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.e prevalence of diabetes mellitus (DM) has been increasing dramatically worldwide, but the pathogenesis is still unknown. A
growing amount of evidence suggests that an abnormal developmental environment in early life increases the risk of developing
metabolic diseases in adult life, which is referred to as the “metabolic memory” and the Developmental Origins of Health and
Disease (DOHaD) hypothesis. .e mechanism of “metabolic memory” has become a hot topic in the field of DM worldwide and
could be a key to understanding the pathogenesis of DM. In recent years, several large cohort studies have shown that shift workers
have a higher risk of developing type 2 diabetes mellitus (T2DM) and worse control of blood glucose levels. Furthermore, a
maternal high-fat diet could lead to metabolic disorders and abnormal expression of clock genes and clock-controlled genes in
offspring. .us, disorders of circadian rhythm might play a pivotal role in glucose metabolic disturbances, especially in terms of
early adverse nutritional environments and the development of metabolic diseases in later life. In addition, as a peripheral clock,
the gut microbiota has its own circadian rhythm that fluctuates with periodic feeding and has been widely recognized for its
significant role in metabolism. In light of the important roles of the gut microbiota and circadian clock in metabolic health and
their interconnected regulatory relationship, we propose that the “gut microbiota-circadian clock axis” might be a novel and
crucial mechanism to decipher “metabolic memory.” .e “gut microbiota-circadian clock axis” is expected to facilitate the future
development of a novel target for the prevention and intervention of diabetes during the early stage of life.

1. Introduction

According to the latest data from the International Diabetes
Federation (IDF), there were approximately 425 million
adults with diabetes mellitus (DM) worldwide in 2017. By
2045, this number is expected to increase to 629 million,
which will bring a tremendous economic burden to the
world. In China, the number of diabetic patients has reached
114.4 million, making it the country with the highest
prevalence of diabetes in the world. Type 2 diabetes mellitus
(T2DM) accounts for more than 90% of the diabetes in the
diabetic population [1]. T2DM is a chronic complex disease

characterized by high levels of blood glucose, insulin re-
sistance, and relative insulin deficiency. Genes and tradi-
tional environmental factors, including obesity and physical
inactivity, have been widely recognized in the pathogenesis
of T2DM [2], but these factors could not completely explain
the current high prevalence and rapid growth of diabetes
[3, 4]. .erefore, the etiology and pathogenesis of T2DM are
still not fully understood. In recent years, the relationship
between the adverse developmental environment in early life
and glucose metabolism has gained wide attention from the
academic community. “Metabolic memory” and the De-
velopmental Origins of Health and Disease (DOHaD)
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hypothesis were subsequently proposed [5]. Our previous
research [6, 7] and accumulating evidence [8–10] have in-
dicated that an adverse nutritional environment in the
uterus significantly increases the risk of chronic metabolic
diseases in adulthood..e biological basis of the relationship
between the early-life nutritional environment and adult
chronic diseases may be the key to the pathogenesis of
T2DM. .us, this review discusses a novel mechanism to
elucidate the DOHaD hypothesis.

2. Circadian Misalignment Plays an Important
Role in Nutrition Intake Disorders and
Abnormal Glucose Metabolism

.e Nobel Prize in Physiology and Medicine in 2017 was
awarded to Jeffrey C. Hall, Michael Rosbash, andMichaelW.
Young for discovering the molecular mechanisms that
control circadian rhythm [11]. .e circadian clock, or cir-
cadian rhythm, is an intrinsic rhythm formed by the or-
ganism’s rotation with the earth to adapt to the periodic
alterations in the environment. When the environment
changes, the body can readjust its own circadian clock by
sensing external clues (mainly light). .e circadian clock
system includes a central circadian clock and peripheral
circadian clocks. .e central circadian clock is located in the
suprachiasmatic nucleus (SCN) of the hypothalamus, which
is thought to be the primary pacemaker of circadian rhythm
by sensing the light in the environment and integrating the
information to form a 24-hour circadian rhythm. In addi-
tion, the SCN is also responsible for transmitting signals to
the peripheral circadian clock through hormones or syn-
apses and controlling the circadian rhythm of the body. .e
peripheral circadian clock is widely distributed in tissues,
including the intestine, pancreas, heart, liver, skeletal
muscles, and kidneys. .e peripheral circadian clock is
partly controlled by the central circadian clock in circadian
rhythm, and at the same time, it has its own oscillator to
regulate the function of various tissues and organs [12–14].
Most of the circadian clock components are transcription
factors that regulate gene expression. .e most widely
studied clock genes include Bmal1 (aryl hydrocarbon re-
ceptor nuclear translocator-like, also known as Arntl), Clock
(circadian locomotor output cycles kaput), Per1/2/3 (period
circadian clock), andCry1/2 (cryptochrome)..e expression
of the clock genes also has a circadian rhythm, which is
mainly regulated by a transcription-translation feedback
loop. .e CLOCK/BMAL1 heterodimer can bind to the
enhancer in the promoter region of Per, Cry, and other genes
to initiate the expression of downstream genes. In contrast,
the PER/CRY heterodimer can, in turn, inhibit the ex-
pression of Clock and Bmal1 to form a regulatory feedback
loop for the expression levels of Clock/Bmal1-Per/Cry [15].
Furthermore, these clock genes perform circadian rhythm
output by regulating the expression of multiple downstream
clock-controlled genes. In addition to light, dietary nutrition
[16, 17], temperature [18, 19], sleep [19–22], stress [23, 24],
and exercise [25–27] all have a regulatory effect on the
circadian clock.

It is well known that there is a close relationship between
circadian rhythm and metabolism. As early as the 1970s and
1980s, Professor Panda discovered that some patients who
had poor glucose response in the evening had no symptoms
of DM when they received the same challenge in the
morning. Even in healthy people, the rate of glucose
metabolism at nighttime meals is also much slower than that
at breakfast, indicating that glucose metabolism is associated
with circadian rhythm [28]. A large number of clinical
studies [29–31] on shift workers and animal experiments
[32, 33] have confirmed that circadian rhythm disorders play
an important role in the pathogenesis of DM. For shift
workers, their sleeping and eating times are disrupted. .en,
circadian misalignment occurs, which makes midnight
eating possible. However, feeding behavior plays an im-
portant role in the nutritional status of the body, which
includes nutrition components, nutrition intake, and
feeding time. .e feeding time is mainly determined by the
endogenous time mechanism of the body. In addition, it is
also affected by food supply, sense of hunger and satiety,
social habits, and convenience. Accumulating evidence in
recent years has suggested that the timing of nutrition intake
may affect a variety of physiological processes, including
sleep-wake cycles, core body temperature, behavior, alert-
ness, and energy metabolism [34, 35]. Animal studies have
found that mice fed a high-fat diet (HFD) during the day
(sleeping time) gained more weight and had worse glucose
tolerance than those fed a high-fat diet during the night
(active time). At the same time, the expression of clock genes
in adipose tissue and the liver also changed, and the cir-
cadian rhythm disorder occurred, while the central circadian
clock was not significantly influenced [36–38]. In addition, a
moderate mealtime disorder can also lead to disorders of
glucose metabolism. A randomized clinical study showed
that skipping breakfast significantly increased postprandial
blood glucose and decreased insulin and GLP-1 levels
compared with consuming three meals a day [39]. .e
expression of the clock genes in the peripheral blood leu-
kocytes of the breakfast skippers was significantly changed,
and the circadian rhythm was disrupted [40]. Animal studies
have also demonstrated that skipping breakfast leads to
expression disorders of peripheral clock genes and down-
stream metabolic genes in the liver, while skipping dinner
affects lipid metabolism and adipose tissue aggregation [41].
Furthermore, there is a close relationship between the
changes in intake of nutrition components and the disorders
of circadian clock. Recently, several studies have explored
the role of circadian clock in the abnormal glucose meta-
bolism caused by HFD (overnutrition). In the HFD group,
the feeding rhythm changed compared with the feeding
rhythm associated with the normal diet, with more food
eaten during the day (resting period). .e expression of
clock genes as well as downstream clock-control genes in
peripheral circadian clocks such as liver, kidney, adipose
tissue, and pancreas changed significantly, leading to dis-
orders of glucose and lipid metabolism [37, 42–45]. In
another way, growing evidence showed that modulating the
daily period of feeding and fasting, which readjusts the
circadian rhythm, could counter the deleterious effects of
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nutrient imbalance on metabolism [46–48]. Time-restricted
feeding (TRF), where food access is restricted to certain
hours of the day, is found to have protective effects against
HFD or high-fructose diets induced metabolic disorders
[49]. Mitchell et al. found that extended daily fasting, in-
dependent of the nutrition challenges, could produce
metabolic health and longevity benefits in male mice [50].
.us, regulating the circadian rhythm of food intake could
protect against the metabolic disorders induced by adverse
nutrient intake. In future, more associated studies need to be
done in human to validate these findings.

.erefore, circadian misalignment might be a crucial
factor in mediating abnormal nutritional intake and glucose
intolerance. In light of the significantly increased risk of
metabolic diseases in later life after exposure to an adverse
nutritional environment in early life, we further discuss the
role of the circadian clock in “metabolic memory.”

3. Disorders of Circadian Rhythm Might Be an
Important Mechanism Relating Early-Life
Nutritional Environment and Abnormal
Glucose Metabolism

Early life, including intrauterine development and the
neonatal period, is a critical period for fetal growth and
development. .e early developmental environment has a
lasting memory effect that lasts the whole life, called
“metabolic memory,” which has been widely accepted and
recognized by the academic community. Since Barker first
discovered that people with lower birth weight had higher
death rates from ischemic heart disease [51], large number of
clinical studies [52–57] and animal experiments [7, 58–63]
have demonstrated that adverse early-life exposures, such as
nutrient restriction or overnutrition, gestational diabetes
and maternal obesity and HFD, significantly increased the
risk of developing metabolic diseases in later life. However,
the precise underlying mechanism by which deciphers the
“metabolic memory” is still not fully understood. Some of
the recent studies found that maternal obesity and maternal
HFD consumption could inhibit and reprogram the ex-
pression of clock genes, including Clock, Bmal1, REV-ERBα,
Cry, and Per, in the liver and heart of the offspring, which
further led to abnormal glucose and lipid metabolism in
offspring and produced long-term memory effects [64, 65].
Mouralidarane et al. demonstrated that the interaction
between maternal obesity and a past-natal obesogenic en-
vironment increased offspring risk of nonalcoholic fatty liver
disease through programming disruptions of 24-h rhythm in
clock genes, including Clock, Bmal1, Cry2, and Per2 in mice
[66]. In addition to clock genes, our previous study [58] and
other research [67] showed that adverse early-life nutritional
challenges programed metabolic diseases in later life; in the
meantime, clock-control genes were significantly disrupted,
such as PPARα, inositol-requiring 1 alpha (IRE1α), protein
kinase RNA (PKR)-like ER kinase (PERK),and activating
transcription factor 6 (ATF6) in the endoplasmic reticulum
stress-associated unfolded protein response (UPR) signaling
pathways, of which the expressions are rhythmic and play a

key role in the link between circadian rhythm and
metabolism.

.us, disorders in circadian rhythm might be a crucial
mechanism in linking an adverse nutritional environment in
early life and increased risks of metabolic disorders in later
life. However, the specific mechanism of the circadian
rhythm reprogramming is not yet clear. In light of the
significant relationship between gut microbiota and nutrient
intake, whether gut microbiota is a crucial factor during this
process is unknown. We further discuss the crosstalk be-
tween the circadian clock and the gut microbiota in me-
diating “metabolic memory.”

4. The “GutMicrobiota-Circadian Clock Axis”
May Be the Key to How an Adverse
Nutritional EnvironmentResults inGlucose
Metabolism Disturbances

.e intestine is the largest immune organ of the human
body. As one of the peripheral circadian clock organs, it
receives the synchronized information of the central cir-
cadian clock. .e intestine also has its own oscillator, which
is mainly regulated by the nutrition in food [17, 68]. .e gut
microbiota, with a total weight of 1-2 kg in the intestine,
includes more than 1000 species and more than 1014 mi-
croorganisms. .ese microorganisms usually have a bal-
anced symbiotic relationship with the host and play an
important role in human health. .e intestinal microbiota
has a variety of important physiological functions. In terms
of metabolism, the intestinal microbiota can synthesize the
amino acids required by the host, absorb fat and fat-soluble
vitamins from the diet, participate in bile acid-related
metabolism, help the host digest complex carbohydrates and
plants, and produce short-chain fatty acids (SCFAs), such as
butyric acid, acetic acid, and propionic acid. In addition, gut
microbiota plays important roles in the maintenance of the
intestinal epithelial barrier, the regulation of intestinal
permeability, and the maturation and regulation of host
innate immunity and adaptive immunity, through which it is
linked to various organ systems throughout the body [69–
71]. More importantly, emerging evidence has showed that
the intestinal microbial community interacted with the
circadian clock, and disrupting this interaction could result
in metabolic diseases [72].

It has been previously found that there are diurnal os-
cillations in composition and function of gut microbiota
itself whose regulation is controlled by host feeding rhythms
and the types of food consumed [73, 74]. If the rhythmic
feeding times are disrupted, such as host genetic molecular
clock deficiency and time-shift-induced jet lag, then aberrant
gut microbiota diurnal rhythmicity and dysbiosis occurred.
Further transplanting the time-shiftedmicrobiota into germ-
free mice led to a significant increase in body adiposity,
which implicated that jet lag induced metabolic disorders
were transmissible by gut microbiota [72]. Another study
also showed that continuous circadian misalignment pro-
duced decreased alpha diversity, a higher ratio of Firmicutes/
Bacteriodetes, increased intestinal permeability, and changed
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clock gene expression in intestine of mice fed a high-fat,
high-sugar diet [75]. As food intake has been proved to affect
the gut microbial community structure and nutrition con-
sumed could regulate peripheral clock rhythm, emerging
recent studies have shown that gut microbiota might be
responsible for the reprogramming of circadian rhythmicity.
Firstly, circadian clock genes, including kaiA, kaiB, and kaiC,
have been identified in the cyanobacterium Synechococcus
elongatus PCC 7942 [76]. Secondly, evidence has shown that
some bacteria could rhythmically regulate the behavior of
host and synchronize with the host [77, 78]. Furthermore,
the absence of gut microbiota has been found to disrupt the
circadian clock genes, including Bmal1, Cry1, Per1, and Per2,
of intestinal epithelial cells and liver in germ-free and an-
tibiotic-induced mice [79, 80]. Murakami et al. using fecal
transplant model demonstrated that gut microbiota from the
HFD fed mice dramatically reprogrammed the liver circa-
dian clock by PPARc [81]. Another study found that gut
microbiota regulated body composition through circadian
transcription factor NFIL3, which is a significant link among
microbiota, host metabolism, and circadian clock [82].
.erefore, the circadian clock influences the composition of
gut microbiota, and inversely, the gut microbiota can also
regulate the circadian rhythm, which indicates bidirectional
communication between gut microbiota and circadian clock
(Table 1). In other words, there is a “gutmicrobiota-circadian
clock axis.”

As for the concrete molecular mechanism of the role of
“gut microbiota-circadian clock axis” in metabolism, a
growing amount of evidence demonstrated that microbiota-
derived metabolites might play a crucial role. Leone et al.
detected the intestinal microbial metabolic products, SCFAs,
and H2S production in mice fed the low-fat diet or high-fat
diet and showed that the metabolites also exhibited rhythmic
fluctuations, particularly the butyrate. .ey found that the
HFD led to significant alterations in microbial composition
and circadian oscillations, as well as the bacterial metabolic
products. Further adding the butyrate to a hepatic model in
vitro significantly influenced the expression of Bmal1 and
Per2. .us, bacterial metabolites might be a crucial mediator
between gut microbiota and circadian clock [80]. Sub-
sequently, Tahara et al. also confirmed the day-night dif-
ferences of gut microbial-dependent SCFAs in mice,
especially the acetate and butyrate. In addition, they also
found that oral administration of SCFAs can result in
dramatic changes of clock genes in peripheral clocks [83]. In

addition to SCFAs, bile acid is found to be another factor
participating in crosstalk between microbiota and circadian
rhythms. Bile acids are synthesized from cholesterol moieties
and are conjugated to taurine or glycine. .en, the conju-
gated bile acids were deconjugated by microbiota in the
intestine. Govindarajan et al. showed that microbe-derived
unconjugated bile acids can alter the expression of clock
genes in the ileum, colon, and liver [84]. .erefore, adverse
nutritional environment affects the structure and function of
gut microbiota, and the changed microbial metabolites can
further influence the circadian clock and metabolic health.
.e “gut microbiota-circadian clock axis” disorders may be a
key mechanism by which adverse nutritional environments
lead to abnormal glucose metabolism [80].

We previously reviewed the role of gut microbiota in the
effects of maternal obesity on metabolism of offspring and
indicated that gut microbiota might be an essential programing
factor for the increased risk of metabolic disorders in later life
induced by adverse nutritional environments in early life [85].
Our research [7] and other studies [86–89] have found that the
composition and diversity of gut microbiota changed signifi-
cantly, which was accompanied by metabolic disorders in later
life, after exposure to adverse nutritional environments in early
life. An animal experiment has shown that alpha diversity was
significantly decreased in the gutmicrobiota ofmice fromHFD-
fed dams compared with the chow diet-fed dams [9]. Another
fecal transplantation study found that the beta diversity of
intestinal microbiota in offspring from dams transplanted
microbiota from mice-fed HFD was lower than that from the
mice-fed normal diet, and the number of Firmicutes phylum
was also decreased, which could produce butyrate [90]. Fur-
thermore, Ma et al. demonstrated that the relative abundance of
Campylobacter was persistently decreased until juveniles in
primates from HFD fed mothers compared with that from the
normal group [88]. Human studies also indicated that maternal
HFG or obesity can significantly reduce the abundance of
Bacteroides, Blautia spp., and Eubacterium spp. and increase the
numbers of Parabacteroides spp. and Oscillibacter spp., which
have been found to be associated with obesity previously
[91–93]. In addition, evidence from human studies and animal
models showed that early-life antibiotics use, which led to
imbalance of gut microbiota, could result in long-term dele-
terious effects on health, including obesity and diabetes mellitus
[94–96]. .us, the changes of gut microbiota play important
roles in linking adverse early-life exposures and metabolic
disorders in later life.

Table 1: .e summarization of the relationship between gut microbiota and circadian clock.

Conditions Gut microbiota Circadian clock Reference
Jet lag Loss of oscillations in Ruminococcaceae Bmal, Rev-erbα, and RORct [66]

High-fat, high-sugar diet Increase in ratio of Firmicutes/
Bacteriodetes and Ruminococcus Per2 [69]

Cyanobacteria Synechococcus elongatus PCC 7942 kaiA, kaiB, and kaiC [70]
Human Enterobacter aerogenes Melatonin [72]

Antibiotic treatment or germ-free mice Antibiotic-induced gut microbial
alterations or the absence of gut microbes

RORα, RevErbα, Bmal1, Cry1, Per1,
and Per2 [73, 74]

Fecal transplantation from high-fat-diet-
fed donors

Increase in Firmicutes and decrease in
Bacteriodetes Bmal1, Per2, Rev-erba, and Dbp [75]
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In light of the important roles of circadian rhythm and
gut microbiota, respectively, in early-life nutrition and
metabolic health in later life and the close communication
between gut microbiota and circadian clock, we propose that
the “gut microbiota-circadian clock axis” might be a novel
and crucial mechanism for deciphering “metabolic mem-
ory.” Adverse early-life exposures can significantly alter the
composition and function of gut microbiota and associated
microbe-derived metabolites, which further regulate the
circadian clock and metabolism in peripheral tissues.
However, the evidence is still scarce andmore related studies
need to be done in the future.

5. Conclusions and Prospects

.e overall health resources for chronic diseases in China,
and throughout the world, are mostly allocated to treating
diseases or complications that have already developed.
.us, the prevention, early identification, and early
treatment of diseases are extremely urgent. .e momen-
tum of DM development is impossible to stop in the short
term, and it is necessary to adjust the prevention and
control strategies in a timely manner. It is important to
note that the prevalence of DM in adolescents has in-
creased significantly. However, the inherent genetic factors
and traditional environmental factors cannot completely
explain the rapid increase in the prevalence of diabetes.
What is the best way to identify groups that are at high risk
of developing diabetes early? How can an earlier in-
tervention be carried out? How can treatment effectiveness
be improved? .ese are key issues in the prevention and
treatment of metabolic diseases such as DM. Early de-
tection of these problems with the philosophy that a “Good

doctor treats when the disease does not appear” can
generate twice the results with half the effort. .erefore,
exploring the specific mechanism of “metabolic memory”
in terms of the adverse nutrient environment in early life
and identifying the key mechanism underlying the rapid
increase in the development of DM may have far-reaching
effects on reducing the barriers to the prevention and
treatment of metabolic diseases.

A multitude of studies have shown that a maternal HFD
during pregnancy and lactation could increase the risk of
developing obesity, impaired glucose tolerance, insulin re-
sistance and fatty liver in offspring in early life, and these
health problems can continue through adulthood and even
to old age..erefore, the adverse nutritional environment in
early life can significantly increase the risk of abnormal
glucose metabolism in later life. However, the concrete
mechanism remains largely unclear. With the prevalence of
shift working and jet lag, the role of circadian misalignment
in metabolic diseases gained increasing attention. Emerging
studies have shown that there were significant relationships
between nutrient intake and circadian clock, especially in the
early life. In addition, it is well known that adverse nutri-
tional environment affects the structure and function of gut
microbiota. Recently, several experimental animal models
indicated that there was bidirectional communication be-
tween gut microbiota and circadian clock and the changed
microbial metabolites could further influence the circadian
clock and metabolic health. .us, the intestinal microbial
community plays a pivotal role in the adverse nutrient
environment and circadian rhythm disorders. Based on the
abovementioned fact, we propose that the disorder of the
“gut microbiota-circadian clock axis” plays an important
role in the “metabolic memory” (Figure 1).

Adverse nutritional
factors in early life

HFD
GDM
Obesity
EWG

Gut microbiota dysbiosis
Firmicutes
Bacteriodetes
Ruminococcus

Circadian misalignment
Bmal1, Rev–erbα
Per1, Per2
Cry1, RoRα

“Gut microbiota-circadian clock axis”

Metabolic diseases in
later life

Overweight/obesity
T2DM
Cardiovascular disease

Microbial
metabolites

Butyrate
Acetate
Bile acid

Figure 1: Overview of the role of “gut-microbiota-circadian clock axis” in the effects of adverse early-life nutritional environment on the
metabolism in later life. HFD, high-fat diet; GDM, gestational diabetes mellitus; EWG, excess weight gain; T2DM, type 2 diabetes mellitus.
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However, studies clarifying the specific mechanism of
“gut microbiota-circadian clock axis” and the cause and
effect of the changes of metabolic health in later life and the
axis are still limited, although they are of great significance
for the prevention and early treatment of T2DM..us, there
is an urgent need for more studies to further explore the
underlying mechanisms. .is review proposes a novel
mechanism to decipher the “metabolic memory” and
combine gut microbiota and circadian rhythm to reveal the
effects of early-life adverse nutritional environments on
glucose metabolism in adulthood. In this way, we can
prevent diabetes in the high-risk population early and
provide corresponding interventions to diabetic patients.
.is concept is expected to provide an important theoretical
basis and a new drug target during the early stage of life to
effectively prevent the occurrence and development of
T2DM.
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