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Abstract
Several programmed lytic and necrotic-like cell death mechanisms have now
been uncovered, including the recently described receptor interacting protein
kinase-3 (RIPK3)-mixed lineage kinase domain-like (MLKL)-dependent
necroptosis pathway. Genetic experiments have shown that programmed
necrosis, including necroptosis, can play a pivotal role in regulating
host-resistance against microbial infections. Alternatively, excess or
unwarranted necroptosis may be pathological in autoimmune and
autoinflammatory diseases. This review highlights the recent advances in our
understanding of the post-translational control of RIPK3-MLKL necroptotic
signaling. We discuss the critical function of phosphorylation in the execution of
necroptosis, and highlight the emerging regulatory roles for several ubiquitin
ligases and deubiquitinating enzymes. Finally, based on current evidence, we
discuss the potential mechanisms by which the essential, and possibly
terminal, necroptotic effector, MLKL, triggers the disruption of cellular
membranes to cause cell lysis.
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Introduction
RIPK3 and MLKL are essential for necroptotic cell death
Necroptosis is a caspase-independent programmed cell death 
pathway1. Necroptotic cell lysis and the release of intracellular pro-
inflammatory molecules is dependent on phosphorylation of the 
pseudokinase, MLKL, by the protein kinase, RIPK3. Phosphoryla-
tion of MLKL leads to its activation, and subsequent cell death by 
mechanisms that are currently a matter of debate, although a weight 
of evidence suggests this involves disruption of cellular mem-
branes, including the plasma membrane. Following tumor necrosis 
factor (TNF) receptor 1 (TNFR1) ligation, the protein kinase, 
RIPK1, activates RIPK3 presumably by promoting RIPK3 auto-
phosphorylation, which in turn leads to MLKL activation. How-
ever, it is now apparent that RIPK3 can be activated independently 
of RIPK1 in many circumstances, and that RIPK1 can act to repress 
RIPK3 activation, both in vitro and in vivo2–8. Consequently, our 
current thinking is that RIPK3 and MLKL are the core machinery 
essential for all necroptotic cell death responses.

RIPK3 is a driver of MLKL dependent and independent 
inflammatory disease
Studies using RIPK3-deficient mice have implicated pathological 
RIPK3 signaling, and potentially necroptosis, in many inflammatory 
diseases, such as atherosclerosis, kidney ischemia reperfusion injury, 
liver injury, myocardial infarction, and multiple sclerosis (reviewed 
in 9). However, it has recently been posited that necroptosis may also 
act in an anti-inflammatory capacity, as cell death abrogates TNF- or 
toll-like receptor- (TLR) induced transcription of pro-inflammatory 
cytokines and the ensuing inflammatory response10. Recent research 
has also revealed that RIPK3 has several non-necroptotic signaling 
capabilities, both in vitro and in vivo (reviewed in 11). These include 
the ability to activate caspase-8 dependent apoptosis12–14, trigger 
interleukin-1β (IL-1β)-dependent inflammation through caspase-8 
and/or the Nod-like receptor 3 (NLRP3) inflammasome15–22, and 
regulate the transcription of cytokines23,24. Hence, the use of MLKL-
deficient mice is required to validate necroptosis as a bona fide drug 
target in many inflammatory disease models where RIPK3 has been 
implicated. In this regard, murine genetic studies have started to 
document how unrestrained MLKL-dependent necroptotic signal-
ing can result in embryonic lethality3 and cause liver inflammation25. 
In addition, the development of phospho-specific MLKL antibodies 
as markers of activated MLKL have shown that necroptosis is likely 
to occur in diseases such as toxic epidermal necrolysis26,27, drug-
induced liver injury28, and pathogen infection21. Cancer cell lines 
have also been observed to suppress RIPK3 expression29, which 
in some circumstances has been attributed to DNA methylation30. 
As such, chemically induced hypomethylation can restore RIPK3 
expression and promote RIPK3-MLKL-induced necroptosis in 
response to chemotherapeutic treatments. A greater understanding 
of the mechanisms of necroptosis signaling, and when it occurs, is 
therefore likely to yield new therapeutic opportunities in a number 
of different disease states.

Necroptosis is activated by a number of different receptors
Several signaling receptors have been documented to activate 
RIPK3-MLKL dependent necroptosis, including death receptors 
(i.e., TNFR1), TLRs, the DNA receptor DAI (DNA-dependent 
activator of interferon [IFN]-regulatory factors or ZBP1/DML-1), 

and the T-cell antigen receptor. Type I IFN and IFNγ-induced tran-
scriptional responses have also been proposed to cause necroptosis, 
or to enhance TLR3/4 and TNFR1 necroptosis31–33. While protein 
kinase R (PKR) was suggested to directly trigger formation of the 
RIPK1-RIPK3 necrosome downstream of IFNγ signaling33, PKR 
is not required for type I IFN killing32, and hence the underlying 
mechanism for IFN-induced necroptosis requires further study. 
By comparison, necroptotic signaling caused by TNFR1 ligation 
is better defined (reviewed in 34). In most cases, TNF binding to 
TNFR1 triggers the formation of a cell surface complex, complex I, 
that induces the transcription of pro-survival genes and inflamma-
tory cytokines. Mechanistically, the death domain (DD) of TNFR1 
interacts with the DD of TNFR1-associated death domain 
(TRADD) (and potentially the DD of RIPK1) to nucleate the for-
mation of a large multimeric TRADD-RIPK1-TRAF2- inhibitor of 
apoptosis (IAP) ubiquitylation platform35–38. For example, RIPK1 
binding to this complex and its modification with ubiquitin chains 
by IAP proteins parallels IAP-dependent recruitment of the linear 
ubiquitin chain assembly complex (LUBAC). Ubiquitylated RIPK1, 
and LUBAC modification of NEMO (nuclear factor kappa-light-
chain-enhancer of activated B cells [NFκB] essential modifier), 
subsequently activate canonical NFκB signaling. In the absence 
of optimal RIPK1 ubiquitylation (i.e., when IAPs are lost), RIPK1 
dissociates into the cytosol to form a secondary death-inducing 
complex that can activate caspase-8 (complex II) to cause apop-
tosis. Caspase-8 represses necroptotic signaling, and hence, when 
caspase-8 activity is low, RIPK1 can bind RIPK3 to form the necro-
some, activate MLKL, and induce necroptotic killing.

Physiological triggers of necroptosis
Because under normal cell culture conditions necroptosis is not 
induced by death receptor or TLR ligation, experimentally, necrop-
tosis is usually studied by deleting or inhibiting key negative regula-
tors of necroptotic signaling, such as caspase-8 or IAP proteins (see 
below). Physiological settings that trigger necroptosis have been 
less well defined, although situations where caspase-8 is down-
regulated, such as following cutaneous wounding39–41, or IAP pro-
tein depletion, such as during TNF-like weak inducer of apoptosis 
(TWEAK)-FGF-inducible molecule 14 (FN14) TNF superfamily 
signaling42,43, clearly have the potential to promote a necroptotic 
response. Along these lines of evidence, biopsies from children suf-
fering from inflammatory bowel disease display decreased caspase-8 
expression and elevated RIPK3 and MLKL levels, and may indicate 
ongoing necroptosis44. More direct experiments have been performed 
to suggest that bacterial and viral molecules can act to induce or 
inhibit necroptosis at multiple levels, including direct RIPK1/RIPK3 
targeting, or downstream of MLKL phosphorylation21,45–50.

In this review we summarize recent advances in identifying and 
understanding positive and negative regulators of necroptotic sign-
aling (Table 1), focusing on findings with strong genetic evidence. 
We begin by a brief discussion on the best studied necroptotic com-
ponents; RIPK1, RIPK3 and MLKL.

The core necroptotic machinery
RIPK3
The defining feature that triggers RIPK3 serine/threonine kinase 
activity and its phosphorylation of MLKL is RIPK3 oligomerization 
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via RIP homotypic interaction motif (RHIM) containing proteins. 
For example, RHIM containing signaling components of TNFR1 
(RIPK1), TLR3 and TLR4 (TRIF) and DAI itself can all form 
RHIM-RHIM interactions with RIPK3 to trigger necroptotic death. 
Similarly, the artificial dimerization/oligomerization of RIPK3 
directly suffices to cause its activation and recruitment of MLKL in 
the absence of any upstream signal4,14,51. The importance of RHIM-
RHIM interactions for RIPK3 signaling is highlighted by several 
viral RHIM-containing proteins, such as cytomegalovirus vIRA 
and herpes simplex virus ICP-6 and ICP-10, which bind RIPK1 
and RIPK3 and can regulate necroptosis to alter host anti-viral 
responses46–49.

The interaction of RIPK1 and RIPK3 RHIMs induces the for-
mation of a large amyloid-like necrosome signaling platform52. 
Recent work has suggested that RIPK1-RIPK3 heterodimers do not 
suffice to trigger necroptosis, and instead RIPK3 homo-oligomer 
formation within the necrosome complex is essential for RIPK3 
activation, intramolecular RIPK3 phosphorylation, and MLKL 
recruitment51. This model fits with recent genetic studies show-
ing that the deletion of RIPK1 in vivo can trigger RIPK3-MLKL 

induced necroptosis3, as the loss of RIPK1 may enhance the pro-
pensity for RIPK3 oligomerization4.

Activated RIPK3 phosphorylates MLKL, thereby allowing 
MLKL association with, and disruption of, phospholipid mem-
branes28,53–55. RIPK3-deficient mice display no overt phenotype, 
and hence targeting RIPK3 kinase activity with small-molecule 
inhibitors represents one strategy for the treatment of necroptotic-
driven diseases13,56. It is noteworthy, however, that RIPK3 kinase 
inhibition13, or a D161N mutation in the RIPK3 kinase domain 
in vivo12, can drive lethal caspase-8-dependent apoptosis by trig-
gering RIPK1 recruitment to RIPK3, and RIPK1-mediated acti-
vation of caspase-8. Interestingly, RIPK3 kinase activity per se is 
not essential for mammalian viability, as an independently gen-
erated kinase-dead (K51A) RIPK3 mouse is viable and fertile13. 
Hence, the development of RIPK3 kinase inhibitors that avoid 
lethal RIPK3 conformational changes are required. Alternatively, 
MLKL inhibitors54,57 may be a more attractive strategy for spe-
cifically targeting necroptosis, as these would avoid complications 
that may result from altering non-necroptotic RIPK3 signaling 
capabilities.

Table 1. Post-translational modification of RIPK1, RIPK3 and MLKL.

Protein Target 
residue

PTM Writer Eraser Impact of PTM References

Mouse RIPK1 S89 Putative 
phosphorylation

Putative pS89; suppresses 
necroptosis in Jurkat cells

113

Mouse/ Human 
RIPK1

K377 and 
others

K63-, K48-, K11- linked 
ubiquitylation

cIAP1/ 
cIAP2

A20 Ubiquitination prevents death 
signalling

103,114–118

Mouse RIPK3 S204 Phosphorylation pS204 promotes necroptosis 113

Human RIPK3 S199 Phosphorylation RIPK3 pS199 promotes necroptosis 119

Mouse RIPK3 T231/S232 Phosphorylation Ppm1b pT231/pS232 promotes 
MLKL interaction and 
necroptosis

101,102,113

Human RIPK3 S227 Phosphorylation pS227 promotes MLKL 
interaction and necroptosis

57

Mouse RIPK3 K5 Ubiquitylation A20 K5Ub promotes necrosome 
assembly and necroptosis

15,96

Mouse RIPK3 C119 S-nitrosylation Promotes necroptosis 120

Mouse MLKL S345, S347, 
T349

Phosphorylation RIPK3 pS345 and pS347 promote 
necroptosis

60,64,65

Human MLKL T357, S358 Phosphorylation RIPK3 pT357/pS358 promote 
necroptosis

57

Mouse MLKL S124 Phosphorylation Nil. Counterpart of human 
S125

65,121

Mouse MLKL S158 Phosphorylation pS158 likely suppresses 
necroptosis

65

Mouse MLKL S228 Phosphorylation RIPK3 pS228 relieves possible 
RIPK3-mediated suppression 
of necroptosis

65

Mouse MLKL Ubiquitylation Unknown. Correlates with 
necroptosis

15
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MLKL
MLKL is an essential necroptosis effector that operates down-
stream of RIPK357–60. Unlike RIPK3, which is a catalytically active, 
conventional protein kinase, MLKL belongs to a group of related 
proteins that are enzymatically-dead, termed pseudokinases61,62. In 
addition to its C-terminal pseudokinase domain, MLKL contains an 
N-terminal four-helix bundle (4HB) domain, which is now known 
to mediate MLKL’s killer function53–55,63. Our current understand-
ing of MLKL activation is that RIPK3 phosphorylates the activa-
tion loop in MLKL’s pseudokinase domain57,59,60,64,65, which induces 
a conformational change that relieves the suppressive function of 
the pseudokinase domain, allowing the unleashing of the execu-
tioner N-terminal 4HB domain54. Several different models for how 
the MLKL 4HB domain can induce cell death have been proposed, 
ranging from a direct membrane permeabilization or pore-forming 
capacity28,55,66, to the implication of downstream effectors53,63 (sum-
marized in Figure 1). Although details are still emerging, recom-
binant MLKL was found to bind to various lipids in “fat Western” 
lipid arrays28,55, which was further reflected in a capacity to per-
meabilize liposomes in vitro28,55,66. Curiously, MLKL most readily  

permeabilized liposomes containing 15% cardiolipin, a lipid 
believed to be confined to the mitochondrial inner membrane. The 
necessity of mitochondria for necroptosis has been challenged67, 
making the preference for cardiolipin difficult to reconcile. At the 
molecular level, the mode of 4HB domain engagement of lipids 
remains of outstanding interest. While initial reports suggested 
this interaction might be mediated by positively-charged residues 
in the human MLKL 4HB domain55, these residues are poorly 
conserved among MLKL orthologs and indeed, curiously, muta-
tion of the acidic counterparts in the mouse 4HB domain similarly 
compromised the capacity of the domain to induce cell death54. 
It is therefore possible that, rather than a direct interaction with 
negatively-charged phospholipids, these charged residues in the 
MLKL 4HB domain are important to the MLKL homo- and/or 
hetero-oligomerisation that is necessary for necroptosis.

Another outstanding question is whether the MLKL 4HB domain 
forms a transmembrane pore or merely somehow compromises the 
integrity of the membrane. In concert with a greater understanding 
of which membrane within a cell is the target of MLKL action, 

Figure 1. Positive regulators of necroptosis. The core necroptosis machinery, comprising RIPK3 and MLKL, are activated following RIPK3 
interaction with RIPK1, TRIF or DAI via their RHIMs. CYLD-mediated deubiquitylation of RIPK1 is necessary for its participation in cell death 
pathways, while ubiquitylation of RIPK3 (at Lys5) and MLKL by as-yet-unidentified E3 ligases may promote necroptosis15,97. HSP90 is known 
to augment the necroptotic functions of RIPK1 and RIPK3. MLKL is believed to induce cell death via a membrane-directed process54, 
perhaps by directly permeabilizing membranes28,55, with some debate over whether channel activation might be involved28,53,63, or, as one 
report suggests, there may be a role for Src in promoting MLKL-mediated death downstream of Gβγ. Abbreviations: 4HB, four-helix bundle; 
CYLD, cylindromatosis; DAI, DNA-dependent activator of interferon [IFN]-regulatory factors; HSP90, heat shock protein 90; IAP, inhibitor 
of apoptosis proteins; MLKL, mixed lineage kinase domain-like; RHIM, RIP homotypic interaction motif; RIPK, receptor interacting protein 
kinase; TLR, toll-like receptor; TNF, tumour necrosis factor; TNFR1, TNF receptor 1; TRADD, TNFR1-associated death domain; TRAF2, TNF 
receptor associated factor 2; TRPM7, transient receptor potential cation channel, subfamily M, member 7.
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knowledge of the means by which MLKL breaches membranes 
is essential for a comprehensive understanding of its action. Even 
though the membrane compromising activity of recombinant MLKL 
in liposome assays is highly suggestive of MLKL acting as a lone 
gunman, several lines of evidence have implicated other proteins as 
either co-effectors that augment or negate the activities of RIPK3 or 
MLKL, or as effectors that function downstream of MLKL activa-
tion (Figure 1 and Figure 2). Of note, the induction of necroptosis is 
associated with the ubiquitylation of RIPK3 and MLKL15, although 
the function of these modifications requires further study. We have 
summarized important necroptotic regulators that promote (Figure 1) 
or negate (Figure 2) MLKL-mediated death, and elaborate on cur-
rent knowledge of their activities below.

RIPK1
An important role for RIPK1 and its kinase activity in death 
receptor-induced necroptosis was documented long before RIPK3 
was identified as the essential necroptotic RIPK1 binding partner68. 
The development of the RIPK1 kinase inhibitor necrostatin-169,70 has 
been widely used to demonstrate the therapeutic potential of target-
ing RIPK1 kinase activity and necroptosis in disease models. The 
plausibility of this strategy was recently validated when, in contrast 
to the embryonic lethality of RIPK1-deficient mice caused by unre-
strained apoptotic and necroptotic signaling2,3,5, RIPK1 kinase-dead 
knockin mice, containing K45A2 or D138N12,71 alleles, were shown 
to be viable and fertile. Hence, while RIPK1 kinase activity is often 
a requisite for necroptotic killing, it is not critical for mammalian 

Figure 2. Negative regulators of necroptosis. Negative regulation at the levels of RIPK1, RIPK3 and MLKL have been reported to attenuate 
necroptotic signalling. Not only is necroptosis by definition a caspase-independent process, but caspase-8 negates cell death, potentially 
by proteolytically-cleaving CYLD, RIPK1 and RIPK3. Reversible tuning of the pathway is accomplished by introduction or removal of post-
translational modifications, including: ubiquitylation of RIPK1 by IAPs; deubiquitylation of RIPK3 on Lys5 by A20; and dephosphorylation 
of mouse RIPK3 at S231/T232 by Ppm1b. Whether an analogous phosphatase exists to dephosphorylate activated MLKL and inhibit 
necroptosis is not clear. However, other regulators of MLKL have been proposed, such as TRAF2. It is currently unknown what factors might 
govern phospho-MLKL assembly into higher order oligomers on the membrane, although a role for additional factors in mediating death is 
suggested by the lag between MLKL membrane translocation/oligomerisation and cell death65. Abbreviations: 4HB, four-helix bundle; CYLD, 
cylindromatosis; IAP, inhibitor of apoptosis proteins; MLKL, mixed lineage kinase domain-like; RHIM, RIP homotypic interaction motif; RIPK, 
receptor interacting protein kinase; TNF, tumour necrosis factor; TRADD, TNFR1-associated death domain; TRAF2, TNF receptor associated 
factor 2.
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survival. Instead the kinase-independent scaffolding role of RIPK1 
is vital in preventing lethal RIPK3-MLKL and caspase-8 signaling.

Mechanistically, RIPK1 phosphorylation of RIPK3 is an attractive 
hypothesis for why RIPK1 kinase function is required for TNF-
induced necroptosis. However, RIPK1 mediated phosphorylation of 
RIPK3 has not been formally reported to date, and the key target(s) 
of RIPK1 kinase activity remain unclear. Recently it has been 
suggested that the inhibition of RIPK1 kinase activity enhances 
RIPK1’s anti-necroptotic function, and consistent with this, deple-
tion of total RIPK1 in several cell types was shown to sensitize to 
TNF and TLR-induced necroptotic killing7. Why RIPK1 loss sen-
sitizes some cell lines to TNF-induced necroptosis, while in others 
it confers protection, may be due to the expression levels of RIPK3 
in different cells or tissues, dictating its ability to efficiently engage 
TNFR1 or TLR complexes and form RIPK3 oligomers. Consistent 
with this notion, the expression levels of RIPK3 have been shown 
to largely determine whether TNF can engage RIPK3 killing in 
the absence of RIPK172. Unlike the direct recruitment of RIPK3 to 
the RHIM containing receptor DAI46, or the TLR adaptor protein 
TRIF56,73, the way RIPK3 is recruited to TNF receptor complexes in 
RIPK1 deficient cells is unknown.

Positive regulators of necroptosis
CYLD
CYLD (Cylindromatosis) is a deubiquitinating enzyme that 
removes K63-linked and linear ubiquitin chains from its target 
proteins, which include RIPK1 and TRAFs. This deubiquitinase 
activity of CYLD is linked with increased TNF-induced death sig-
naling, including RIPK1-RIPK3 necrosome formation and necrop-
totic cell death74–76. Mechanistically, CYLD has been proposed to 
deubiquitylate RIPK1 during necrosome complex formation to 
facilitate RIPK1/3 kinase activity76. In this context, it is interest-
ing to note that the LUBAC component, HOIL-1 interacting protein 
(HOIP), can ubiquitylate RIPK1 within the necrosome77. Although 
HOIP loss did not impact necroptotic killing, the functional conse-
quences of necroptotic-associated RIPK1, RIPK3 and MLKL ubiq-
uitylation warrant further investigation.

Following TNF stimulation, aberrant CYLD necroptotic activity 
is held in check by caspase-8 mediated CYLD processing and 
inactivation74. Consistent with this, colitis induced by deletion of 
the essential caspase-8 adaptor protein Fas-associated protein with 
death domain (FADD) in intestinal epithelial cells was ameliorated 
by loss of either RIPK3 or CYLD activity78. CYLD is thereby 
important for necroptotic signaling in some situations in vitro and 
in vivo. In contrast, however, unlike RIPK3-deletion, the in vivo 
inactivation of CYLD delays, but does not prevent, the inflamma-
tion caused by unrestrained necroptotic killing of FADD deficient 
keratinocytes79. Hence, although CYLD tunes necroptotic activity, 
it is not essential for it to occur in all cell types.

HSP90
The Cdc37-heat shock protein 90 (HSP90) co-chaperone system 
has been widely implicated as a regulator of protein kinase “cli-
ents”. Conventionally, HSP90 interaction is thought to enhance 
protein stability, often through protection from proteasomal deg-
radation, as is believed to be the case with RIPK180–85. RIPK3 has 

long been recognized as an HSP90 client protein86,87, although only 
recently has a less passive regulatory role been suggested88. Inhi-
bition of HSP90 or genetic knockdown of the kinase-interaction 
adaptor, Cdc37, inhibited RIPK3’s capacity to phosphorylate 
MLKL to induce necroptosis, but only conferred modest effects on 
RIPK3 abundance88. The precise underlying mechanism remains a 
matter of outstanding interest.

Channels
MLKL was implicated as a regulator of plasma membrane ion 
channels in two independent studies: one suggested a role for 
TRPM7 (transient receptor potential cation channel, subfamily M, 
member 7) in necroptotic killing53, and another more broadly for 
Na+ ion channel signaling63. Subsequent studies using ion-free 
media, however, have challenged whether ion channels play an 
obligate role in mediating necroptosis28, but instead suggest they 
contribute to varying extents in different cultured cell lines under 
some circumstances.

Gβγ-Src signaling
A genetic screen for additional necroptosis effectors identified 
the transmembrane G-proteins, Gβ and Gγ, as instigators of an 
alternative pathway that operates in parallel with TNF-induced 
necroptosis89. Perturbation of Gβγ signaling disrupted MLKL oli-
gomerization and translocation to membranes, a finding attributed 
to perturbed activation of the protein kinase, Src. The mechanis-
tic underpinnings and universality of this pathway have not yet 
been fully elucidated, but are illustrative of the many possible sig-
naling effectors that could potentially intersect with and tune the 
necroptosis signaling pathway. This idea is supported by the recent 
identification and functional characterization of MLKL phospho-
rylation sites outside the best-understood phosphorylation sites 
within the MLKL pseudokinase domain activation loop65. This 
study is illustrative of a broader potential role of post-translational 
modifications in modulating the activities of RIPK3 and MLKL.

Negative regulators of necroptosis
Caspase-8
Caspase-8-deficient embryonic lethality, or inflammatory disease 
resulting from tissue or cell type specific caspase-8 deletion, is res-
cued by RIPK3 or MLKL loss (reviewed in 9), demonstrating that 
caspase-8 is an essential repressor of potentially lethal necroptotic 
activity. Notably, this pro-survival function for caspase-8 does not 
require caspase-8 processing90, but appears to be mediated by the 
catalytic activity of caspase-8/FLICE-inhibitory protein (cFLIP) 
heterodimers91. The critical caspase-8 targets required to repress 
necroptosis remain unclear, although caspase-8 cleavage of key 
necroptotic inducers, including RIPK192, RIPK393, and CYLD74, 
have been described and are likely to be important.

IAP proteins
Mammalian IAP proteins are ubiquitin E3 ligases and include 
cIAP1, cIAP2 and XIAP (reviewed in 94). The cIAPs target 
RIPK1 for ubiquitylation to propagate TNF-induced NFκB activa-
tion and pro-survival responses, and also to prevent RIPK1 from 
associating with, and activating, caspase-8. XIAP, on the other 
hand, is a direct inhibitor of apoptotic caspases, although its dele-
tion in mice does not result in an overt phenotype. In contrast, the  
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co-deletion of cIAP1 and cIAP2 causes embryonic lethality, which 
is rescued in part by loss of RIPK1, RIPK3 or TNFR195. Strikingly, 
while cIAP1/2 loss in combination with caspase inhibition is suf-
ficient to trigger necroptosis in several cell types, in bone marrow 
derived macrophages and dendritic cells XIAP is more important 
for limiting TNF- and TLR-induced killing15,19. For example, XIAP 
loss alone can confer some sensitivity to TNF- and TLR-induced 
necroptosis and apoptosis, which is greatly enhanced by cIAP1/2 
co-deletion15. Lipopolysaccharide (LPS) treatment of wildtype mac-
rophages triggers IAP-dependent RIPK3 ubiquitylation15. Because 
LPS stimulation alone does not perturb macrophage viability, this 
may indicate that, akin to RIPK1 ubiquitylation, RIPK3 ubiquit-
ylation under these conditions regulates transcriptional and/or 
pro-survival responses. However, LPS-induced necroptotic signal-
ing caused by the loss of IAPs and caspase inhibition is also associ-
ated with increased RIPK3 (and MLKL) ubiquitylation15, which in 
this case may play a pro-necroptotic role96. At this stage the identity 
of the key XIAP substrate required to limit RIPK3-MLKL signal-
ing remains unclear. It is possible that other ubiquitin E3 ligases 
also negatively regulate necroptosis signaling. Consistent with this, 
it has been suggested that the ubiquitin ligase MKRN1 (Makorin 
RING finger protein-1) represses RIPK1-RIPK3 complex forma-
tion, although how it does so is incompletely understood97.

TRAF2
TNF receptor associated factor 2 (TRAF2) binds to cIAP1/2 via a 
cIAP interaction motif (CIM) and is required for cIAP1/2 recruit-
ment into TNF receptor complexes98. Hence, as one might predict, 
the loss of TRAF2 may sensitize cells to death receptor mediated 
necroptotic killing by preventing cIAP1/2 recruitment and ubiquit-
ylation of RIPK199,100. Remarkably, however, TRAF2 was recently 
reported to also exert anti-necroptotic activity independently of 
cIAP1/2 by binding directly to MLKL to limit the association of 
MLKL with RIPK3100. The steady state association of TRAF2 with 
MLKL was diminished upon TNF-induced necroptosis induction, 
and this correlated with CYLD dependent deubiquitylation of 
TRAF2. It will be interesting to define the TRAF2 interacting resi-
dues of MLKL, and whether their mutation impacts MLKL binding 
to RIPK3 and cellular necroptotic activity.

Ppm1b
Ppm1b was recently identified as a phosphatase that dephosphor-
ylates mouse RIPK3 at T231/S232101, two sites at which phospho-
rylation is known to enhance RIPK3 catalytic activity102. While 
deficiency in Ppm1b led to a modest elevation in cell death in the 
absence of stimulation (5–10% vs 2–5% cell death, depending on 
cell line studied), the enhancement of cell death observed upon 
TNF-stimulation of L929 fibrosarcoma cells and TNF+pan-caspase 
inhibitor (zVAD-fmk) treatment of mouse embryonic fibroblasts 
was profound103. This is the first illustration that necroptotic sig-
naling can be tuned by dephosphorylation of RIPK3. It remains 
of outstanding interest whether there are other phosphatases that 
modulate the activity of RIPK3 and whether dephosphorylation of 
MLKL might serve as a mechanism to disarm its pro-necroptotic 
activity.

A20
A20 is a deubiquitinating enzyme that is rapidly induced follow-
ing TNF- and TLR-stimulation as part of a negative feedback loop 
to restrict NFκB activation and inflammatory cytokine production. 
Hence, its mutation or loss in mice and humans results in pro-
nounced inflammatory disease. A20 has been proposed to restrict 
TNF-induced NFκB by removing K63-linked ubiquitin chains from 
RIPK1, and at the same time can target RIPK1 for proteasomal 
degradation through the addition of K48-linked ubiquitin chains103. 
However, it also exerts its anti-inflammatory properties by target-
ing a number of TNF receptor and TLR signaling components104. 
Recently it was found that A20 deletion in T-cells led to RIPK3 
dependent T-cell killing, and that the perinatal lethality of A20 
deficient mice was significantly rescued by RIPK3 co-deletion96. 
Mechanistically, A20 loss promoted RIPK1-RIPK3 necrosome 
formation as a consequence of RIPK3 Lys5 ubiquitylation, while 
A20 expression and catalytic activity correlated with decreased 
RIPK3 ubiquitination.

Open questions surrounding MLKL function
Because MLKL was only recently identified as an effector of the 
necroptosis cell death pathway, much remains to be garnered about 
how it functions in this pathway, whether it has additional “moon-
lighting” functions, and how it might contribute to other death sig-
naling pathways. Should moonlighting functions exist for MLKL, 
they are likely very subtle, since genetic deletion of MLKL in mice 
does not noticeably impact viability, fertility or development58,60. The 
recent observation that, upon phosphorylation, MLKL translocates 
to the nucleus105 suggests either a second (as-yet-unknown) func-
tion for MLKL in the nucleus or that the necroptosis signaling path-
way relies on a transition via the nucleus to other membranes. This 
remains a matter of ongoing interest. The subcellular destination for 
MLKL that leads to cell death has also been a matter of debate: does 
MLKL-mediated death rely on translocation to mitochondrial 
or plasma membranes or another subcellular organelle? Initially, 
MLKL was implicated as being upstream of the mitochondrial phos-
phatase, phosphoglycerate mutase family member 5 (PGAM5), whose 
activation was thought to drive cell death through mitochondrial frag-
mentation via Dynamin-related protein 1 (Drp1)106. However, several 
studies indicated that both PGAM5 and Drp1 are dispensable for 
necroptosis60,107–109 and, as a result, the ubiquity of their involvement 
in the pathway has been questioned. Indeed, depletion of mitochon-
dria by mitophagy did not prevent necroptotic death67, suggesting 
that mitochondria are dispensable for necroptosis, at least in a sub-
set of commonly studied laboratory cell lines. Nonetheless, reactive 
oxygen species (ROS), which emanate from mitochondria, have 
been widely implicated in necroptotic cell death59,110–112. It remains 
to be determined whether ROS arise as a consequence of cell 
death or whether their generation is a driving force or augments 
necroptotic death and/or contributes to inflammatory responses. 
As described above, it is of enormous interest to understand the 
precise mechanism by which MLKL kills cells and whether other 
factors are involved downstream of MLKL phosphorylation and 
whether MLKL function can be modulated by ubiquitylation, as 
suggested by a recent study. Moreover, these modifications may 
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govern whether MLKL can participate in other intersecting signaling 
pathways, such as inflammatory signaling in the absence of cell death18 
or cell death by pyroptosis.
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