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A B S T R A C T   

The number of animal genotypes is rapidly increasing, and a major challenge for animal models is inverting the 
genomic relationship matrix (G). Matrix G has a limited dimensionality, and the algorithm for proven and young 
(APY) makes inverting a large G possible via the inverse of a block diagonal of G with a size equivalent to the 
dimensionality of G. APY divides genotyped animals into core and non-core groups, and breeding values of non- 
core animals are conditioned on the breeding values of core animals. Therefore, there is the possibility of opting 
out equations for non-core animals from the model. A methodology was presented for a reduced APY genomic 
BLUP (GBLUP) to equations for core animals. Using a small example dataset, the method was validated by the 
equality of the full and the reduced model analysis results. Absorption of fixed effect equations into random effect 
equations was successful in reducing the number of equations to solve and producing the same random effect 
solutions. Extending the method to APY single-step GBLUP (ssGBLUP) was not computationally justifiable. Other 
reduction techniques exist for ssGBLUP (regardless of APY or non-APY) that work by reducing the number of 
equations for non-genotyped animals. The number of equations can further be reduced by data pruning.   

1. Introduction 

The development of GBLUP (VanRaden, 2008) was a major meth-
odological advancement toward the incorporation of genomic infor-
mation in large-scale commercial genetic evaluations. Later, the 
development of single-step GBLUP (ssGBLUP) made possible the joint 
evaluation of genotyped and non-genotyped animals, and the best use of 
information from both groups (Aguilar et al., 2010; Christensen and 
Lund, 2010). The major computational challenge for both GBLUP and 
ssGBLUP is inverting the genomic relationship matrix (G), which has a 
cubic computational cost relative to the number of genotyped animals 
(Misztal et al., 2014). As the number of genotyped animals rapidly in-
creases in livestock populations, so will the computational costs. 

Misztal et al. (2014) discovered the limited dimensionality of G and 
that a limited number of genotypes can explain most (e.g., 99%) of the 
variation in G. The number of those genotypes (core size) is a function of 
the effective population size, and the genome length (Pocrnic et al., 
2016). Thus, the inverse of a block of G corresponding to those geno-
types can explain the inverse of the whole G. Misztal et al. (2014) 
developed the algorithm for proven and young (APY), in which geno-
typed animals are split into core (c) and non-core (n) groups. The block 

of G for core animals (Gcc) is directly inverted, and the other blocks of 
G− 1 become a function of G− 1

cc . This reduces the (cubic) computational 
cost of inverting G (to the total number of genotyped animals) to the 
(cubic) computational cost of inverting Gcc plus the linear computa-
tional cost for non-core animals in Gnn (Misztal et al., 2014). In this 
algorithm, relationships among non-core animals are explained by the 
coefficients provided by core animals, and the breeding values of 
non-core animals are conditioned on the breeding values of core animals 
and independent from each other. This leads to the diagonal M− 1

nn matrix 
replacing Gnn (the block of G− 1 for non-core animals). The APY 
approximate of G− 1 (G− 1

APY) is: 

G− 1 ≈ G− 1
APY =

[
Gcc

APY Gcn
APY

Gnc
APY Gnn

APY

]

=

⎡

⎣
G− 1

cc + G− 1
cc GcnM− 1

nn GncG− 1
cc − G− 1

cc GcnM− 1
nn

− M− 1
nn GncG− 1

cc M− 1
nn

⎤

⎦.

(1) 

The diagonal elements of Mnn are: 

mii = gii − gicG− 1
cc gci, (2) 
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where gii is the ith diagonal element of Gnn, and gic is the ith row of Gnc. 
Though APY was developed in the ssGBLUP context, it targets G, and 

it also applies to GBLUP (Bermann et al., 2022a; 2022b; Fernando et al., 
2016). However, while the problem with inverting a large G has already 
been addressed by the APY algorithm, an equation system with the size 
equal to the total number of genotyped animals (corresponding to the 
additive genetic effect) needs to be solved. With iterative algorithms 
applicable to solving sparse equation systems, and access to powerful 
computational resources, genetic evaluation centres have no problem 
solving the equations. Nevertheless, that does not mean that computa-
tional costs cannot be reduced and become more affordable. Further-
more, many researchers and small organizations do not have access to 
advanced computational resources. The aim of this study is to introduce 
a methodology for reducing the number of GBLUP equations to core 
animals, based on the limited dimensionality of G, to make solving large 
GBLUP equations feasible on more affordable computers. 

2. Theory 

In this study, the notations c and n were used for core and non-core 
animals, 1 and 2 for non-genotyped and genotyped animals, and p and q 
for parents and non-parents, respectively. 

2.1. Reduced BLUP 

Quaas and Pollak (1980) developed the reduced animal model, in 
which the breeding values of non-parents were conditioned on the 
breeding values of parents. As such, the number of equations for all 
animals in the pedigree was reduced to parents. The number of parents is 
considerably less than the number of non-parents in most populations, 
resulting in a considerable reduction in the number of equations. 
Consider a simple BLUP: 
[

X′X X′Z
Z′X Z′Z + A− 1λ

][
b̂
â

]

=

[
X′y
Z′y

]

, (3)  

where b̂, â, and y are the vectors of solutions for fixed effects, solutions 
for animals’ random genetic effects, and phenotypes; X and Z are 
matrices relating phenotypes to fixed effects and animals, A is the 
pedigree-based additive genetic relationship matrix, λ = σ2

e /σ2
a , σ2

e is the 
residual variance, and σ2

a is the additive genetic variance. Reducing 
BLUP to the equations for parents: 
[

X′R− 1X X′R− 1W
W′R− 1X W′R− 1W + A− 1

pp λ

][
b̂
âp

]

=

[
X′R− 1y
W′R− 1y

]

, (4)  

where y′ =
[

y′
p y′

q
]
, W′ =

[
Z′

p Z∗
q

′ ] replacing 

Z′ =

[
Z′

p 0

0 Z′
q

]

,

Z∗
q is a parent incidence matrix divided by 2, 

R− 1 =

[
Ip 0
0 Rqq

]

,

Ip is an identity matrix with the size of yp, Rqq = (I + Dqq/λ)− 1, and Dqq 

is a block of the diagonal matrix D in A = TDT′, here corresponding to 
phenotyped q rather than all q. Nilforooshan (2022) simplified the 
back-solving equation for the âq solutions (Quaas and Pollak, 1980) to: 

âq = B
(
yq − Xq b̂ − (âs + âd)

/
2
)
+ (âs + âd)

/
2,

B = (I + Dqqλ)− 1 (5)  

for phenotyped q, and âq = (âs +âd)/2 for non-phenotyped q, where s 

and d denote the sire and dam of q. 

2.2. Reduced APY GBLUP 

The reduced APY GBLUP is based on the concept that the breeding 
values of non-core animals are conditioned on the breeding values of 
core animals. As such, there would be no need for non-core animals to 
remain in the analysis, and their solutions can be obtained via a back- 
solving procedure following solving the mixed model equations, 
including equations for core animals only. Considering a simple APY 
GBLUP: 
[

X′
2X2 X′

2Z2

Z′
2X2 Z′

2Z2 + G− 1
APYλ

][
b̂
â2

]

=

[
X′

2y2

Z′
2y2

]

. (6)  

Reducing the above equation to core animals: 
⎡

⎣
X′

2R22X2 X′
2R22W2

W′
2R22X2 W′

2R22W2 + (GAPY)
− 1
cc λ

⎤

⎦

[
b̂
âc

]

=

⎡

⎣
X′

2R22y2

W′
2R22y2

⎤

⎦,

(7)  

where 

(GAPY)
− 1
cc = G− 1

cc ,

y2 =

[ yc

yn

]

,

W2 =

[
Zc

Z∗
n

]

,

R22 =

[ Ic 0
0 Rnn

]

,

Ic is an identity matrix with the size of yc, and Rnn = (I + Dnn/λ)− 1. 
Matrices Z∗

n and Dnn are defined in section ”Find Z∗
n and Dnn”. Strandén 

et al. (2017) showed that: 

GAPY =

[
Gcc Gcn

Gnc Mnn + GncG− 1
cc Gcn − Gnn

]

. (8)  

Thus, (GAPY)cc = Gcc. Extending Eq. (5) from pedigree to genomic in-
formation, and limiting n to phenotyped n, back-solving for ân solutions 
involves: 

ân = B
(
yn − Xn b̂ − GncG− 1

cc âc
)
+ GncG− 1

cc âc

= B(yn − Xn b̂) + (I − B)GncG− 1
cc âc,

B = (I + Dnnλ)− 1
.

(9)  

Limiting n to non-phenotyped n, ân = GncG− 1
cc âc. 

2.2.1. Find Z∗
n and Dnn 

In the BLUP context, Quaas and Pollak (1980) described Z∗
q as a 

matrix with rows and columns corresponding to non-parents and par-
ents, respectively, in which parentage incidences are coded as 0.5 and 
the other elements are 0. They also defined Dqq as a block of the diagonal 
matrix D (in A = TDT′, where T is a lower triangular matrix). Their 
reduced model made use of the sparsity of A− 1, and that the only 
non-zero off-diagonal elements are those between parents and progeny 
and between mates (Henderson, 1976). Consequently, they conditioned 
solutions for non-parents on the solutions of their parents, and reduced 
the model to parents only. Phenotypes from non-parents contain infor-
mation and needs to be used, this was achieved via Z∗

q. The phenotype 
information from non-parents is transferred via their parents through 
the 0.5 coefficients in Z∗

q. The A− 1 structure provides the same pattern of 
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information flow. According to Henderson (1976), A− 1 = (T− 1)
′D− 1T− 1, 

where T− 1 = I − P, and P is a lower triangle parentage incidence matrix 
divided by 2. Quaas and Pollak (1980) showed the A− 1 structure as (with 
some notation changes compared to the original article): 

A− 1 =

⎡

⎣
A− 1

pp + PpqDqqP′
pq − PpqDqq

− DqqP′
pq Dqq

⎤

⎦

=

⎡

⎣
A− 1

pp + PpqD− 1
qq P′

pq − PpqD− 1
qq

− D− 1
qq P′

pq D− 1
qq

⎤

⎦.

(10) 

Matrices − P′
pq and Dqq can be associated with blocks of T− 1 and D− 1, 

respectively. Note that Z∗
q is equivalent to rows of P′

pq corresponding to 
phenotyped q. Following Eq. (1), A− 1

APY is created for parents and non- 
parents being the core and non-core groups. 

A− 1
APY =

⎡

⎣
A− 1

pp + A− 1
pp ApqM− 1

qq AqpA− 1
pp − A− 1

pp ApqM− 1
qq

− M− 1
qq AqpA− 1

pp M− 1
qq

⎤

⎦, (11)  

where Mqq is a diagonal matrix equal to Dqq (see the proof), diagonal 
elements mii = αii − αipA− 1

pp αpi, αii is the ith diagonal element of Ann, and 
αic is the ith row of Anc. 

Proof : M− 1
qq = D− 1

qq

mii = αii − αipA− 1
pp αpi

⇒ M− 1
qq = diag

((
Aqq − AqpA− 1

pp Apq

)− 1
)

= diag(Aqq) = Aqq = Dqq = D− 1
qq .

Comparing Eq. (10) and (11), it can be interpreted that Quaas and 
Pollak (1980) had been arrived at an APY inverse of A with animals 
divided into parents and non-parents. Conditioning non-parents’ 
breeding values on parents’ breeding values, they reduced the model to 
parents and back-solved breeding values of non-parents as a linear 
function to the breeding values of parents (Eq. (5)). Also, D and P′

pq in 
Eq. (10) are M and AqpA− 1

pp in Eq. (11). Matrix M in both Eqs. (1) and (11) 
represents individuals’ Mendelian Sampling variances in different ways 
(observed (Eq. (1)) vs. expected (Eq. (11))). Due to the properties of A− 1 

and that the relationships of progeny are fully conditional on parents in 
A, the A− 1

APY with parents and non-parents as core and non-core is an 
exact A− 1 (unlike G− 1

APY, which is an approximate G− 1). 
Putting the above evidences together, Z∗

n and Dnn (Eq. (7)) are equal 
to the rows of GncG− 1

cc for phenotyped n (i.e., rows of Gnc for phenotyped 
n multiplied by G− 1

cc ) and the block of Mnn corresponding to phenotyped 
n, respectively. Both Z∗

n and Dnn are available from G− 1
APY. 

2.2.2. Caveats  

1. Though computationally simple, back-solving is an additional step 
for the reduced APY GBLUP compared to the full APY GBLUP.  

2. Both W′
2R22W2 + (GAPY)

− 1
cc λ (Eq. (7)) and Z′

cZc + Gcc
APY (the diagonal 

block of Z′
2Z2 + G− 1

APY (Eq. (6)) corresponding to core animals) are 
dense. However, because W′

2R22W2 is dense, its summation cost is 
greater than for Z′

cZc, but W′
2R22W2 is a relatively small matrix.  

3. Though, X′
2Z2 is not sparse, X′

2R22W2 is dense. However, X′
2R22W2 

(Eq. (7)) is smaller than X′
2Z2 = [X′

cZc X′
nZn ] (Eq. (6)) and has a 

size equal to the size of X′
cZc. 

2.2.3. Absorption of fixed effect equations 
Usually, fixed effect solutions are of little interest. Therefore, fixed 

effect equations can be absorbed into random effect equations. If 

solutions for some fixed effects are of interest, those fixed effects can be 
exempt from absorption. Garrick et al. (2019) showed that the order of a 
complete set of mixed model equations can be reduced from the number 
of fixed effects (f) plus the number of random effects to the number of 
random effects, by the absorption of fixed effect equations into the 
random effect equations. For example, such absorption transforms Eq. 
(3) into: 
(
Z′Z+A− 1λ − Z′X(X′X)

− 1X′Z
)

âc = Z′y − Z′X(X′X)
− 1X′y. (12)  

3. Materials and methods 

An example dataset (dataset Nilforooshan, 2022) was used to illus-
trate the model setup for the full APY GBLUP, the reduced APY GBLUP, 
the absorbption of fixed effect equations for both the full APY GBLUP 
and the reduced APY GBLUP, and testing the hypotheses of the equiv-
alence of solutions with those from the full APY GBLUP. The example 
dataset contained pedigree and genotypes on eight animals. The R 
package pedSimulate (Nilforooshan, 2023) was used to simulate geno-
types on twenty genetic markers based on the pedigree. Four animals 
had phenotype data, four animals were considered as core, and one 
animal was shared between the core and the phenotyped sets. The fixed 
effects were the overall mean and the sex. The ratio of the residual to the 
additive genetic variance was considered as 1.5. The code (in R pro-
gramming language) to reproduce the simulated data, process and 
analyze the data, and check the results of the experiments are available 
in a public data repository (dataset Nilforooshan, 2022). 

4. Results 

The solutions of the full APY GBLUP were identical to those for the 
reduced APY GBLUP and its following back-solving (for non-core ani-
mals), providing evidence on the equivalence of the full and the reduced 
APY GBLUP. This hold true when equations corresponding to fixed ef-
fects were absorbed into those corresponding to random effects (dataset 
Nilforooshan, 2022). 

5. Discussion 

Inverting G is a bottleneck for large-scale genomic animal models. 
Discovering the limited dimensionality of G and the development of the 
APY algorithm made inverting a large G feasible via a sparse represen-
tation of G− 1. In the APY algorithm, genotyped animals are divided into 
core and non-core groups, and the breeding values of non-core animals 
are conditioned on the breeding values of core animals. This allows for a 
reduced model, where solving the equations for non-core animals is no 
longer needed. This study presented a reduced APY GBLUP followed by 
a back-solving procedure, producing solutions equivalent to a full APY 
GBLUP, where equations are reduced to those corresponding to core 
animals. Though this was the first study attempting to reduce APY 
GBLUP equations to core animals, reducing GBLUP equations has been 
proposed previously. With an emphasis on solving the problem with a 
singular G, Fernando et al. (2016) studied APY GBLUP and developed 
other alternatives. Their strategies (III and IV) involved modifying the 
genotype matrix rather than the genomic relationship matrix, as the 
latter is the case for APY. One strategy (III) involved Gaussian elimi-
nation and pivoting to transform the genotype matrix to row echelon 
form. The resulting matrix is upper diagonal and contains independent 
rows. The other strategy (IV) involved orthonormalization of the rows of 
the genotype matrix. Aside from the orthogonalization cost of the ge-
notype matrix, in dealing with residual polygenic effects, APY is more 
convenient as it can be directly applied to the blended G and A22 (i.e., 
kG+ (1 − k)A22). The methods that modify the genotype matrix cannot 
accommodate A22, but a block of it corresponding to orthogonal 
genotypes. 

For a GBLUP with no random effects other than the direct additive 
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genetic and residual effects, the size of the mixed model equations may 
get small enough (e.g., 15K effective dimensionality of G) to even make 
direct solving of the equation system possible on a low-end computer, 
regardless of the number of genotypes. Iteration-on-data techniques 
such as Preconditioned Conjugate Gradient, though convenient, are 
more useful when solving large and sparse equation systems. Direct 
solving might be beneficial for small equation systems. If the equation 
system is small enough to make direct solving computationally feasible, 
the advantage of directly solving equations is obtaining exact breeding 
values and reliabilities rather than approximates. Reliabilities are a 
function of the diagonal elements of the inverse of the coefficient matrix 
of the mixed model equation corresponding to breeding values (pre-
diction error variances, Henderson, 1984). Bermann et al. (2022b) 
introduced an efficient algorithm for approximating reliabilities, 
exploiting the sparse structure of G− 1

APY in APY GBLUP and APY ssGBLUP. 
By dividing genotyped animals into core and non-core groups, the 

full APY GBLUP (Eq. (6)) can be written as: 
⎡

⎢
⎢
⎢
⎣

X′
2X2 X′

cZc X′
nZn

Z′
cXc Z′

cZc + Gcc
APYλ Gcn

APYλ

Z′
nXn Gnc

APYλ Z′
nZn + Gnn

APYλ

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎣

b̂
âc

ân

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

X′
2y2

Z′
cyc

Z′
nyn

⎤

⎥
⎥
⎥
⎦
,

with the Z′
nZn + Gnn

APYλ matrix being sparse, and the number of equa-
tions equal to f + c + n. The reduced APY GBLUP (Eq. (7)) reduces the 
number of equations to f + c, and further to c by the absorption of fixed 
effect equations into the random effect equations. Usually, f is hundreds, 
c is thousands, and n is millions in large livestock populations. 

Theoretically, reduced APY GBLUP is extendible to reduced APY 
ssGBLUP, but it is computationally unjustified (Appendix), because the 
conditionality in ssGBLUP is not limited to genomic information but also 
pedigree information. There are two other possibilities for reducing 
ssGBLUP equations (Nilforooshan, 2022; Nilforooshan and Garrick, 
2021), both reduce the number of equations for non-genotyped animals. 
Currently, the only computationally justifiable way of reducing the 
number of equations for genotyped animals in ssGBLUP is through data 
pruning. Such data pruning involves iteratively discarding 
non-phenotyped non-parents (parents with all progeny discarded 
change to non-parents) except animals with a non-genotyped parent or a 
non-genotyped mate. 

Aiming to reduce the computational cost of large-scale ssGBLUP 
evaluations, Tsuruta et al. (2021) discarded genotyped animals with no 
phenotype and no progeny. The indirect genomic predictions obtained 
for the discarded genotyped animals, though not identical to the cor-
responding genomic predictions from the full model, were accurate. 

6. Conclusions 

The method presented in this study is ”equivalent” to the full APY 
GBLUP in terms of producing the same solutions and ”reduced” in terms 
of the number of equations. It made use of the conditional properties of 
APY (non-core animals to core animals) to discard equations for non- 
core animals from APY GBLUP. Then, breeding values of non-core ani-
mals were obtained from a simple back-solving procedure. Absorption of 
fixed effect equations into the random effect equations further reduced 
the number of equations to only the number of core animals. With that 
limited number of equations, any computer able to invert Gcc is capable 
of direct solving reduced APY GBLUP equations. The advantages of 
direct solving the equations are obtaining exact breeding values and 
reliabilities rather than approximates. 
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Appendix  

Reduced APY ssGBLUP 
A simple APY ssGBLUP is written as 

[
X′X X′Z
Z′X Z′Z + H− 1

APYλ

][
b̂
â

]

=

[
X′y
Z′y

]

,

where 
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H− 1
APY = A− 1 +

[
0 0
0 G− 1

APY − A− 1
22

]

.

Dividing genotyped animals into core and non-core groups: 

H− 1
APY = A− 1 +

⎡

⎢
⎢
⎣

0 0 0
0 Gcc

APY − Acc
22 Gcn

APY − Acn
22

0 Gnc
APY − Anc

22 M− 1
nn − Ann

22

⎤

⎥
⎥
⎦.

Matrix M− 1
nn − Ann

22 is not diagonal. Due to the pedigree information conditionalities, the above H− 1
APY cannot be reduced. Alternatively, APY can be 

applied to H rather than G. i.e., 

H− 1
APY =

⎡

⎢
⎢
⎣

H11 H1c H1n

Hcn Hcc Hcn

Hn1 Hnc M− 1
nn

⎤

⎥
⎥
⎦.

Grouping 1 and c into d, mii = hii − hidH− 1
dd hdi, where hii = gii, hid is the ith row of Hnd = [Hn1 Hnc], Hnc = Gnc, and 

H− 1
dd = A− 1

dd +

[
0 0
0 G− 1

cc − A− 1
cc

]

.

However, calculating Hn1 involves GA− 1
22 A21 and is not computationally justifiable. 
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