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Variation in gene expression levels on a genomic scale has been detected among different strains, among closely
related species, and within populations of genetically identical cells. What are the driving forces that lead to expression
divergence in some genes and conserved expression in others? Here we employ flux balance analysis to address this
question for metabolic genes. We consider the genome-scale metabolic model of Saccharomyces cerevisiae, and its
entire space of optimal and near-optimal flux distributions. We show that this space reveals underlying evolutionary
constraints on expression regulation, as well as on the conservation of the underlying gene sequences. Genes that
have a high range of optimal flux levels tend to display divergent expression levels among different yeast strains and
species. This suggests that gene regulation has diverged in those parts of the metabolic network that are less
constrained. In addition, we show that genes that are active in a large fraction of the space of optimal solutions tend to
have conserved sequences. This supports the possibility that there is less selective pressure to maintain genes that are
relevant for only a small number of metabolic states.
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Introduction

Recent comparative studies of genomic-scale gene expres-
sion levels have revealed substantial variation among differ-
ent strains [1,2], among closely related species [3], and even
within a genetically identical population [4–7]. Why do some
of the genes monitored in these experiments manifest
divergent expression values while the expression of others
is constrained? We study this question from an evolutionary
perspective in an in silico model of metabolism.

A key tool in studying metabolic networks is constraint-
based modeling, which permits analysis of large-scale net-
works. Accurate prediction of dynamic metabolic activity
requires kinetic models, but these rely on detailed informa-
tion of the rates of enzyme activity, which is mostly
unavailable, and are thus limited to small-scale networks. In
contrast, constraint-based models use genome-scale networks
to predict steady-state metabolic activity, regardless of
specific enzyme kinetics. Stoichiometric, thermodynamic,
flux capacity, and possibly other constraints are used to limit
the space of possible flux distributions attainable by the
metabolic network. Flux balance analysis (FBA) [8,9] is a
specific, constraint-based method which assumes that the
network is regulated to maximize or minimize a certain
cellular function, which is usually taken to be the organism’s
growth rate. FBA has been successfully used for predicting
growth, uptake rates, byproduct secretion, and growth
following adaptive evolution, as well as other phenotypes
[10–14].

The metabolic state predicted by FBA for a given growth
media is not unique—in many cases there is a set of an
infinite number of optimal solutions. Thus, we discuss here
the optimal solution space, the space of all flux distributions

leading to an optimal growth rate. On one hand, there are
missing constraints in the model, and one line of research
aims at reducing the solution space by adding biologically
plausible constraints, e.g., by explicitly incorporating regu-
latory constraints in the model [15] and by looking for
specific reactions for which new constraints may significantly
reduce the size of the solution space [16]. On the other hand,
even though there are still probably some missing constraints
in FBA models, it has already been demonstrated that the
solution space of such models does carry meaningful bio-
logical information [17,18]. Alternative optimal, steady-state
flux solutions were shown to reflect redundant pathways [19],
and sampling of the FBA solution space has been used, for
example, to identify correlated fluxes in the mitochondrial
metabolic network [18]. Moreover, Fong et al. [20,21] have
shown that multiple biologically meaningful flux states are
active in different conditions. However, this point has been
largely ignored in many FBA studies which, focusing on a
variety of other research questions, have examined an
arbitrary single optimal solution.
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Here we further pursue the possibility that the FBA
solution space reflects multiple biologically meaningful
metabolic states that are active in various conditions or
under different evolutionary trajectories. We study the
possibility that it reflects evolutionary constraints on ex-
pression and sequence of the associated genes. In particular,
we focus on yeast metabolism using a recent genome-scale,
fully compartmentalized model of Saccharomyces cerevisiae [22],
which is one of the largest and most comprehensive
metabolic models available for a microorganism. We show
that by considering the entire FBA solution space we can
identify constraints on the regulation of the associated genes,
and thus predict which genes will have divergent expression
levels among different yeast strains, and less conserved
regulation among closely related species. In addition, we
show that the sequences of genes that are active in multiple
solutions tend to be highly conserved, suggesting that
constraints on sequence divergence can also be discerned
by studying the entire solution space. These results show that
the space of FBA solutions, which emerges from a complex
interplay between the stoichiometric constraints, the uptake
rates defining the growth medium and the optimality
assumption, is not just a technical consequence of our
ignorance of additional constraints. Rather, this solution
space sheds light on the evolution of metabolic regulation
and of the metabolic network itself.

Results

Conservation of Expression Regulation Is Reflected by the
FBA Solution Space

Cellular metabolism is governed by various factors such as
enzyme kinetics, allosteric control, and transcriptional and
post-transcriptional gene and protein regulation. Specifically,
the effect of transcriptional regulation on cellular metabo-
lism was previously studied based on gene expression
measurements, small-scale flux measurements, and large-

scale flux predictions. Enzyme-coding genes that form
metabolic pathways were shown to be expressed just-in-time
when needed in bacteria [23]. A strong qualitative corre-
spondence between gene expression and metabolic fluxes for
various pathways was shown in both bacteria and yeast,
following environmental changes in yeast [24] and adaptive
evolution in bacteria [25]. Previous studies have also shown
that the expression patterns of enzyme-coding genes are
correlated with the flux patterns predicted by FBA. Schuster
et al. and Famili et al. have shown that genes associated with
fluxes that are predicted to change together during a shift
from one medium to another (e.g., in diauxic shift) are co-
expressed under these conditions (but this was done on a
small scale, especially the analysis of Schuster et al.), while
Reed and Palsson have shown that the genes associated with
fluxes that are correlated within the solution space also
exhibit moderate levels of correlation in their expression
[12,26,27].
Here we identify a more direct relationship between

expression and flux. We compared mRNA transcript numbers
[28,29] and protein levels [30] in rich media (yeast peptone
dextrose [YPD]) with the predicted flux values when simulat-
ing YPD growth conditions (see Materials and Methods). As
shown in Table 1, we find that the flux values show a
moderate, statistically significant correlation with the corre-
sponding gene expression levels and with protein abundance
data measured via GFP fluorescence. Isozymes were not
included in this analysis, but their inclusion yields qualita-
tively similar results (see Table 1 in Protocol S1).
Under most simulated conditions, FBA has an infinite

number of optimal solutions. As shown in Figure 1, some
reactions display a broad range of values within the set of
optimal solutions for glucose-rich (YPD) conditions, while
others have an almost fixed value in all optimal solutions. A
reaction displays a broad range of values when there are
alternative pathways to the one it belongs to. For example,
when simulating glucose-rich conditions, the reaction along
the glycolysis pathways that is catalyzed by Fba1, which
converts fructose 1,6 bisphosphate into glyceraldehyde-3-
phosphate and dihydroxyacetone phosphate, can have a flux
approximately equal to that of glucose intake, or, alterna-
tively, be bypassed completely via the pentose phosphate
pathway.
As flux values are significantly correlated with expression

levels, we hypothesized that the range of possible optimal flux
values for a given reaction reflects evolutionary constraints
on the expression levels of its associated enzymes. Specifically,
the regulation of reactions that have an optimal fixed value is

Table 1. Spearman Rank Correlation between Flux Level and
mRNA/Protein Abundance

Reference Data Type Mean

Correlation

Standard

Deviation

Mean

p-Value

Number

of Genes

[28] mRNA number 0.35 0.006 2 3 10�11 343

[29] mRNA number 0.37 0.006 10�12 356

[30] Protein level 0.22 0.01 4 3 10�4 259

Values are based on flux levels from 1,000 randomly sampled optimal flux distributions.
DOI: 10.1371/journal.pcbi.0020106.t001
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Synopsis

The regulation of gene product activity allows cells to efficiently
cope with various tasks under varying conditions. Given that, one
may have expected that striving for efficiency would cause
genetically similar cells to have similar regulation. However, in
reality, high variations in gene expression levels are detected
between different strains and even between genetically identical
cells taken from the same culture. What are the driving forces that
lead to expression divergence in some genes and conserved
expression in others?

To address this question, the authors study the conservation of
regulation in yeast metabolism, using a computational model. They
find that genes coding for reactions whose flux rates are narrowly
constrained by the cellular need to maximize growth rate tend to
have strictly conserved regulation and expression. However, when a
wide range of flux rates is compatible with high cellular growth
rates, the corresponding regulation and expression patterns are free
to diverge. Furthermore, enzymes that participate in a large number
of alternative metabolic behaviors tend to be encoded by genes
with a highly conserved sequence. Taken together, these findings
support the hypothesis that maintaining large variability in the
overall expression and metabolic repertoire of the cell is under
marked evolutionary selection.

Evolutionary Constraints from FBA Space



under strong selection to maintain their flux at the precise
levels needed, while the regulation of reactions that may have
a broad range of optimal values is under weaker selection.

To pursue this possibility we used flux variability analysis [19]:
for each reaction we computed the maximal and minimal flux
values attainable in the space of optimal flux distributions for
growth conditions simulating YPD-rich media. We define the
YPD flexibility score of a reaction as the difference between
these maximal and minimal values. In addition, we performed
a similar analysis, this time computing flux flexibility scores
across 1,000 randomly generated growth media. In both cases,
the flexibility score of a gene has been taken as the maximal
score among the flexibility scores of the reactions it is
associated with. Interestingly, we found that the YPD
flexibility score is very similar to the flexibility scores found
across the random media (mean Spearman rank correlation¼
0.92), and focus on it in the sequel.

To test the hypothesis that genes with smaller YPD
flexibility scores have tighter regulation, we studied the
correlation between the genes’ YPD flexibility scores, the
conservation of their promoters, and their expression
patterns. We used a score computed by Townsend, Cavalieri,
et al. [2], which measured expression patterns for four yeast
strains, obtaining an expression divergence score for each gene.
Harbison, Gordon, et al. [31] constructed a comprehensive
map of S. cerevisiae transcription factor binding sites, and for
each site reported the number of yeast species (from among
Saccharomyces paradoxus, Saccharomyces mikatae, and Saccharomyces
bayanus) in which it is conserved. Based on this data, we
assigned to each gene a promoter conservation score (see
Materials and Methods). As shown in Figure 2A and 2B, both
scores show moderate, statistically significant correlations

with the YPD flexibility score; the Spearman rank correlation
with expression divergence is 0.18 (p-value , 10�4, 469 genes),
and is�0.18 with promoter conservation (p-value¼ 10�3, 330
genes). Although these statistically significant correlations are
of moderate magnitude, taken together they support the
hypothesis that low flexibility scores are associated with
conserved regulation. We show that these results are robust
with respect to the definition of the flexibility score and the
analysis of near-optimal solution spaces in Table 2 in
Protocol S2.
We also observed a statistically significant correlation when

comparing the YPD flexibility score of a gene with its
expression variability over a large set of conditions compiled
by Ihmels, Bergmann, et al. ([32], only conditions relevant to
YPD were considered—see Materials and Methods). As shown
in Figure 2C, for the 600 genes analyzed, the Spearman rank
correlation between these values is 0.17, with a p-value of 23

10�5. That is, their more flexible regulation does indeed
manifest itself in increased expression variability.
A likely mechanism underlying these findings is that genes

with high flexibility scores take part in pathways that have
alternative ones for optimal growth. In some conditions one
pathway is used, while in others the alternative is taken,
leading to a variable expression pattern. This is reflected not
only in the model, but also in comparison with lethality
assays. Of the 50 genes with the highest flexibility scores, only
6% are essential for growth in YPD, whereas of the 89 that
have a zero flexibility score, 17% are essential.

Conservation of Gene Sequence Is Reflected by the FBA
Solution Space
Papp et al. have shown that enzyme-coding genes that

according to FBA are active in several conditions tend to be
more conserved in evolution [33] and hence can be found in
numerous organisms: they simulated nine representative
growth media, and found an optimal flux distribution for
each. They suggested that genes that are active (i.e., associated
with reactions having nonzero flux) in only a few conditions
are expected to be less conserved than their counterparts,
since if these conditions become irrelevant, the gene may be
lost. Indeed, they have shown that genes active in 0–7
conditions have, on average, fewer orthologs in other species
than those that are active in eight or nine conditions.
We followed their analysis by carrying it out in a large-scale

manner, and considered the entire optimal solution space
rather than a single optimal solution. For each gene in the
model we computed the fraction of 1,000 random growth
media in which it is active using flux variability analysis. This
value is the intercondition activity score of the reaction, and from
it a similar score was deduced for the corresponding genes (see
Materials and Methods). Rather than counting orthologs, as in
[33], we compared this score directly with the evolutionary
rate of the gene’s sequence [34], and found a statistically
significant anticorrelation between them, both in random rich
media (Spearman rank correlation¼�0.27; p-value¼2310�5;
238 genes), and in random poor media (Spearman rank
correlation¼�0.35; p-value¼ 23 10�8; 238 genes).
Surprisingly, sequence conservation can also be deduced

from studying the solution space for a specific growth medium
solely. To quantify the activity of yeast genes in rich media we
computed for each gene a YPD activity score, reflecting the
fraction of metabolic states in the near-optimal FBA solution

Figure 1. Distribution of the 1,149 Modelled Metabolic Reactions

according to Their Variability within the Space of Optimal Solutions for

YPD

(A) Reactions with flux equal to zero in all optimal solutions.
(B) Reactions with the same, nonzero value in all optimal solutions.
(C) Reactions with low variability among optimal solutions (flexbility score
between 0 and 10�2).
(D) Reactions with medium variability among optimal solutions (flexbility
score between 10�2 and 1/2).
(E) Reactions with high variability among optimal solutions (flexibility
score at least 1/2).
DOI : 10.1371/journal.pcbi.0020106.g001
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space in which it is active (see Materials and Methods).
Comparing this score to the evolutionary rate of the gene’s
sequence [34], we find a statistically significant anticorrelation
between them (Figure 3; Spearman rank correlation ¼�0.37,
p-value¼ 53 10�9, 234 genes), showing that the genes that are
active at multiple metabolic states in a single growth media
tend to be conserved. This correlation is also statistically
significant when minimal–medium solutions are sampled,
rather than those corresponding to YPD medium (Spearman
rank correlation¼�0.37, p-value¼ 3 3 10�7, 182 genes). One
possible reason for this correlation is that it reflects the same
trend observed already in multiple growth media: the
metabolic network model captures stoichiometric-related
constraints and nutrient limits, but may not include some
environmental conditions. Hence, the FBA solution space for
rich media may represent the various metabolic states that are
optimal in rich media under different exogenous conditions,
such as temperature or salinity. In other words, different
metabolic states actually represent flux distributions under
different conditions, and, as in the intercondition analysis, we
expect that the sequence of genes that are required in many
exogenous conditions will tend to be more conserved.
Interestingly, the correlation observed in a single rich medium
is higher than that obtained across multiple rich media, and
remains statistically significant and qualitatively similar to
that reported above when varying the near-optimality thresh-
old of the solution space (Table 3 in Protocol S2).

Figure 2. Correlation of YPD Flexibility Score with Biological Measurements Reflecting Constraints on Regulation

(A) Mean expression divergence (from Townsend et al.) as a function of the gene’s flexibility score;
(B) Mean promoter conservation score (based on Harbison et al.) as a function of the gene’s flexibility score;
(C) Mean expression variance (from Ihmels et al.) as a function of the gene’s flexibility score.
Genes are binned according to their flexibility score into five bins, such that each bin contains the same number of genes. Plot-points represent mean y-
axis values over these bins. Error bars depict mean standard error.
Importantly, the correlations reported in the main text are computed from the raw data. The Spearman rank correlation of the binned data displayed
here is 0.9 (A and C), and�1 (B).
DOI: 10.1371/journal.pcbi.0020106.g002

Figure 3. Average YPD Activity Score as a Function of a Gene’s

Evolutionary Rate

Genes are binned by multiplying their evolutionary rate by 50, and
rounding to the closest integer. The mean YPD activity score over each
subset is depicted. Error bars describe mean standard deviation.
Importantly, the correlations reported in the main text are computed
from the raw data. The Spearman Rank correlation of the binned data
displayed here is�0.71.
DOI: 10.1371/journal.pcbi.0020106.g003
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Previously it was shown that protein dispensability, which is
assessed using growth rate measurements following gene
knockouts, is correlated with evolutionary sequence rate [34].
This correlation suggests that there is selection pressure to
preserve the sequence of genes whose knockout has a notable
effect on the growth rate of the organism. Repeating this
analysis for the set of metabolic genes also revealed a statisti-
cally significant correlation between the knockout growth rate
and evolutionary rate (Spearman rank correlation¼0.2, p-value
¼ 0.04, 103 genes). However, notably, the latter correlation is
weaker than that observed between the YPD activity score and
evolutionary rate, further supporting the claim that the
activation of genes in multiple conditions is a selected trait.

Previously it was shown that the best predictor for
evolutionary rate is the expression level of the encoded gene
[35]. Other plausible measures for gene importance, such as
the number of physical interactions, essentiality, and the
drop of fitness following a knockout, were reported to
explain only a small fraction of the variation in expression
rate [35,36]. Namely, their squared correlation coefficient
between these measures and evolutionary rate are found to
be 0.04–0.07, and the squared partial correlations, when
controlling for expression level, are 0.02–0.06 [36]. By
comparison, the YPD activity score attains an r2-value
(squared rank correlation coefficient) of 0.17, and, impor-
tantly, remains significantly correlated with evolutionary rate
even after the effect of mRNA expression level [28] is factored
out (Pearson partial correlation is �0.25, and by linear
regression the correlation with the residual has r2 ¼ 0.14; p-
value ¼ 1.6 3 10�8).

Discussion

What do the metabolic flux distributions composing the
FBA solution space represent? While some of them may be
superfluous, arising from missing constraints, this study
shows that as a whole, they are biologically meaningful.
Three different possibilities for their interpretation suggest
themselves: (i) effect of exogenous factors; (ii) alternative
evolutionary pathways; and (iii) heterogeneity within a
population.

(i) Effect of Exogenous Factors. In addition to the growth
medium simulated by the model, the metabolic behavior of
an organism is also influenced by exogenous factors that are
beyond the model’s scope. Hence, it is plausible that the
stoichiometric constraints allow for the existence of a variety
of different metabolic states that are needed for growth in the
given medium under the various different external condi-
tions that the organism may encounter. The solution space
represents the union of these different conditions.

(ii) Alternative Evolutionary Pathways. It was suggested that
the FBA solution space may contain alternative flux
distributions that are attainable through different evolu-
tionary paths, as was experimentally shown in an adaptive
evolution experiment in E. coli [19–21,25]. These experiments
showed that although evolutionary endpoints may converge
with respect to the selection pressure for high growth rate,
the underlying metabolic states, characterized by measured
metabolic fluxes and gene expression, may significantly
diverge.

(iii) Heterogeneity within a Population. Previous studies
suggest that the predicted variability in metabolic states may

represent heterogeneous metabolic behaviors of individuals
within a cell population [17,19]. It is possible that the multiple
metabolic states composing the space of optimal solutions
represent this heterogeneity. This possibility is especially
appealing in light of recent measurements of gene expression
at the single-cell level, showing high variability in expression
among cells taken from the same culture [4–7].
We find support for all three interpretations. The

observation that reactions that display a range of values
within the space of optimal solutions tend to be associated
with genes whose regulation is less conserved supports
interpretation (ii); where optimality allows for different
evolutionary paths to be taken, and the data suggests that
they are indeed taken. This finding is in agreement with the
previous experiments of bacterial adaptive evolution, show-
ing that adaptive mechanisms evolved in the transcriptional
regulatory network that governs their metabolic state [20].
The correlation between the number of solutions in which a
reaction is active and the conservation of the associated
genes’ sequence supports interpretation (i): The YPD activity
score behaves similarly to the intercondition activity score,
and thus may also be thought to reflect metabolic states
across different (exogenous) conditions in YPD. But this
finding can also be seen as supporting interpretation (ii)—
enzymes that are active in multiple solutions, that is,
according to interpretation (ii), appear in multiple strains,
are more conserved. Indeed, as we find the YPD activity score
to be a better predictor of sequence conservation than the
intercondition activity score, it is likely that factors in
addition in interpretation (i) play a role here.
Finally, the fact that reactions with variable flux values

within the solution space tend to be associated with genes
with variable expression patterns clearly supports interpre-
tation (i), but can possibly also be seen as indirect support for
interpretation (iii). While the expression variability we
analyzed is based on averages over a population under
different conditions, and interpretation (iii) addresses ex-
pression variability among individual cells in the same
condition, it was suggested that these two measures of
variability are related [37]. If this is indeed the case, then
the results above indirectly support the possibility that
variability within the solution space is correlated with
variability within a population. However, additional large-
scale measurements of population expression variance are
required to establish this possibility further.
In fact, interpretations (i)–(iii) are not inclusive, and may

correlate with different regions within the solution space.
This suggests the following view of this space: some solutions
are superfluous, and exist only due to the lack of sufficient
regulatory (and other) constraints within the model; the
remainder solution space is composed of subspaces repre-
senting solutions attained via different evolutionary paths;
these spaces may be further partitioned to sets of solutions
that arise under different external conditions, representing
heterogeneous phenotypes among genetically similar cells.
In summary, we have shown that genes with a high potential

flux range have indeed fewer constraints on their regulation,
and that genes that are active in multiple metabolic states tend
to be highly conserved. These results emerge when studying
the FBA solution space as a whole, clearly showing that it
carries meaningful biological information.
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Materials and Methods

Metabolic network model. The S. cerevisiae metabolic model used
here is by [22]. It includes 1,149 reactions, associated with 734 genes.
A reaction is considered active in a given flux distribution, if its
associated flux is nonzero. Of the 1,149 reactions, 268 were identified
to be essentially zero (absolute value at most 10�10) in all feasible (not
necessarily optimal) flux distributions satisfying the stoichiometric
constraints simulating YPD. Since these reactions are not relevant for
growth in YPD, they were omitted when computing the YPD
flexibility score and the YPD activity score.

In addition to the 1,149 internal reactions, we added to the model
116 uptake/excretion reactions, for each of the metabolites listed as
extracellular in the basic model.

YPD growth conditions were simulated as in [13]. We list these
reactions and their uptake rates in the Table S1.

The optimal solution space is defined as the set of all flux
distributions that obey the stoichiometric and thermodynamic
constraints, lead to a maximal growth rate, and minimize the sum
of (absolute values of) the reactions. The latter constraint, following
[38], aims to avoid futile flux cycles in the network which violate the
laws of thermodynamics.

The entire analysis in this work was also applied to the metabolic
model of [38], obtaining qualitatively similar results, and appears in
Protocol S3.

Datasets used. The mRNA transcript numbers were taken from
[28] and [29], which list values for 679 and 728 of the genes included
in model, respectively.

Protein abundance, as measured through GFP fluorescence, was
taken from [30,38,40], and was available for 475 of the encoding genes
in the model.

Expression divergence measures were taken from the supplemen-
tary results of [2], 581 of which are for genes that appear in the model.

Expression variance values are based on the dataset compiled by
[32], and were defined as the sum of squares of the log ratios (the
same measure was used for this purpose in [37]).

Evolutionary rates were taken from [34], and were available for 379
of the genes in the model.

Random sampling of the solution space. The space of all flux
distributions that obey the constraints imposed in FBA is a
polyhedral set defined by the half-spaces corresponding to the
constraints. Finding a flux distribution that maximizes the biomass
reaction (which is a linear function of fluxes that produce essential
biomass precursors) can thus be found using a simplex algorithm.
Roughly, the algorithm travels from one vertex of the polyhedral set
to a neighboring one, while improving the value of the objective
function, until the function can no longer by improved (by convexity,
this is indeed the global optimum). See, e.g., [41] for more details.

The rule by which the neighboring vertex is chosen when there are
multiple possibilities is called a pivot rule. In a randomized simplex
algorithm (cf. [41]), the pivot rule is simply to choose uniformly at
random from among the vertices on which the objective function is
improved. In the case where a whole set of optimal solutions exists,
this leads to a solution that is chosen at random from among the
optimal solutions.

We note that this is not a uniform sample of the solution space,
since only vertices of the polyhedral set will be chosen and not internal
points. But this is an appropriate sampling scheme when one is
interested in sampling optimal flux distributions with extreme flux
values since they correspond to vertices.

Indeed, the vertices of the polytope of optimal solutions are
analogous to the much-studied extreme pathways [42] elementary
flux modes [43,44]: the extreme pathways are the minimal set of flux
distributions such that any feasible (not necessarily optimal) solution
is a non-negative linear combination of them (i.e., they are the
extreme rays of the feasible solutions cone); The vertices of the
polytope of optimal solutions (which we sample) are the minimal
subset of flux distributions such that any optimal solution is a non-
negative linear combination of them.

Simulating random growth media. Random growth media were
generated by setting limiting values to the uptake reactions
independently at random. With probability p, the maximal uptake
rate was set to 0—i.e., only excretion was allowed. Otherwise, uptake
rate was limited to a value chosen uniformly at random between 0
and 1.

The values p ¼ 0.5 and p ¼ 0.95 were tested, simulating rich and
poor media, respectively. Eight of the uptake rates were taken
positive in all media, to ensure viability (for water, ammonium,
phosphate, sulfate, oxygen, sodium, potassium, and carbon dioxide).

A similar sampling method was used in [45].

Comparing flux level with mRNA/protein expression level.
Comparing flux level with mRNA level and protein level requires
inferring a ‘‘flux level’’ for a gene, based on the reactions it is
associated with. For each gene, we defined this to be the maximal flux
level predicted for its associated reactions, as this is the level that
most constraints it.

Analysis of isozymes is deferred to Protocol S1, where the
correlation between the two measures is based on reactions rather
than on genes.

In Protocol S2’s Table 4 we also show that the correlation between
flux level and expression level is statistically significant when near-
optimal solution spaces are considered.

Gene flexibility score. The flexibility score of a reaction in a given
medium is the difference between the maximal flux that can flow
through it in an optimal flux distribution, and the minimal one. This
is computed using flux variability analysis [19].

The flexibility score of a gene in a given medium is the maximum
of the flexibility scores for the reactions it is associated with. The
rationale for using the maximum value is that this value is the one
that most constrains the required enzyme quantity for obtaining
optimal flux. That is, if a protein is associated with several reactions,
for its expression level to comply with all optimal flux values, it most
complies with the highest one.

For isozymes, the definition is slightly more complicated. Suppose
a reaction R can attain values between x and y, and hence its flexibility
score is y minus x. If a single gene is associated with this reaction,
then, as defined above, the reaction’s contribution towards the gene’s
flexibility score is simply y minus x, since we think of this range of
fluxes as defining the flexibility of the gene’s expression. However, if
there are several isozymes associated with the reaction, then their
flexibility can, potentially, be larger.

If x . 0, then the values an associated isozyme I can attain are from 0
to y, since if the expression level of I is smaller than x, the other isozymes
can compensate for it, putting the total reaction rate with the optimal
range of [x,y]. Hence, in this case the contribution of the reaction
towards the gene’s flexibility is y, rather than yminus x. Similarly, if y ,
0, an isozyme could attain any value in the range [x,0], and hence the
contribution of the reaction towards the gene’s flexibility would be jxj.
Taken together, we define contribution of a reaction attaining flux
values in the range [x,y] towards the flexibility score of its associated
isozymes as the maximum among y minus x, y, and jxj.

Promoter conservation score. Transcription factors’ binding sites
were considered as regulating a gene if they appear in the map of [31]
within 500 bp of the gene’s translation start site.

Each binding site received a score of 1, if it is conserved in all three
species from among S. paradoxus, S. mikatae, and S. bayanus; a score of
0.5 if it conserved in two of them; and a score of 0 otherwise. The
promoter conservation score for a gene is the mean score for the binding
sites associated with it.

Data was available for 382 genes.
Gene medium-specific activity score. The activity score of a gene in

a given medium is obtained by sampling the solution space, and by
counting the number of solutions that have reactions associated with
it that are active.

When doing so by sampling the space of optimal solutions for YPD,
we got an activity score of either 0 or 1 for 90% of the genes. To
obtain a range of activity scores that can be better differentiated
between activity scores we sampled the space of near-optimal
solutions, as was done in [26,45]. Specifically, we sampled the space
of solutions with growth rate at least 80% of the optimal one in YPD
using the random simplex algorithm. In Protocol S2’s Table 3 we
show that similar results are obtained when the 80% threshold value
is varied to sample other near-optimal solution spaces.

Genes that encode enzymes which have isozymes were excluded
from the analysis, since their knockout has no effect on the network.
In Protocol S1 we analyze possible inclusions of isozymes in this
analysis.

Genes that are active in all solutions are also excluded, since we
expect many of them to be essential genes, and it is known that
essential genes tend to have conserved sequence. If they are included,
the Spearman rank correlation between the YPD activity score and
sequence divergence is indeed more distinct: r¼�0.41, p¼1.3310�12,
270 genes.

Gene intercondition activity score. The intercondition activity
score of a gene was computed from 1,000 random growth media (see
the section, Simulating random growth media, above), and computed
similarly to the medium-specific activity score: For each gene, its
interactivity score is the number of random media in which it is
active, where a gene is considered active if one the reactions for
which the gene is required is active.
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As for the medium-specific activity score, we omitted from the
analysis genes that are active in all conditions. If these genes are
included, the Spearman rank correlation between the intercondition
activity score and sequence divergence is more distinct: r¼�0.31 for
rich growth conditions, and r ¼�0.37 for poor growth conditions.
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Found at DOI: 10.1371/journal.pcbi.0020106.sd001 (5 KB TXT).

Protocol S1. Considering the Effect of Isozymes
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Protocol S3. Consistency of the Results with theModel of Kuepfer et al.

Found at DOI: 10.1371/journal.pcbi.0020106.sd004 (70 KB DOC).

Table S1. Rate of Uptake Reactions Modelling YPD Medium

Found at DOI: 10.1371/journal.pcbi.0020106.st001 (136 KB DOC).

Accession Numbers
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