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Abstract

Background: Primates—including fossil species of apes and hominins—show variation in their degree of molar enamel
thickness, a trait long thought to reflect a diet of hard or tough foods. The early hominins demonstrated molar enamel
thickness of moderate to extreme degrees, which suggested to most researchers that they ate hard foods obtained on or
near the ground, such as nuts, seeds, tubers, and roots. We propose an alternative hypothesis—that the amount of
phytoliths in foods correlates with the evolution of thick molar enamel in primates, although this effect is constrained by a
species’ degree of folivory.

Methodology/Principal Findings: From a combination of dietary data and evidence for the levels of phytoliths in plant
families in the literature, we calculated the percentage of plant foods rich in phytoliths in the diets of twelve extant primates
with wide variation in their molar enamel thickness. Additional dietary data from the literature provided the percentage of
each primate’s diet made up of plants and of leaves. A statistical analysis of these variables showed that the amount of
abrasive silica phytoliths in the diets of our sample primates correlated positively with the thickness of their molar enamel,
constrained by the amount of leaves in their diet (R2 = 0.875; p,.0006).

Conclusions/Significance: The need to resist abrasion from phytoliths appears to be a key selective force behind the
evolution of thick molar enamel in primates. The extreme molar enamel thickness of the teeth of the East African hominin
Paranthropus boisei, long thought to suggest a diet comprising predominantly hard objects, instead appears to indicate a
diet with plants high in abrasive silica phytoliths.
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Introduction

Few dental traits have elicited more interest in the study of

human origins and evolution over the past several decades than

that of molar enamel thickness in primates. Variation in thickness

occurs not only in extant primates, but in Miocene apes and early

hominins as well, culminating in the thick enamel of our own

genus, Homo. Indeed, the observed trend toward thicker enamel is

currently considered one of the signature characteristics of

hominin evolution [1–6]. Early researchers suggested a correlation

between molar enamel thickness, open habitats, and terrestriality

[7,8]. Researchers proposed that hominins foraged for hard

objects like nuts, seeds, and underground storage organs on, in, or

near the ground of the open savanna [9,10]. As the hominin with

the thickest molar enamel, the Plio-Pleistocene East African

hominin Paranthropus boisei has been considered the ultimate

consumer of hard objects [11].

In 1981 these ideas were systematically addressed for the first

time in a study measuring and comparing molar enamel thickness

in 37 species of Old World monkeys [12]. Kay demonstrated that

thick molar enamel did not correlate with terrestriality. He then

proposed that thick enamel was an adaptation for eating hard

foods, since primates with thick enamel frequently eat nuts and

seeds. While the evidence supporting a correlation between hard

foods and molar enamel thickness was largely anecdotal, Kay’s

hard object feeding hypothesis became widely accepted [13–16].

The strongest study testing the hard object feeding hypothesis

came in 2008, when researchers recognized that in the twenty-five

years since Kay’s paper, little hard data had been gathered on the

topic [17]. Chimpanzees, with thin enamel, and orangutans, with

thicker enamel, were selected for study. Samples of food consumed

by both species were collected in situ in their respective habitats

and tested for hardness by a portable field testing unit. Vogel and

colleagues’ results showed that orangutans consume harder foods

overall than do chimpanzees. More recently, researchers have

proposed a dual functional purpose for thick enamel. For primates

whose diets contain significant amounts of ‘‘small hard objects’’—

defined as between 5–50 mm in size, such as phytoliths and grit—

thick enamel is proposed to resist abrasion. For primates whose

diets contain significant amounts of ‘‘large hard objects’’—defined
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as those between 2–20 mm in size, such as hard seeds and nuts—

thick enamel is proposed to assist in preventing catastrophic

fracture of the tooth [18,19]. The authors put forward evidence

from models as well as calculations based on fracture and

deformation mechanics to support this hypothesis. Their model

can be tested further by greatly expanding the existing database on

hardness values for foods consumed by a large number of primate

species. With sufficient data the possible role of molar enamel

thickness in the consumption of large hard objects should become

more evident. It is important for us to note that our paper does not

test the hard object feeding hypothesis directly, nor does it show

that thick molar enamel cannot be related to hard object feeding.

With respect to hominins, results from recent dental microwear

studies of the East African species Australopithecus anamensis,

Australopithecus afarensis, and Paranthropus boisei showed patterns of

microwear that were not consistent with the heavily scratched and

pitted features associated with hard object feeding [6,20–22]. For

P. boisei, Ungar and colleagues [6] reported only light microwear

dominated by fine scratches in seven specimens. Microwear

texture analysis of two additional molar specimens of P. boisei

recently reported from Olduvai Gorge, are also consistent with the

lack of features associated with hard object feeding [23]. These

results, for a hominin with the thickest molar enamel known, have

cast serious doubts on the hard object hypothesis.

These authors make several suggestions to account for the lack

of microwear features consistent with hard or even tough foods in

the diet of P. boisei. They suggest that P. boisei may have had a

novel diet unlike that of any primate known to date. Another

possibility is that P. boisei may have consumed tough foods, but its

very flat teeth may not have constrained its masticatory

movements in an analogous way to the teeth of primates with

high shearing crests. This may have resulted in a grinding motion

that produced microwear not typical for mastication of tough

foods [22]. Cerling and colleagues (2011) reference this same

‘‘dentognathic morphology’’ hypothesis as a possible explanation

for the differences between the microwear features of P. boisei,

whose diet they propose consisted predominantly of grasses, and

those of the extant baboon Theropithecus gelada, a known grazer

[24]. Finally, the authors suggest that the dental microwear

examined in the small sample of P. boisei molars [now n = 9] may

reflect its primary diet, but not its fallback diet, one that may have

consisted of harder or tougher food items infrequently consumed

during times of resource stress, requiring specialized morphologies

[6]. Others argue that after examination of dental microwear from

twenty-nine [now n = 31] molar specimens of non-Homo East

African hominins has failed to show any evidence for hard object

feeding, it is perhaps more parsimonious to conclude that they

simply did not consume hard objects [25].

An alternative to the hard object feeding hypothesis
We propose an alternative hypothesis to that of hard object

feeding—that the amount of phytoliths in foods correlates with the

evolution of thick molar enamel, although this effect is constrained

by a species’ degree of folivory. The thickness of molar enamel

should correlate positively with the amount of phytolith-abundant

foods in the diet, but negatively with the percentage of leaves in

the diet. The constraint exerted by the percentage of leaves in

primate diets is proposed to result from the molar morphology best

adapted to prepare leaves for digestion. Leaf-eating primates

(folivores) have molars characterized by developed shearing crests,

while predominantly fruit-eating species (frugivores) have low,

more rounded (bunodont) molar cusps [26]. Folivores also have

thinner enamel than frugivores. The correlation among thinner

enamel, developed shearing crests and leaf-eating has been

attributed to the need for folivores to slice and shred leaves

efficiently [16]. Thin enamel more quickly exposes the softer

dentine at the cusp apices, resulting in more sharp-edged cusps

that maintain greater shearing ability even as the tooth wears [27].

Shredding leaves is important, as it is thought to assist in the

energetically costly digestion of their high cellulose content

[28,29].

Our hypothesis stems from our perception that the importance

of phytoliths in primates’ foods has been under-appreciated.

Phytoliths are microscopic mineralized bodies formed within and

between the cells of higher plants. Here the term specifically refers

to silica phytoliths formed when roots absorb soluble silica in

groundwater and transport it into the upper parts of plants [30].

Environmental factors cause some variation in phytolith produc-

tion, but the leading predictor of the rate of phytolith production

in plants is their taxonomic classification. Plants known for high

phytolith production accumulate silica in their tissues at high rates

wherever they are grown [31]. Deposition sites of phytoliths can

vary among plant parts: the leaf may contain a substantial amount

of phytoliths, for example, but few in the seed [32]. While leaves

are often the plant part in which phytoliths are most abundant

relative to the accumulation of silica phytoliths in that family, this is not to

say that leaves generally are very abundant in phytoliths [33,34].

The vast majority of dicotyledon families that produce leaves eaten

by folivorous primates are not abundant in phytoliths. A common

assumption has been that monocotyledons, which include the grass

family, are high producers of phytoliths, whereas dicotyledons

(eudicots) produce low levels of phytoliths. However, the

cumulative evidence from phytolith research shows that while

many monocotyledons are indeed high phytolith producers, other

monocotyledons produce low levels or none at all. Conversely, a

number of dicotyledon families produce substantial levels of

phytoliths [33].

While initial phytolith production studies focused predominant-

ly on the quantity of phytoliths found in leaves, more recent studies

of the past two decades have added considerable information on

the presence of phytoliths in the reproductive parts of both

nongrass monocotyledons and a range of dicotyledons [33,34].

Piperno conducted a study of the reproductive parts of 254 species

from over 50 plant families and found that a number of species

accumulate phytoliths in their reproductive structures, such as

fruits, seeds, and flowers. While these results were preliminary

(phytolith abundance was estimated rather than quantified and

sample sizes were small), they revealed a pattern of phytolith

production related to the abundance of phytoliths in leaves.

Species belonging to families found to accumulate abundant

phytoliths in their leaves also sometimes, but not always, produce

abundant phytoliths in their reproductive parts. Conversely,

species in families that do not accumulate abundant phytoliths

in their leaves tend not to produce phytoliths in their reproductive

structures [35]. Many plant families that produce foods often eaten

by primates were found to contain abundant phytoliths both in

their leaves and reproductive parts, such as the Arecaceae (palms),

Marantaceae, Musaceae, Boraginaceae, Burseraceae, Chrysoba-

lanaceae, Dilleniaceae, Moraceae, Ulmaceae, and Urticaceae

families [34,35].

The abrasiveness of silica phytoliths
Phytoliths are very hard small objects, although how hard has

recently become a matter of some debate. While there is some

evidence that dietary intake of particles softer than tooth enamel

can cause wear in teeth [36,37], most researchers attribute

abrasive dental wear to contact with materials as hard, or harder,

than tooth enamel. By this definition, three sources of dental
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abrasion have been identified: tooth enamel itself, in tooth-to-tooth

contact during mastication of soft or small foods; exogenous grit or

dust ingested from plants or soils; and silica phytoliths from plants

[16,38,39].

In 1959 Baker and colleagues conducted two types of hardness

tests on silica phytoliths and sheep tooth enamel. The Mohs

hardness test is a simple method of characterizing the relative (not

proportional) scratch resistance of various minerals through the

ability of a harder material to scratch a softer material, on a scale

of 1–10, with 1 representing the softest and 10 the hardest

material [40]. Baker and colleagues’ results for the Mohs

hardness test on sheep enamel gave a range of 4.5–5.0. A sample

of opal, the mineraloid equivalent of amorphous silicon dioxide as

a proxy for silica phytoliths, gave a Mohs value of 5.5–6.5 [41].

These values are in agreement with standard published Mohs

values for both tooth enamel (5) and amorphous silica (5.5–6.5)

[42].

The second hardness test measured the resistance of a material

to indentation under a given load using a diamond indenter. These

results were reported in the Knoop hardness scale (HK). The

sample of molar sheep tooth enamel gave Knoop values ranging

from 270–382, while silica phytoliths extracted from oats (Avena

spp.) gave Knoop values ranging from 590–610. On the basis of

these results, Baker and colleagues concluded that the chief agent

of wear in sheep tooth enamel was most probably the presence of

silica phytoliths in their diet. They observed abundant silica

phytoliths in sheep feces, as well as occasional exogenous particles

of quartz. They concluded that hard exogenous particles on the

grass or soil probably also contributed to tooth wear.

This 1959 study has served as the key reference supporting the

assertion in many later studies that silica phytoliths are principal

abrasive agents in dental wear due to their greater hardness than

tooth enamel [38,43–47]. A recent study by Sanson and colleagues

challenges these assertions. Although they did not conduct Mohs

hardness tests, they performed indentation hardness tests on both

sheep tooth enamel and silica phytoliths. Their results for sheep

enamel, converted to Knoop values from the Vickers hardness

scale (HV), ranged from 579–598, very similar to the values

obtained by Baker and colleagues [48]. On the other hand, their

indentation hardness values for silica phytoliths extracted from

four species of grasses, had a maximum Knoop value of 221, a

result significantly different from the range of 590–610 obtained

by Baker and colleagues. On the basis of these results, the authors

concluded that silica phytoliths are softer than tooth enamel. They

therefore questioned the role, if any, that silica phytoliths play in

tooth enamel abrasion and wear. A serious failing of the Sanson

and colleagues’ paper is that they did not test for the hardness of

any particles of exogenous dust or grit, particularly given that they

propose these particles as the chief, and perhaps sole, agents of

abrasive wear of tooth enamel. As the authors acknowledge,

additional hardness tests comparing silica phytoliths and mam-

malian tooth enamel are much needed to clarify this important

issue.

Despite the contrary evidence of Sanson and colleagues, there

are other lines of evidence suggesting that phytoliths are capable of

indenting tooth enamel. One comes from high resolution scanning

electron (SEM) photographs of silica phytoliths indenting tracks

directing into the tooth enamel of hominoids and humans. Thirty

phytoliths were found on four tooth specimens of the fossil

Pleistocene ape Gigantopithecus blacki and SEM photographs clearly

show phytoliths at the end of indented tracks in the enamel

surface. Lalueza Fox and Pérez-Pérez also photographed phyto-

liths embedded in the dental enamel of seven teeth from separate

individuals from a medieval Spanish site [49]. Two of these are

associated with striations on the enamel surface. In a later study,

Lalueza Fox and colleagues reported identifying phytoliths from

cereal plants on tooth enamel of specimens from a Late Roman

necropolis in Tarragona, Spain [38]. Again, SEM photographs

showed phytoliths associated with particular scratches on tooth

enamel.

An experimental study by Gűgel and colleagues simulated

masticatory contact between abrasives in food and tooth enamel.

They utilized a device consisting of two wheels that move past one

another in different directions, one fitted with twenty previously

unerupted, unworn human molar specimens, and the other sliding

a mushed sample of food laterally across the teeth [45]. Four

different samples of food mush were prepared, each containing

only one species of cereal grain. Prior to extraction of the

phytoliths from the plant material, the grains were hand washed

repeatedly in distilled water and weak hydrochloric acid to remove

all exogenous dust and grit. However, particles of mill stone were

introduced into the food during the milling process. The

abrasiveness of each cereal species was determined by the amount

of silica phytoliths each cereal contained, based on the extracted

dried silica residues obtained prior to milling. The degree of

abrasiveness of each cereal was found to correlate with loss of

tooth enamel, as determined by noncontact optical sensor

measurements of surface roughness and 3-D laser scans of tooth

enamel taken both before the device experiment (baseline), and

after 200,000 simulated chewing cycles. The researchers found

significant correlations as well between the number and size of

microwear pits on the molar specimens, and the species of cereal

in each food sample. Indeed, each tested cereal species was found

to cause a matching, diagnostic pattern of microwear pitting.

While wear caused by abrasive particles of exogenous grit must be

considered, it is difficult to understand how characteristic cereal-

specific pits could result from abrasion by grit, and not by cereal

phytoliths.

The grass family, Poaceae, produces particularly high levels of

phytoliths [50], and grazing ungulates show dental adaptations to

an abrasive diet in the form of tall-crowned (hypsodont) teeth, [51]

which add more enamel volume to resist abrasion from phytoliths

[52]. A quantification of silica phytoliths in East African vegetation

showed that grasses contained 4.95% percent dry matter (%DM)

of silica compared with 0.56–1.46% DM of silica in browse [53].

Analysis of large databases of dental microwear in ungulates

demonstrate significant differences in dental microwear scratch

sizes and densities between grass consumers and nongrass

consumers, with significantly greater scratch densities for grazers

[54,55]. While greater scratch density for grazers may indicate

larger amounts of grit or dust on ground vegetation in open

habitats, significant differences in scratch sizes between the two

groups is not a result consistent with exogenous grit as the chief or

sole abrasive agent.

While some tooth abrasion may be caused by the silica

contained in exogenous abrasives, especially in more open habitats

[52,56], there is evidence that phytoliths may be the principal

abrasive agents even in these environments. In a study of two

sympatric species of hyraxes, Walker and colleagues showed that

the teeth of the predominantly grazing hyrax (dry season diet, 57%

grass; wet season diet, 78% grass) demonstrated far greater wear,

especially during the wet season, than the browsing species that ate

predominantly leaves year round [57]. Fecal analysis showed

significantly greater abundance of phytoliths in pellets from the

grazing hyrax, while dust particles were found in equal amounts in

the feces of both species. The preponderance of evidence suggests

a crucial role of phytoliths in producing tooth wear.

Diet and the Evolution of Thick Enamel in Primates
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Methods

To test the hypothesis that the abundance of phytoliths and

proportion of leaves in the diet determine enamel thickness, we

selected twelve primates with known values for standardized molar

enamel thickness and whose proportional consumption of plant

food by species and/or family could be gleaned from the literature

(Table 1). The sample includes primates with a wide variation of

molar enamel thickness, including those with the thickest molar

enamel. Nevertheless, our sample lacks any representation of

anthropoids that are dedicated folivores. This omission is

unfortunate, but results from the absence of any published values

for relative enamel thickness (see below) for members of this group

for which we had the requisite dietary data. However, all three of

the sampled subspecies of gorilla show percentages of leaves

consumed ranging from 45.69 to 51.3, with a mean of 49.16.

These values are comparable to those observed in leaf-eating

anthropoids such as Alouatta palliata (43.5% [29]; 48% [58]; 53.7%

[59]; 51.5% [60]; Colobus badius (39.9% if leaf buds are not

counted, 54.4% if leaf buds are counted) [61]; Colobus satanas

(37.8%) [61]; Colobus guereza (52.75% mean for 2 groups) [62]; and

Presbytis thomas (48%) [63].

For each species in our sample we examined the literature for

detailed dietary information, including comprehensive food lists,

feeding behavior, plant parts eaten, percentage of the diet made up

of plants, and proportional percentages of each plant species or

family eaten. Wherever possible, we used multiple studies

representing different habitats within each primate’s range (see

Text S1, Table S1).

General levels of phytoliths present in each diet were

determined by scoring each plant species consumed according to

categories developed by Piperno in her comprehensive summary

of research on the levels of phytolith production in plant families

[33]. Piperno divided phytolith abundance into three general

categories: (1) often common to abundant; (2) often uncommon to

rare or absent; and (3) not observed. The highest category of

production, ‘‘often common to abundant,’’ is defined as a plant

family in which ‘‘a great many species…usually well over 50% of

the total studied, produce significant amounts of phytoliths, that

when expressed as a percentage of dry plant weight would

approach, equal, or be greater than the 2–5% values commonly

reported for grasses’’ (p. 22) [33]. The total percentage of a

primate’s diet made up of foods from plant families in the ‘‘often

common to abundant’’ category was calculated for each study. No

other category was scored as contributing to this total, even though

other families may have contained phytoliths. Nectar, even when

coming from a plant family rich in phytoliths, was not counted, as

it was judged to be swallowed rather than masticated. In a few

cases in her Tables 2.2, 2.3, and 2.4, Piperno [33] presented

quantified data indicating that a particular plant species, or plant

part, consumed by a primate in our sample is an exception to the

general category of phytolith production for the family (e.g., maize

kernels have fewer phytoliths than expected for Poaceae/

Graminae). In these cases, the scoring of phytolith abundance

for those items was adjusted accordingly. Nevertheless, such

precise data were available for relatively few plants. We should

note that a number of plant species in each dietary study could not

be scored due to lack of sufficient information regarding their

phytolith abundance (Table 1).

The following three variables were then calculated for each

dietary study: (1) Phytolith Load A; (2) Phytolith Load B; and (3) the

percentage of the total diet composed of leaves. Phytolith Load A

represents the sum of all observed feeding minutes or bouts spent by

a primate on each plant species belonging to a plant family

categorized as ‘‘often common to abundant in phytolith produc-

tion’’ (p. 22) [33], as a proportion of plant foods identified to the

family level in the diet. If a plant was not identified to the family

level, it could not be scored for phytolith abundance. While

Phytolith Load A is a key variable, it does not capture variation

regarding the proportion of diet made up of plant foods. Phytolith

Load B is therefore a separate variable that expresses that

proportion. It is calculated by multiplying Phytolith Load A by

the percentage of the total diet made up of plant foods. While most

primates in our sample had diets almost totally dominated by plants,

in which case their Phytolith Load A and Phytolith Load B values

are very similar, even identical in cases where 100% of the diet was

made up of plants, some had significant proportions of non-plant

Table 1. Dietary data and RETs.

Primate species
No. of
studies

RET
value

Phytolith
Load A (%)

Phytolith
Load B (%)

Leaves in
total diet (%)

Identified plants
in diet (%)

Plants not
scored1 (%)

Daubentonia
madagascariensis

2 21.68 71.83 49.13 0.0 69.8 0.0

Cebus apella 3 19.57 72.31 61.07 0.0 82.1 7.27

Lophocebus albigena 5 16.85 49.43 36.7 3.9 84.89 19.46

Papio cynocephalus 2 16.11 77.43 77.02 2.4 94.79 13.47

Pongo pygmaeus 4 15.33 49.25 40.32 15.65 63.95 26.28

Cebus capucinus 3 15.13 51.07 39.38 1.97 69.34 19.41

Pan paniscus 2 14.0 83.57 82.31 18.2 93.59 2.33

Cercocebus torquatus 2 12.89 40.59 38.11 5.74 96.97 19.19

Pan troglodytes 7 11.60 70.79 68.45 17.47 87.79 10.0

Hylobates lar 3 11.09 59.31 54.46 18.57 72.31 21.79

Gorilla spp. 3 9.66 49.3 47.08 49.16 87.79 25,51

Chiropotes satanas 3 9.54 33.26 32.05 1.72 96.77 47.68

Summary of the dietary variables and relative molar enamel thickness (RET) values, arranged in the order of the largest to smallest), for each primate species in the
sample.
1Percentage of plants in each primate species not categorized for phytolith abundance due to lack of sufficient information.
doi:10.1371/journal.pone.0028379.t001
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foods in their diets. The inclusion of both the Phytolith Load A and

Phytolith Load B variables allowed certain trends to be detected in

the statistical analysis that would not have been noted otherwise.

The final variable—percentage of leaves in the total diet—is self-

explanatory. Figure 1 illustrates the steps we took to convert the raw

data from a dietary study into the variables used in the statistical

analysis. The data from multiple study sites were averaged to obtain

the phytolith loads and leaf percentage for each species (Table 1).

Figure 1. Steps in development of variables from raw data obtained from one dietary study [53]. (The aye-aye is modified, with
permission, from an illustration by Stephen D. Nash). Panel A: Percentage of feeding time spent on each food consumed by Daubentonia
madagascariensis in direct observations taken from one dietary study. Panel B: The phytolith abundance of each of the plant foods is determined by
categories developed by Piperno [33], summarizing research of phytolith abundance in plants. Only the dietary percentage of plants categorized as
‘‘common to abundant’’ in phytoliths was totaled. In this study, the total percentage of feeding time spent on identified plant foods rich in phytoliths
is 46.8. Panel C: How the three variables in this study were obtained. The total percentage of identified foods rich in phytoliths, as shown in Panel B,
is 46.8. The percentage of the diet comprised of plants is 70.0. The percentage of identified plant foods is 69.8. Phytolith Load A is calculated as the
percentage of identified foods rich in phytoliths (46.8) divided by the percentage of identified plant foods (69.8), or 67.05%. Phytolith Load B is
calculated by multiplying Phytolith Load A by the percentage of the diet made of plants: 67.05670.0 = 46.94%. The third variable consists of leaves as
a percentage of the total diet.
doi:10.1371/journal.pone.0028379.g001
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Enamel thickness was gauged by published two-dimensional

‘‘relative enamel thickness’’ (RET) values [2], based on measure-

ments taken from thin sections through the tips of the mesial molar

cusps viewed under a scanning electron microscope (see Text S2).

Both physical 2-D sections and comparable 3-D virtual sections

using microcomputed tomography (mCT) and synchrotron

microtomography (SR-mCT) have been shown to provide

measurements of the thickness of enamel over the molar mesial

cusps that are in broad general agreement with one another across

species [64–66]. We selected 2-D physically sectioned RETs over

virtual 3-D RETs, as more of the former were available in the

literature for extant primates whose published dietary data also

met the specific requirements of our study. Some researchers

utilizing 3-D tomographic techniques criticize the 2-D physical

sectioning methodology for its inability to capture the distribution

of enamel over the entire crown, thereby placing exaggerated

importance on enamel thickness over the cusp apices [67].

However, the thickness of enamel over the cusps is of particular

interest to us, due to the role of folivory in our hypothesis.

Results

We used JMP 6.0.3 to calculate pair-wise correlations between

variables as well as a series of multiple regressions to predict RET from

the other variables. Pair-wise correlations showed that only percentage

of leaves eaten (%_leaves) correlated significantly with RET (r = 0.586,

p = 0.045). Phytolith load A (Phytolith_A) also showed a modest, but

non-significant association with RET (r = 0.467, p = 0.126). Values for

Phytolith_A and phytolith load B (Phytolith_B) were strongly

associated (r = 0.915, p,0.0001). Phytolith Load B showed a non-

significant association with RET (r = 0.1205, p = 0.7091) (Table S6). A

multiple regression to predict RET from %_leaves, Phytolith_A, and

Phytolith_B indicated that RET was highly predictable from these

variables (R2 = 0.875, p,0.0006) (Figure 2). In the model, both

measures of phytolith loads exerted stronger effects than the

percentage of leaves eaten (Table 2).

Analysis of trends in related species is problematic because closely

related taxa are not strictly independent data points due to their

shared evolutionary history [68]. To address this problem the data

were transformed into eleven phylogenetically independent contrasts

and later scaled by branch length, the square root of the time

separating the nodes [68,69]. Estimates from Perelman and

colleagues’ synthesis of primate phylogeny were used for branch

lengths [70]. Phylogenetic contrasts unscaled by branch length also

showed a strong relationship between RET and the dietary variables

(R2 = 0.764, p = 0.0134). Adjustment by branch length reduced the

strength of these relationships although the model remained significant

at p,0.05 (R2 = 0.661, p,0.0453). Branch length weights are

moderately correlated with contrasts in RET (r = 0.654, p = 0.0291),

but weakly correlated with contrasts in the dietary variables

(20.106#r#0.200) (Figure S1; Tables S2, S3, S4, S5, S6, S7, S8).

Discussion

Analysis of the data shows that RET appears to be strongly

related to phytoliths and, to an extent, also to percentage of leaves

eaten. This is not to say that many primates with thick enamel do

not also consume hard objects. Cebus apella is a known hard object

feeder, capable of fracturing even the hard fruits of the Astrocaryum

palm with its molars, as well as exploiting other palm parts such as

the tough tissues of palm pith and meristems [71]. A striking overlap

exists between primates who exploit palms and those with thick

molar enamel. All four extant primates with the highest known

molar RETs (see Table 1) exploit palm fruits: Daubentonia

madagascariensis [72]; Cebus apella [71]; Lophocebus albigena [73] and

Papio cynocephalus [74]. The correlation between palm fruit

consumption and thick molar enamel has commonly been

attributed to the hardness of these fruits [12]. However, all

members of the palm family (Arecaceae) also contain abundant

phytoliths in all parts of the plant [33]. The seeds of Hyphaene

petersiana—a palm genus exploited by Cercocebus galeritus and Papio

cynocephalus [75]—contained 147 million phytoliths per gram of acid

Figure 2. Predicted versus actual values of relative enamel thickness (RET) based on the raw data for three dietary variables.
doi:10.1371/journal.pone.0028379.g002
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insoluble fraction (AIF) [76]. Quantification of phytoliths in 16

species of trees, sedges, grasses, and palms, showed that some palm

parts produced the highest levels of phytoliths. By contrast, the

leaves of species of Typha, a genus of wetland monocotyledonous

reeds, had the lowest levels, at 100,000 phytoliths/g AIF [76].

On the basis of its feeding behavior, however, Daubentonia

madagascariensis (the aye-aye) does not masticate hard palm nuts, or

hard objects generally. It gnaws into the exocarp of unripe fruits of

the coconut palm with its ever-growing incisors and scoops out the

soft, yoghurt-like nutmeat with the claw of its elongated third digit

[72]. The aye-aye’s diet does contain seeds with hard exocarps,

principally Canarium spp. and Terminalia catappa. However, it uses

its incisors to breach these seed coats, extracting bits of the

endosperm, again with its elongated digit [77,78]. Aye-ayes scrape

the bark of Intsia spp. trees with their incisors to eat the underlying

cambial layer, a food described as ‘‘tender’’ (p. 40) [72]. The

remaining principal components of the aye-aye’s diet are insect

larvae and nectar. It is difficult to see what hard objects in its diet

could account for its molar RET value, the highest known for any

extant primate [13]. The aye-aye also hones its ever-growing

incisors to a sharp edge by repeatedly manipulating an abrasive

plant part—commonly a slim palm tree or bamboo stem—in the

gap between the incisors and the molars [72,79]. The epidermis of

bamboo and palm is very high in phytoliths [33]. As would be

predicted by our model, D. madagascariensis consumes plant foods

high in phytoliths, eats no leaves, and its honing behavior utilizes

plant stems high in phytoliths.

In our statistical analysis, 87.5% of variation in the RET values

of our sample primates is accounted for by the relationship of these

values to phytolith abundance and percentage of leaves in the diet.

This accords well with the work of Macho & Spears, who found

that thick enamel consistently reduced the tensile stresses to which

teeth are subjected—and therefore enhanced the strength of teeth

under a given load—by about 15% [80]. They concluded that

additional factor(s) must be the principal driver(s) of the evolution

of thick enamel, and suggested abrasion resistance could be such a

factor. Our results showed that the need to resist abrasion by silica-

rich phytoliths appears to be a key selective factor in the evolution

of molar enamel thickness in primates. Factors that reduce dental

wear have been correlated with increased dietary quality and

longevity in mammals, resulting in higher reproductive success

[81–83].

These results suggest several additional directions for future

research. One is the expansion of the sample to include more

extant primates. The present sample size was limited primarily by

the number of relative enamel thickness values available in the

literature. Additional RET studies would allow for a larger sample.

Field research is also needed to determine more precise phytolith

abundance values for the principal plants and plant parts in

primate diets. To control for the confounding variable of the

percentage of leaves in the diet, the precise phytolith abundance of

the diets of two primates that do not eat leaves but that have

molars with contrasting enamel thickness values, should be

compared. Our hypothesis predicts that the thin enameled

primate’s diet will be significantly lower in phytoliths than that

of the thick enameled primate.

Implications for the diet of Paranthropus boisei
These results also have important implications for the diets of

some early hominins, as the australopithecines are characterized

by intermediate to hyper-thick molar enamel [84,85]. We suggest

that australopithecine diets consisted of plant foods high in

phytoliths, few if any leaves, and included a substantial component

(.50% if no leaves were consumed) of non-plant foods. The

equation generated by our model—RET = 7.4146+0.4515 (Phy-

to_A)20.3579(Phyto_B)20.0816(%_leaves)61.5920 (see Table 2)—

indicates that in thick enameled primates, Phytolith Load B must be

substantially lower than Phytolith Load A, a pattern that correlates

with a decreased percentage of plant foods in the diet. In the model,

increased consumption of leaves corresponds to lower values of

RET. Extension of the model to P. boisei predicts a feeding ecology

markedly different from any primate in the sample. There is always

a danger of extrapolating beyond the range of a regression model,

but an unusual diet may make sense because P. boisei also has

substantially thicker enamel than any of the species in the

comparative sample.

When these dietary inferences are combined with the unusually

high C4 signatures found in several early hominin diets—evidence

that they consumed substantial amounts of plants utilizing the C4

photosynthetic pathway such as grasses and sedges, and/or

animals that consumed such plants—additional aspects of their

diets can be deduced [86–88]. This particularly applies to

Paranthropus boisei, which has both the thickest molar enamel

(RET = 34.91) [84] and the highest C4 dietary component of any

hominin sampled so far. Two recent carbon isotope studies of the

molar enamel of P. boisei showed a mean C4 dietary component of

77% and 79% respectively [89,24]. Both papers suggest that C4

wetland sedges could account for the C4 signature, although

Cerling and colleagues propose that grass blades comprised the

more likely principal plant food for P. boisei, largely due to the

greater availability of this food resource in the environment [24].

While both sedges and grasses are abundant in phytoliths, we

propose that C4 sedges are more likely candidates for the

predominant portion of P. boisei’s plant diet. The flat, low-crowned

molar morphology of P. boisei evinces the very opposite

morphology of tall-crowned cheek teeth with the sharp, shearing

edges formed along ridges of complex infolded occlusal enamel

that are required to shred leaves of grass, and that characterize all

grazers, including the sole higher primate grazer, Theropithecus

gelada [51,90]. P. boisei’s dentition is consistent with the

consumption of plant pith (i.e., parenchymatous ground tissue

found in the center of stems) and rhizomes. Pith and roots are

eaten by both species of the genus Pan, whose teeth are rounded

and low-crowned (bunodont), similar to P. boisei [91,92], and by

bunodont, thick enameled primates such as Cebus apella and

Lophocebus albigena [93,94]. The exploitation of the rhizomes of

wetland sedges is compatible with the hypothesis put forward by a

number of researchers that early hominin diets, including that of

P. boisei, may have contained a substantial portion of plant

underground storage organs (USOs) [10,95,96].

As leaves are a valuable source of protein for frugivorous

primates [58,97], P. boisei may have increased its intake of protein

rich animal foods to compensate for the absence of leaves in its

Table 2. Multiple regressions on raw data.

Term Estimate Std Error t Ratio Prob.|t|

Intercept 7.414629 1.986977 3.73 0.0058

Phytolith load A 0.4515076 0.081589 5.53 0.0006

Phytolith load B 20.357871 0.078073 24.58 0.0018

% leaves eaten 20.081616 0.037286 22.19 0.0600

R2 = 0.8715, p,0.0006.
RET = 7.4146+0.4515 (Phyto_A)20.3579(Phyto_B)20.0816(%_leaves)61.5920.
Parameter Estimates.
doi:10.1371/journal.pone.0028379.t002
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diet, and to subsidize its significant consumption of fibrous, low

protein, low fat plant foods [98]. Protein and fat contents for

papyrus shows that the edible parts of this plant are poor sources of

these nutrients. The protein content of the rhizome of C. papyrus is

1.0 grams per 100 grams of wet weight; and the base of the stem

(another part of the plant eaten by humans [99]) contains 0.5 g of

protein per 100 grams of wet weight [89]. The pith of 1 meter of

culm was found to contain 1.7% crude protein by percentage of

dry matter, the lowest protein levels found in nutritional analyses

of six species of pith commonly consumed by Pan troglodytes [100].

With respect to fat content, the fat per gram of the culm is 0.2 per

100 grams of wet weight, and the fat per gram of the rhizome is

1.0 [89]. Both the pith and rhizome of papyrus, however, do

supply substantial amounts of energy in the form of carbohydrates

[89].

We suggest that the diet of P. boisei was very abrasive, but not as

abrasive as T. gelada’s. Our reasoning is based on two lines of

evidence. First, while the sedge family produces a significant

number of phytoliths, grasses produce substantially more [33,76].

The amount of silica in the pith of Cyperus papyrus was quantified as

2.26 percent of dry matter (%DM), while the leaf blade of Cynodon

dactylon, a C4 savanna grass found throughout Africa, contained

3.08%DM [101]. The silica content of African grass leaves has

been measured at levels as high as 18.03%DM [53]. Second, in

our view T. gelada exhibits two adaptations for resisting abrasive

foods. It has ‘‘intermediate/thick’’ enamel on the occlusal surface

of its molars, as classified by the enamel thickness scoring system of

Martin [2,102], with a 2-D RET value of 15.51, slightly higher

than that of Pongo pygmaeus at 15.33 [13]. In addition, T. gelada has

tall-crowned teeth [103,104]. Hypsodont or tall-crowned teeth are

an adaptation found in grazing herbivores, in which greater

enamel volume is added by raising the height of the crown. This

adaptation is most often attributed to the need to resist abrasion

from the high levels of silica phytoliths in grasses, and from grit

(which also contains silica) found in ground forage in open habitats

[51,52,105]. The tall-crowned teeth of grazers, including those of

T. gelada, are accompanied by complex molar occlusal surfaces

characterized by sharp ridges or crests of enamel that shred blades

of grass in a way analogous to shearing crests in leaf-eating

folivores [51].

The cranial morphology of Paranthropus boisei features a flat,

vertical facial profile (orthognathic), laterally flaring zygomatic

bones, pronounced postorbital constriction, and a robust, thick

mandibular corpus. These features are commonly ascribed to a

suite of hyper-masticatory traits necessary for the fracturing of

hard objects [106]. The skull morphology of the fossil Madagascar

lemur Hadropithecus stenognathus is strikingly similar to that of P.

boisei’s and, like P. boisei, H. stenognathus has long been classified as a

probable hard object feeder [107]. New research on the

biomechanics of this lemur, using digitally reconstructed models

of the skull, showed that H. stenognathus appears not to have been

mechanically adapted for the fracture of hard objects. Rather, a

diet comprising large amounts of fibrous plant foods requiring a

great deal of mastication is indicated [108]. The mechanics of

repetitive chewing of tough foods such as plant pith and rhizomes,

as we propose for P. boisei, is consistent with these findings.

In order to maintain a C4 signature as high as those shown by

recent studies, P. boisei would have had to live in an ecosystem that

provided abundant edible C4 foods year round. Apart from C4

grasses, edible C4 plant foods are rare in tropical Africa, and are

found primarily in wetlands [109]. Most habitats in which edible C4

plants would be present, would also contain much greater numbers

of edible C3 plants. The exception, as Peters & Vogel note, would be

‘‘a vast marsh, dominated by papyrus’’ (p. 225) [109]. Papyrus is a

C4 giant wetland sedge whose pith is known to be consumed by

chimpanzees [100], and whose pith and rhizomes are consumed by

present-day humans [110]. Papyrus is often found in vast,

monotypic swamps that dominate the permanent freshwater

wetlands of present-day Africa in geomorphological and hydrolog-

ical contexts often associated with the paleoenvironments of P. boisei

[111–113]. We therefore suggest that the plant component of P.

boisei’s diet comprised significant amounts of the pith and possibly

rhizomes of wetland sedges, and other aquatic plants with C4 or C4-

like signatures [114] that grew in a freshwater tropical marsh

dominated by papyrus. The recently published oxygen isotope

values for P. boisei are consistent with a highly water-dependent

animal [24,115]. Many animals in a C4-plant-dominated environ-

ment would also likely have had significant C4 signatures, and

would have contributed to P. boisei’s total C4 dietary component.
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