering the hypoxic response is proven to be
beneficial. Our laboratory, in collaboration with scientists from
Yale University, developed the first series of inhibitors of the PPI
between VHL and HIF-1α [145–147]. VHL serves as a substrate
receptor within CRL2VHL and recognizes a key hydroxylated
proline residue of HIF-1α [146,147]. The compounds were
structurally designed as hydroxyproline derivatives to compete
with HIF-1α and then optimized using SARs (structure–activity
relationships) based on the crystal structures of the protein–
ligand complexes. Compound 15, the best inhibitor until then
[KD = 5 μM by ITC (isothermal titration calorimetry) and FP]
was then deconstructed and the interaction of its building blocks
was studied biophysically. This allowed the dissection of the
relative contribution of individual functional groups to the ligand-
binding energy and assessment of the feasibility of fragment-
based screening for targeting the VHL–HIF-1α interface [145].
More recently, guided by the results of this deconstructive study
and by numerous X-ray crystal structures and ITC data, this PPI
inhibitor series was optimized further, resulting in Compound
7 (KD = 0.185 μM by ITC) that is currently the most potent
VHL/HIF-1α inhibitor reported to date [148] (Figure 7).

CRL3Keap1

Nrf2 serves as a substrate for CRL3Keap1 and plays an important
role in inflammatory and cancer pathways [187]. Recently, SRS-
1a, a small-molecule inhibitor of the Keap1–Nrf2 interaction was
discovered in a high-throughput screening of the NIH’s MLPCN
(Molecular Libraries Probe Production Centers Network) library
[160]. The molecule targets the receptor Kelch domain of
BTB protein Keap1. An independent study explored further
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Figure 7 Crystal structure of the VHL–ElonginB–ElonginC–Compound 7 complex (PDB code 4W9H)

Left: the protein complex and the ligand are shown as molecular surface representations. Right: the insets show the chemical structure of the ligand and a close-up of its binding site, with protein
key residues (grey carbons) and ligand molecule (yellow carbons) shown as sticks; oxygen atoms are in red, nitrogen atoms are in blue, and sulfur atoms are in orange.

Figure 8 Crystal structure of the Keap1–SRS-59 complex (PDB code 4L7D)

Left: Keap1 receptor subunit of CRL3Keap1 shown with bound SRS-59 inhibitor that disrupts the interaction with substrate Nrf2. Right: Keap1-binding site with key residues (light blue carbons) and
bound SRS-59 molecule (yellow carbons), and the chemical structure of the inhibitor; oxygen atoms are in red; and nitrogen atoms are in blue.

optimization of SRS-1a, resulting in a highly potent SRS-59,
and next established the co-crystal structure of this compound
and several of its derivatives in complex with Keap1 [161]
(Figure 8). All compounds exhibited low-micromolar potency
and good cell permeability, thus providing good starting points
for further development. These strategies successfully targeting
Keap1 could be also extended to other similar CRL3 targets.

Another example of successful identification of a Keap1–Nrf2
inhibitor involved screening a commercial compound library
resulting in the micromolar affinity inhibitors benzenesulfonyl-
pyrimidone Cpd15 and benzene-disulfonamide Cpd16 [162]

(Figure 9). The latter compound demonstrated up-regulation of
Nrf2-response genes in a luciferase cell-reporter assay. X-ray
crystal structures were solved for Keap1 in complex with both
compounds (PDB codes 4IN4 and 4IQK).

CRL4ACRBN

Thalidomide is well known for its teratogenicity in pregnant
women; however, nowadays, the drug and its analogues are
used for the treatment of multiple myeloma and leprosy.
Thalidomide was previously found to exert its teratogenic effect
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Figure 9 Crystal structure of the Keap1–Cpd16 complex (PDB code 4IQK)

Left: structure Keap1 with bound Cpd16 inhibitor of the Keap1–Nrf2 interaction are shown as molecular surface representations. Right: key residues of Keap1 (light blue carbons) and Cpd16 (yellow
carbons) are shown; oxygen atoms are in red, nitrogen atoms are in blue, and sulfur atoms are in orange. Cpd16 binds to the same site as the above mentioned SRS-59.

primarily through inhibiting cereblon (CRBN), a protein that
interacts with the adaptor DDB1 to form CRL4ACRBN [154].
Later, lenalidomide and pomalidomide, two close analogues
of thalidomide, were also found to display their anti-cancer
effect also by targeting CRL4ACRBN via direct interaction with
CRBN [188,189]. Recently, crystal structures of DDB1–CRBN
in complex with thalidomide, lenalidomide and pomalidomide
were solved that further verified CRBN as the substrate receptor
component of CRL4ACRBN [155] (Figure 10). All three ligands
bound in the same pocket of CRBN and demonstrated similar
binding modes, and very tight interaction with KD values
of 250 nM (thalidomide), 178 nM (lenalidomide) and 157 nM
(pomalidomide) measured by FP assays. Anti-cancer activity
was later found to be due to the compounds binding to
CRL4ACRBN and modulating the E3 ligase activity resulting
in promoted degradative ubiquitination of several members of
the Ikaros transcription factors family in a manner similar to
auxin-mediated degradation of Aux/IAA, described above [186].
Using protein microarray analysis, the authors also identified the
MEIS2 (myeloid ecotropic viral integration site 1 homologue 2)
transcription factor as an endogenous substrate of CRL4ACRBN.
Independently, the crystal structure was solved for DDB1–
CRBN in complex with lenalidomide and an individual TBD
(thalidomide-binding domain) of CRBN alone and in complex
with thalidomide and pomalidomide [156].

CRL5Vif − CBFβ

Several compounds targeting CRL5Vif − CBFβ were discovered using
cell-based and enzyme-based screening assays. Examples include
RN-18 [190], MM-1 and MM-2 [191] that reportedly inhibited
HIV-1 Vif function; however, the exact structural mechanism of
action remains unclear. Recently, the structural basis for hijacking
CRL5 was unveiled and Vif was found to incorporate into
the E3 ligase by forming a multimeric Vif–CBFβ–EloBC–Cul5
complex [140]. The structural data substantially improves the
understanding of viral hijacking and provides further opportunity
for rational anti-HIV drug design [192].

TARGETING UPSTREAM OF CRLs

Cdc34 E2 enzyme

Targeting substrate–receptor interaction or integral components
of the CRL machinery is not the only way to modulate
CRL catalytic activity. Alternative approaches include targeting
enzymes upstream of the E3, such as E1s and E2s, as well
as enzymes responsible for NEDD8 modification of the Cullin
scaffold.

An interesting example shows how a high-throughput screen
for CRL1Skp2 inhibitors aided the discovery of an E2 enzyme
modulator instead [157]. Here, a screening campaign based
on a previously developed ubiquitination assay [142] identified
the small molecule CC0651 that inhibited ubiquitination of
substrate p27Kip1. The compound was not selective towards p27Kip1

and demonstrated inhibitory properties against other CRL1-
based substrate/receptor pairs; however, biochemical studies
established that CC0651 targets the E2-conjugating enzyme
Cdc34 operating together with CRL1 [13]. Importantly, the
compound showed specificity for Cdc34 compared with other
E2 enzymes despite their significant structural similarity. It is
well known that the presence of a hydrolysable thioester bond
between E2 and ubiquitin is crucial for the catalytic activity
of the whole E3 ligase. The crystal structures of Cdc34 and
the Cdc34–CC0651 complex revealed that CC0651 targets a
previously unknown allosteric pocket at a distance from the
catalytic cysteine residue. Ligand binding is observed to induce
a significant conformational change in the E2 protein to open
up such pocket. In so doing, CC0651 appears to stabilize the
E2–ubiquitin interaction and lock the complex in an inactive
conformation, therefore inhibiting the discharge of ubiquitin
from the E2∼Ub conjugate on to the substrate lysine residues
(Figure 11). More recently, the same group solved the crystal
structure of a Cdc34∼Ub–CC0651 complex, and determined that
CC0651 bridges the Cdc34∼Ub link and suppresses hydrolysis
of the weak thioester bond between the two proteins [158].
CC0651 was also found to negatively affect proliferation of cancer
cells.
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Figure 10 Crystal structure of the CRBN–DDB1–thalidomide complex (PDB code 4CI1)

Left: CRBN–DDB1 receptor–adaptor complex of CRL4ACRBN with thalidomide bound to CRBN are shown as molecular surface representations. Right: the residues of CRBN (green carbons) forming
the interaction interface with thalidomide (yellow carbons); oxygen atoms are in red, and nitrogen atoms are in blue.

Targeting the intermediate complex CRL–E2∼UBL presents
attractive opportunities for inhibiting CRL activity. In particular,
the canonical hydrophobic interface between the Rbx RING
and E2∼UBL (e.g. Cdc34∼Ub or Ubc12∼NEDD8) could be
amenable for small-molecule modulation. Potential druggability
of the interface can be addressed by targeting the key side-chain
interactions that allosterically mediate activation of the E2∼UBL
conjugate. It was demonstrated recently that the ‘linchpin’ residue
Arg46 of Rbx1 facilitates RING–E2 interaction for Cdc34∼Ub
and Ubc12∼NEDD8 [181]. Structural studies showed that Arg46

brings in close proximity the surface of Ubc12 interacting with
the RING domain and the N-terminal loop of NEDD8 in such a
way that they both face a distinctive pocket of Rbx1 next to Arg46

itself. Importantly, mutation of Arg46 prevents NEDD8 transfer
from Ubc12 to Cul1. It would therefore seem reasonable that
a small molecule targeting this pocket on Rbx1 and disrupting
these specific interactions could provide an attractive approach to
modulate CRL activity. It is worth pointing out that this interaction
is not expected to be significantly affected by CC0651, as this
compound targets Cdc34 on a distinct site that is compatible with
Rbx1 binding [158].

Another potential target for intervention is the interface formed
by the acidic C-terminal tail of Cdc34 and the so-called basic
canyon of Cul1 which is close to the Rbx1 interface at the Cul1
CTD [193]. Kleiger et al. [193] used binding assays and ab initio
docking to demonstrate how rapid dynamics of the high-affinity
Cdc34–Cul1 interaction can influence the activity of the CRL E3
ligase. The study describes putative mechanisms of Cdc34 action,
including full or partial dissociation from Cul1–Rbx1. It was
proposed that the Cdc34 acidic tail could play an important role in
mediating the assembly of ubiquitin chains on the substrate. These
observations point to the potential of disrupting the interaction
between the Cdc34 tail and Cul1 to serve as an attractive drug
target site for small-molecule intervention.

NEDD8–NAE

The ubiquitin-like protein NEDD8 enhances CRL activity by
inducing dynamics of the complex and activating conformational
shift of Rbx–E2∼Ub to bring ubiquitin in close proximity to
the substrate bound at the opposite terminus of the E3 ligase
[100,194]. CRLs are the main targets for NEDDylation [195],
a process of covalent NEDD8 modification of a conserved
lysine residue at the Cullin CTD. The conjugation occurs
through a pathway involving its own E1 and E2 enzymes. A
group of scientists at Millennium Pharmaceuticals developed a
highly selective inhibitor of NAE (NEDD8-activating enzyme),
which functions as the heterodimeric complex NAE1–UBA3,
adenosine sulfamate MLN4924, which is structurally similar to
the adenylate intermediate of the NAE catalytic reaction [19].
Early crystal structures of NAE with bound MLN4924 were not
particularly informative in terms of explaining the high potency
and selectivity of the drug. However, a later crystal structure
of the NAE–NEDD8∼MLN4924 ternary complex obtained in
the presence of NEDD8 and ATP revealed the formation of
covalent NEDD8∼MLN4924 adduct that blocks the active site
of NAE [196] (Figure 12). The selectivity for NAE over other
E1s was shown to be achieved via substrate-assisted inhibition
[197]. The MLN4924-induced inhibition of NEDD8 transfer
leads to an increase in non-NEDDylated CRLs with suppressed
ubiquitination activity against their substrates. The compound is
now being tested in Phase I clinical trials against a number of
cancers [198].

Another approach to target the NEDD8 pathway was
undertaken using a 26-mer peptide that corresponds to the NTD
of Ubc12, a NEDD8 E2 enzyme [199]. Structural studies revealed
that the peptide binds NAE and specifically inhibits the formation
of the thioester bond between NEDD8 and Ubc12. The crucial
role of NEDD8 in regulation of CRL activity and the tractability
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Figure 11 Structures of CC0651 bound to an allosteric pocket on the E2-conjugating enzyme Cdc34

Top: crystal structure of the Cdc34–CC0651 binary complex (PDB code 3RZ3). The protein and its ligand are shown as molecular surface representations. Inset: Cdc34 residues (green carbons)
forming the binding pocket and the CC0651 ligand (yellow carbons). Bottom: crystal structure of the ternary complex Cdc34A∼Ub–CC0651 (PDB code 4MDK). CC0651 (yellow carbons) is bound
embedded within the Cdc34A∼Ub covalent conjugate protein. CC0651 suppresses the hydrolysis of the thioester bond between the catalytic cysteine residue of Cdc34 (green carbons, cysteine
residue not shown) and ubiquitin (brown carbons, Lys48 side chain shown). Oxygen atoms are in red, nitrogen atoms are in blue, and chlorine atoms are in light green.

Figure 12 Crystal structure of the NAE1–UBA3–NEDD8∼MLN4924 complex (PDB code 3GZN)

The NAE1 regulatory subunit and the UBA3 catalytic subunit form the heterodimeric NAE. Left: NAE complexed with NEDD8∼MLN4924 covalent adduct, where MLN4924 inhibits the active site of
NAE. Right: the residues forming interface between NAE1 (grey carbons), UBA3 (green carbons), NEDD8 (cyan carbons) and MLN4924 (yellow carbons). Oxygen atoms are in red, nitrogen atoms
are in blue, and sulfur atoms are in orange.
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of the NEDDylation enzymes for small-molecule modulation
together underline the potential of targeting this pathway for future
therapeutic intervention.

CONCLUSIONS

The CRLs are the largest family of multisubunit E3
ligases in humans that are responsible for the recognition,
polyubiquitination and degradation of a wide range of substrate
proteins. Many members of this family, and of the biological
substrates that they regulate, have crucial roles in cellular
physiology and homoeostasis, and are also implicated in a wide
range of diseases. Disease-linked mutations are increasingly
being found in genes that code for either E3 substrates
or components of E3 ligase themselves. This, among other
compelling evidence, makes CRLs attractive targets; however,
conventional drug discovery approaches have largely neglected
such large multicomponent cellular machineries because they are
traditionally viewed as difficult to target. As a result, the field
is still in its infancy and the true potential of this target class
has only recently been recognized as bearing adequate risk/gain
balance to motivate directing strategic investments and drug
discovery efforts into. Nevertheless, increasing understanding
of the structural assembly and interactions of these proteins
is now emerging which is underpinning growing activity and
recent successes at identifying potent cell-active small molecules,
particularly using structure-guided approaches. Such high-quality
compounds would bind to CRLs, and thus specifically modulate
their assembly and/or PPIs, and, as a result, affect their biological
function. Given the complexity of CRLs as targets and the
different layers of regulation to which they are subject, it is
anticipated that small molecules with diverse mechanisms of
action should emerge, as not only inhibitors but also activators, not
only disruptors but also stabilizers of given PPIs, and modulators
of protein dynamics. Pharmacological responses could result
from acting directly at specific PPIs or from targeting distant
allosteric binding sites. However, few detailed mechanistic, e.g.
kinetic and thermodynamic, studies of available CRL ligands have
been performed to date. This is possibly because of a paucity of
convenient and portable assays for monitoring enzyme activity,
and of the difficulty of obtaining many of the protein components
and complexes in quantities suitable to detailed biophysical
characterization. We believe such mechanistic information to
be very important in drug discovery projects, as it can help to
maximize chances of success. We therefore predict that significant
advancements in these directions are warranted in the near future,
which will fuel exciting new developments against a challenging,
but potentially highly rewarding, target class.

Note added in proof (received 17 March 2015)

Since the acceptance of this manuscript, a group from Yale
University published the first crystal structure of a quaternary
complex between VHL, EloBC and an N-terminal fragment of
Cullin2, which is beginning to shine lights into the molecular basis
of Cul2 vs Cul5 selectivity by ECS-type CRLs (Nguyen, H.C.,
Yang, H., Fribourgh, J.L., Wolfe, L.S. and Xiong, Y. Insights into
Cullin-RING E3 Ubiquitin Ligase Recruitment: Structure of the
VHL-EloBC-Cul2 Complex. Structure 23, 441–449 (2015))
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