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Abstract: A phase-sensitive optical time domain reflectometer (Φ-OTDR) can be used for 

pipeline security. However, the sensing distance (less than 20 km) of traditional Φ-OTDR is 

too short for the needs of typical oil and gas pipeline monitoring applications (30–50 km). 

A simple structure Φ-OTDR system utilizing long pulse, balanced amplified detector and 

heterodyne detection is proposed in this paper and the sensing range is thereby increased to 

60 km. Through analyzing the sensing principle of Φ-OTDR, a novel locating strategy is 

proposed to maintain the locating accuracy at a few meters when a long pulse (5 µs) is used. 

The increased pulse width deteriorates the time series of each sensing point seriously. In order 

to eliminate the deterioration, a data processing technique combining wavelet and empirical 

mode decomposition is applied in this system. The experiment results show that the sensing 

distance can be increased to 60 km and the locating accuracy is maintained at 6.8 m.  

Keywords: vibration analysis; scattering measurements; optical time domain reflectometry 

 

1. Introduction 

Distributed optical fiber sensors are those sensors which simultaneously utilize fiber as transmission 

medium and sensing medium [1]. Because the phase of the transmission light is sensitive to perturbations, 

OPEN ACCESS



Sensors 2015, 15 21958 

 

the phase-sensitive optical time domain reflectometer (Φ-OTDR) is used for vibration detection 

application, such as pipeline intrusion and perimeter security. 

Oil pipeline monitoring is a tough task because of its long distance and real-time requirements. The 

early Φ-OTDR-based distributed optical fiber sensing systems can meet the real-time requirement, but 

their application is limited in the sensing distance, which is only a few kilometers [2]. Valuable works 

have been carried out to improve the sensing distance. In 2005, Juarez utilized a continuous-wave Er3+ doped 

fiber Fabry-Perot laser and an electro-optic modulator (EOM) to improve the sensing range to 12 km [3]. 

However, this is still not enough for applications like oil pipeline intrusion detection. Limited by the 

nonlinear effects in the fiber, it is impossible to increase the peak power of the probe pulses that are 

launched into the fiber. Then the distributed optical fiber amplifier based on Raman pump or Brillioun 

pump was applied in Φ-OTDR [4–6] to amplify the probe light along the fiber and the sensing distance 

could be increased to 60 km, and even up to 175 km, but the distributed optical fiber amplifier is 

complex, expensive, and not suitable for oil pipeline monitoring. 

Usually the oil pipeline monitoring demands 30–50 km distance, a few meters locating accuracy and 

low cost. In this paper, we present a long-distance Φ-OTDR sensing system with 60 km sensing distance, 

6.8 m locating accuracy, simple structure and low cost, which is suitable for pipeline security monitoring. 

In this system, we use long probe pulses, an Erbium-doped Optical Fiber Amplifier (EDFA), balanced 

detector and heterodyne detection to improve the sensing distance. In order to maintain the locating 

accuracy, we analyze the process of Φ-OTDR trace generation and propose a novel location strategy. 

The Φ-OTDR with long probe pulse is also fully discussed in this paper and a suitable signal processing 

technique which combines wavelet and empirical mode decomposition (EMD) is applied to help figure 

out the perturbation location. 

2. Experiment Setup and Principle Analysis 

2.1. Experiment Setup 

The structure of the Φ-OTDR system and its principle are shown in Figure 1. A fiber laser with  

ultra-narrow line-width (<3 kHz) is used as the optical source. The laser light is divided into two parts, 

10% of the light is used as the local light and the other 90% is modulated into pulses with a repetition 

cycle T and pulse width Tp by an acoustic optical modulator (AOM). Then the probe pulses are amplified 

by an EDFA (amplifier spontaneous emission is filtered by FBG1) and the peak power of probe pulses 

reaches 200 mW. The probe pulse propagates through the fiber and the Rayleigh backscattering light 

brings the vibration information along the fiber. The backscattering light from the sensing fiber then 

meets the local light at optical coupler 2 (OC2) and produces a beat light, whose amplitude contains the 

information of the backscattering light. Through controlling the local light power, high signal-to-noise 

ratio (SNR) could be achieved [7]. Then the balanced detector receives the beat light through a 

differential way, which can suppress the background light and improves the SNR by 3 dB [7]. Through 

an amplitude demodulation circuit, the useful information can be demodulated and then acquired by a 

data acquisition card (DAQ).  
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Figure 1. Experimental set up and principle. 

2.2. Parameter Determination  

The probe pulse we used in the system is a long pulse compared with the traditional pulse width, 

which is usually a few hundred nanoseconds. In the OTDR system, the detected Rayleigh backscattering 

power can be described as [8]: 

0

1
( ) exp( 2 )

2bs s pP z P r T zγ α ν α = − 
   

(1)

where 0P  is the peak power of probe pulse at head end, γ  is the fraction of capture coefficient of 

detector, sα  is the Rayleigh scattering coefficient, ν  is the light speed in fiber, pT  is the pulse width and 

α  is the attenuation coefficient. 

In order to observe the light at the detector, the light power should be stronger than the detector’s 

noise. When the signal to noise ratio (SNR) reaches to 1, the input light power is defined as the noise 

equivalent power (NEP): 

1|SNRNEP P ==  (2)

Only when the input light power is higher than NEP, the output signal can be recognized. So the 

maximum sensing distance is: 
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Equation (3) shows that the sensing distance is proportional to the nature log of the pulse width. When 

the pulse width is improved by K = 13.9 dB, the sensing distance will be increased by 46 km 

( 0.15dB/ kmα =  ). However, the maximum pulse width is limited by the fiber nonlinear effects, especially 

the stimulated Brillouin scattering (SBS). The SBS threshold power of continue light is:  
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where effL  is the effective interaction length, effA  is the effective interaction area of fiber, Bg  is the peak 

Brillouin gain, BνΔ is the line width of Brillouin scattering and 
PνΔ is the line-width of probe light. When 

the probe light line-width is much narrower than the Brillouin line-width (
P Bν νΔ << Δ ), the SBS threshold 

power is inversely proportional to the nature log of the total fiber length. When L is 30 km, the _sbs cP  is 

2.6 mW. When L is increased to 60 km, the 
_sbs cP  is declined to 2.06 mW. Because the SBS threshold 

power is an averaging power, the SBS threshold power of pulse light is:  

_ _sbs p sbs c pP P T T=  (6)

The maximum input peak power ( 0P ) shouldn’t be higher than the SBS threshold power of pulse light 

(
_sbs pP ). So we can get the duty cycle of probe pulse is limited by 0_P sbs cT T P P<  and 2T L ν> . Assuming 

_sbs cP  is 2 mW and 0P  is 200 mW, the maximum duty cycle of probe pulse is 1/100.  

In order to detect the vibration with more details, the repetition time is designed close to its minimum 

value ( 2L ν ). We set the repetition time at 1 ms when the sensing distance is 60 km. Because the 

maximum pulse width is one percent of the repetition time, the pulse width we used should be less than 

10 µs. We choose a 5 µs pulse width (13.9 dB increase compared with 200 ns). With the analysis above, 

the sensing distance can be increased by 46 km if we choose suitable parameters. The complete 

determined parameters are shown in Table 1. 

Table 1. Parameter Determination. 

L (km) P0 (mW) T (ms) Tp (µs) ∆Z (km) 

60 200 1 5 46 

2.3. Locating Principle and Strategy 

The Rayleigh backscattering trace is formed from multiple scatters. The wave function of the 

backscattered signal at the input end of fiber can be expressed as [9]: 

1

( ) ( ) ( ) exp( ) ( )
N

k
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−= − −  (7)

where t  is the time, ( )sE t  is the wave function of the input light wave, N  is the total number of scatters 

in the sensing fiber, pT  is the pulse width, α  is the fiber attenuation constant, v  is the velocity of light 

in fiber and kτ  as well as ( )kα τ  are the delay and amplitude of the kth scatterer, respectively.  

The relationship between the delay kτ  and the distance kz  from the input end to the kth scatterer is 

2k kz vτ = . The function ( )prect t T  is: 
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Thus the optical power is given by: 
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where  represents the average operation, I  is the optical power of the input light wave, and 

( )c i jγ τ τ−  is the coherent function of laser. The term 1( )p t  denotes the sum of the optical power of the 

backscattered light wave, which is not our interest. The term 2( )p t  denotes the interference among 

different scatterers, which results in the jagged appearance of Rayleigh traces and is our interest. 
Assume the vibration appears at mz , the corresponding scatterer delay is 2m mz vτ = , the optical 

phase change is mφ  and other parameters won’t be changed by the vibration. Then the difference between 

Rayleigh backscatter trace at 1t  without the vibration and at 2t  with the vibration can be expressed as: 

{
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According to Equation (10), the non-zero time of 2 ( )p tΔ  is 0 ( ) 1m pt Tτ≤ − ≤ . Simplifying the 

equation we can obtain that the non-zero time is m m pt Tτ τ≤ ≤ +  and the corresponding distance is 

2m m pz z z vT≤ ≤ + . This result means the vibration at mz  will cause a response segment at 

[ , 2]m m pz z vT+ . According to Equation (10), the amplitude of light intensity change, 2( )p tΔ , will first 

increase and then decrease, and the shape of the light intensity change is symmetrical. The simulation 

result of the Rayleigh backscattering light intensity change trace is shown in Figure 2. When a vibration 

appears at the vibration point, it leads to a light intensity change within the vibration segment, whose 

length is proportional to the pulse width. Besides, the light intensity change within the vibration segment 

has a shape which has low sides and high center. Under a noisy condition, the boundary of the response 

segment might be submerged in noise. Instead, we use the center of the segment to figure out the accurate 

location, which is expressed as: 

4
p

cent

T v
z z= −  (11)

where centz  is the center of the response segment. In order to describe the locating ability of the  

Equation (11), we use the locating repeatability and locating consistency to define the locating accuracy. 

The locating repeatability is defined by the maximum location error when the vibration appears at the 
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same place. And the locating consistency is defined by the maximum location error when the vibration 

appears at different places. These tests will be shown in Section 3. 

 

Figure 2. The impact of vibration to the Rayleigh backscattering trace and the relationship 

between the vibration point and the vibration segment. 

3. Experimental Results 

3.1. Time Series under Long Pulse and Signal Processing 

The data picked up from each Rayleigh backscattering trace with the same time delay will form the 

time series of the corresponding sensing point. With increasing pulse width, the coherent Rayleigh back 

scattering light becomes more sensitive to phase changes, and the fluctuation are more severe. Figure 3 

shows the time series under pulse widths ranging from 200 ns to 5000 ns in a quiet environment.  

 

Figure 3. Time series in quiet environment under different pulse widths: (a) 200 ns pulse 

width; (b) 1500 ns pulse width; (c) 3500 ns pulse width; (d) 5000 ns pulse width. 
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The time series fluctuate seriously when the pulse width is longer than 200 ns. Because every tiny 

perturbation within the pulse duration will lead to a fluctuation in the backscattering coherent light, the 

longer the pulse length is, the easier it is for the time series to be influenced. Thus traditional averaging 

methods are no longer suitable for the long pulse circumstance. A data processing technique combining 

wavelet and EMD is proposed to handle it.  
The fluctuation is severer when the long pulse is used. It contains low frequencies and is easily 

influenced by the environmental state. If the fluctuation remains, the locating program will give false 

locations. In order to avoid false location feedback, we use EMD to decompose the time series into a 

collection of intrinsic mode functions. The decomposition is expressed as Equation (12). ic  is the ith 

intrinsic mode function (IMF) of original signal, which represents the local characteristic signal at 

different time scales of the original signal, and 
nΓ  is the residual error, which represents the global trend 

of the original signal. Through setting a suitable stopping threshold of EMD process, the fluctuation is 

preserved in the residual part (
nΓ ). Then we can remove the fluctuation and recompose the time series 

by summating the intrinsic mode functions ( ic ) [10]: 

1

( )
n

i n
i

X t c
=

= + Γ
 

(12)

The main noise of detector is the shot noise, which can be expressed as: 
1 22( )n d s bI Se i i i M B = + +   

(13)

where S is a coefficient based on the detector type (for a photovoltaic device S = 4), e  is the electron 

charge, di  is the dark current of the detector, bi  is the current of the background light, si  is the current 

of the signal light, M is the detector gain and B is the frequency band of the detector [11]. The shot noise 

comes from the background light, signal light and the electronic noise. With the increase of the pulse 

width, the amplitude of shot noise becomes larger, and it changes with the time series’ fluctuation. When 

the amplitude of the backscattering light is at a coherent strength state, the amplitude of shot noise is 

also at a high level. This makes the shot noise difficult to filter by traditional averaging methods or by 

traditional filtering methods. In order to decrease the time-dependent shot noise, the wavelet denoising 

method is applied. The wavelet decomposition is expressed as Equation (14):  

1

( )
n

i n
i

X t D A
=

= +
 

(14)

iD  is the wavelet reconstruction coefficient of high frequency component obtained by the wavelet 

decomposition of the ith layer and nA  is the reconstruction wavelet coefficient of low frequency 

component of the nth layer. Through wavelet decomposition, the time series are decomposed into 

different frequency bands. Then the filter threshold will be set according to the shot noise level in each 

band, respectively [12]. Through removing the shot noise component in each frequency band respectively, 

the shot noise can be decreased significantly.  

The whole data process is described as follows: firstly, the time series are sent to a wavelet denoising 

program to reduce the short noise. Secondly, the denoised time series are sent to an EMD program to 

remove the fluctuation. Then we use the peak-to-average ratio (PAR) of the time series to test whether 

there is a perturbation or not. As the PAR is dimensionless, we can ignore the optical attenuation. If there 

is a perturbation, the program will figure out the center of the vibration segment and then calculate the 
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location according to Equation (11). Figure 4 shows the performance of the data processing technique under 

5000 ns pulse width conditions. Figure 4a shows the time series before processing and the red rectangle 

shows the duration of the intrusion. With the serious fluctuation and shot noise, it is hard to find out the 

vibration segment. Without suitable data processing, it will also cause false alarms. Figure 4b shows the 

data after processing. We can see that the shot noise and data fluctuation are reduced greatly both in the 

background part (0.5 s–0.9 s) and in the vibration part (0.2 s–0.5 s). Besides, the details of vibration are 

kept, which is used for the following data analysis, like event recognition.  

 

Figure 4. Time series before (a) and after (b) processing. The red rectangle shows the 

vibration duration (under 5000 ns pulse width). 

3.2. Spatial Trace and Vibration Segment 

In order to show the characteristic of the spatial traces under long pulse conditions, 50 after-averaged 

traces, which come from 100 original Rayleigh backscattering traces with a moving average number 50, 

are illustrated in Figure 5a. The pulse width is 3000 ns and the repeat rate of the pulse is 5 kHz. An 

artificial knock acts as the vibration source at about 970 m. As the 100 original traces only take up 0.02 s, 

the background fluctuation is weak and only wavelet denoising is applied. We can observe a clear 

amplitude change from about 970 m to 1270 m, corresponding to the artificial knock at 970 m under a 

3000 ns pulse width. The blue solid line in Figure 5b is the difference between each trace with an interval 

number 10. There are two valleys between 970 m and 1270 m. This is due to the destructive interference 

problem [13], which leads to certain places being insensitive to vibration.  

When the phase part ( )s i mω τ τ−  in Equation (10) is ( 1,2,3...)k kπ = , the sensor will be insensitive and 

the light intensity change will be small. When the phase part is 2( 1,2,3...)k kπ π+ = , the sensor will 

be sensitive and the light intensity change will be large. In order to figure out the vibration segment, the 

envelope fitting is applied, which is the red circular line in Figure 5b. The fitted envelope curve shows 

low-sides and a high-middle shape, which matches Figure 2. Through a threshold method, the vibration 

segment can be figured out. 
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Figure 5. (a) Fifty after-averaged traces superimposed with amplitude change from 970 m 

to 1270 m. (b) Differential trace (the blue solid line) and its fitted envelope curve (the red 

circular line). 

3.3. Repeatability Tests under Different Pulse Widths 

A piezoelectric transducer (PZT) tube is set at 970 m to act as the vibration source and a 400 Hz 

sinusoidal wave from a signal generator is used to drive the PZT tube. The sample frequency is 50 MHz, 

corresponding to 2 m spatial resolution. Different pulse widths ranging from 200 ns to 5 µs are applied 

and then a program calculates the location automatically. In order to figure out the vibration segment 

accurately, the time series of every sample point is transformed to frequency domain, and obvious value 

can be found at 400 Hz place. Figure 6 shows the data under 200 ns, 1500 ns, 3500 ns and 5000 ns pulse 

width conditions and the start and end points of the vibration segment can be figured out through a 

threshold method. Table 2 shows the results under different pulse widths and Figure 7 shows their 

relationship. The average location is 970.8 m, which is used as the true location, and the maximum error 

is 6.8 m, which appears under the 5000 ns pulse width. 

 

Figure 6. Frequency and space relationship under different pulse widths. (a) 200 ns pulse 

width; (b) 1500 ns pulse width; (c) 3500 ns pulse width; (d) 5000 ns pulse width. 
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Figure 7. Locating results under different pulse widths. 

Table 2. Locating results under different pulse widths. 

Pulse Width (ns) Start Point (m) End Point (m) Location (m) 

200 970 994 972 
300 970 1010 975 
400 972 1010 971 
500 968 1016 967 
600 970 1032 971 
700 970 1044 972 
800 970 1054 972 
900 972 1072 977 

1000 970 1074 972 
1100 972 1080 971 
1200 968 1094 971 
1300 976 1106 976 
1400 974 1112 973 
1500 970 1120 970 
1600 970 1128 969 
1700 970 1142 971 
1800 970 1150 970 
1900 968 1152 965 
2000 972 1168 970 
2500 972 1222 972 
3000 972 1274 973 
3500 970 1314 967 
4000 972 1372 972 
4500 970 1416 968 
5000 970 1458 964 
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3.4. Repeatability Tests under Constant Pulse Width 

In order to test the repeatability of the system, we repeat the test in Section 3.3 at the same point  

30 times under 5000 ns pulse width and 50 MHz sample frequency. The results are shown in Figure 8. 

We use the average location from Section 3.3 as the true location. The maximum error then is 6.8 m and 

the standard error is 2.2 m. 

 

Figure 8. Locating results under 5000 ns pulse width. 

3.5. Different Perturbation Points under Long Pulse Conditions 

In order to test the locating consistency of the system, a test of perturbations at different places labeled 

from 0 m to 35 m is carried out. Here, because it is hard to obtain the accurate absolute distance on the 

fiber, we use the relative distance as the true value. The test results are also relative distances obtained 

by subtracting the location of the 0 m test point. With a 50 MHz sample frequency, the distance between 

each sample point is 2 m. Hence, the system can response a different perturbation with a 2 m interval 

theoretically. Figure 9 shows the average locating results of each perturbation point and the maximum 

error is 5 m, where the applied pulse width is 5 µs. Combined with the tests in Sections 3.3 and 3.4, the 

locating accuracy of the system is 6.8 m.  

 

Figure 9. Average locating result under different perturbation points (the black line is the 

locating result and the red line is the reference line). 
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Figure 10. Back scattering traces and their details under 5000 ns (a) and 200 ns (b) pulse width. 

3.6. Tests of 60 km Sensing Distance 

The test system is shown in Figure 1. We connect three fiber coils of 12, 24 and 24 km together to 

get a 60 km test fiber. The pulse width is 5000 ns and repetition time is 1 ms. The EDFA before the 

detector is used to compensate the loss of fiber connectors. The balanced detector is used to enhance the 

SNR. Figure 10a shows the backscattering trace after demodulation. The start of the trace is about 0.11 ms 

and the end of the trace is about 0.71 ms. The length of the trace is 6 ms, corresponding to 60 km in 

fiber. Figure 10b is the trace of 200 ns pulse for comparison. The insert figures in Figure 10 are the 

details at 60 km place. From Figure 10, we can see the 5000 ns trace still has about 25 mV intensity at 

60 km and the background noise is only about 5 mV. Usually, the signal with SNR > 2 dB can be useful. 

Thus the signal quality is enough for the location program. In the other aspect, the 200 ns trace only 

shows an end reflection at 60 km and the Rayleigh backscattering light is submerged in the noise. 

4. Discussion 

The system is developed for oil and gas pipeline monitoring. Usually, the average distance between 

two transfer stations is 30–50 km and the main perturbation is human intrusion, such as digging.  

The tests above show that our system can meet these requests.  

Compared with the ones utilizing a distributed Brillouin amplifier or a distributed Raman amplifier, 

our system is easier to achieve, less costly and more reliable. Besides, the system doesn’t need an outdoor 

relaying section, which is also an advantage for the long distance pipeline monitoring. 
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The former pipeline monitoring system used in the field is the one based on two Mach-Zehnder 

interferometers [14]. It has a sensing distance of 50 km and a locating accuracy of a hundred meters. 

Compared with that, our system has obvious superiority in locating accuracy and a similar sensing 

distance. What’s more, our system also has capacity to monitor multiple disturbances with long intervals 

at the same time. 

In some cases, the vibration source may be strong, such as a bomb explosion, and a section of fiber 

will be influenced at the same time. If so, the vibration section in the result curve will be longer than a 

conventional one. For example, if the probe pulse length is 200 m and the fibers from 30.0 km to 30.5 km 

are influenced by a bomb explosion, the vibration section in the result curve will be from 30.0 km to 

30.7 km. Thus, if the vibration section is much longer than the pulse length, we may find that there is a 

strong vibration and the start of the vibration section will show the place of the strong vibration event. 

5. Conclusions 

In this paper, we demonstrate a long distance Φ-OTDR with high locating accuracy and simple 

structure, which is quite suitable for pipeline monitoring. We analyze the model under long pulse 

conditions, propose a novel locating strategy and find suitable data processing techniques. Finally, long 

pulse, heterodyne detection, a receiving end EDFA, balanced amplified detector and data processing 

technique combining wavelet and EMD are utilized to ensure the signal SNR and locating accuracy over 

a 60 km fiber. The tests show that the locating accuracy of the system is 6.8 m. 
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