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Abstract – Direct replication studies follow an original experiment’s methods as closely as possible. They provide 

information about the reliability and validity of an original study’s findings. The present paper asks what 

comparative cognition should expect if its studies were directly replicated, and how researchers can use this 

information to improve the reliability of future research. Because published effect sizes are likely overestimated, 

comparative cognition researchers should not expect findings with p-values just below the significance level to 

replicate consistently. Nevertheless, there are several statistical and design features that can help researchers identify 

reliable research. However, researchers should not simply aim for maximum replicability when planning studies; 

comparative cognition faces strong replicability-validity and replicability-resource trade-offs. Next, the paper argues 

that it may not even be possible to perform truly direct replication studies in comparative cognition because of: 1) a 

lack of access to the species of interest; 2) real differences in animal behavior across sites; and 3) sample size 

constraints producing very uncertain statistical estimates, meaning that it will often not be possible to detect 

statistical differences between original and replication studies. These three reasons suggest that many claims in the 

comparative cognition literature are practically unfalsifiable, and this presents a challenge for cumulative science in 

comparative cognition. To address this challenge, comparative cognition can begin to formally assess the 

replicability of its findings, improve its statistical thinking and explore new infrastructures that can help to form a 

field that can create and combine the data necessary to understand how cognition evolves.   
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 Comparative cognition is a broad field which investigates how animals acquire, process and use 

information (Beran et al., 2014; Shettleworth, 2009). Within the field there are several different 

approaches to what cognition is and how best to study it (Bayne et al., 2019; Boyle, 2019; Chittka et al., 

2012; Eaton et al., 2018; Heyes, 2019; Zentall, 2018). Nevertheless, most comparative cognition research 

shares the goal of understanding how cognition evolves by assessing the similarities and differences in 

cognition across a wide range of species (MacLean et al., 2014; ManyPrimates et al., 2019a, b). 

Increasingly, its findings are being applied to wider issues such as conservation and animal welfare 

(Greggor et al., 2014; Nawroth et al., 2019).      

 Despite this great diversity, comparative cognition has yet to have much of an investigation into 

the reliability of its findings. This is surprising because across many scientific disciplines there is great 

concern about the reliability and reproducibility of research findings (Baker, 2016). In psychology and 

related fields, large-scale attempts to replicate published research have only produced significant results 

around 60% of the time (Camerer et al., 2016, 2018; Ebersole et al., 2016; Klein et al., 2018; Open 
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Science Collaboration, 2015; Zwaan et al., 2018). And in fields similar to comparative cognition, some 

established effects have not consistently replicated, such as the blocking effect in animal learning (Maes 

et al., 2016) and non-verbal studies in infant theory of mind (Poulin-Dubois et al., 2018). However, we 

currently do not know how generalizable these results are to comparative cognition. This is further 

complicated as comparative cognition is a very heterogeneous field. Some areas of comparative cognition 

do bear the hallmarks of science that has proven difficult to reproduce, namely small sample sizes, noisy 

measurements and unlikely hypotheses (Forstmeier et al., 2017), whereas other areas may be less affected 

by low replicability rates due to using research designs which typically show higher replicability, such as 

within-subjects designs in which there are many trials for each animal tested (Smith & Little, 2018).  

In light of this, the present paper focuses on two questions. First, what should comparative 

cognition from direct replication studies? And second, how can we use this information to understand and 

develop comparative cognition as a science? To address these questions, we will apply arguments that 

have been made across fields in response to their replication crises or “credibility revolutions” (Gelman & 

Geurts, 2017; Vazire, 2018). While the paper focuses on what comparative cognition should expect from 

replication studies, and how it can use this knowledge to improve in the future, the arguments can also be 

applied retrospectively to assess the evidential value of previously published findings. This is important 

as the established scientific system can select for unreliable and misleading research (Lazebnik, 2018; 

Smaldino & McElreath, 2016), yet scientific self-corretion does not happen as often as the textbook 

definition implies (Ioannidis, 2012; Rohrer et al., 2018). 

Section 1 of this paper examines statistical cues to replicability, and specifically ask what can be 

gained from looking at p-values and effect sizes in published findings. Section 2 then asks whether the 

different research designs employed across comparative cognition may lead to systematic differences in 

replicability. Next, Section 3 makes the case that single direct replication studies will be unable to falsify 

many claims in comparative cognition, even if they are false. It then discusses the difficulties that 

comparative cognition will face when performing and interpreting the results of replication studies. 

Finally, Section 4 takes a more positive stance by highlighting steps comparative cognition can take to 

calibrate its expectations about replicability and improve the replicability of its own research. 

Section 1 – p-values, Effect Sizes and Direct Replications 

Some cues about a result’s replicability can be found in statistical reports, in the reported p-

values, effect sizes and confidence intervals. However, the statistics presented in published reports are 

unlikely to provide an accurate estimate of an effect size because of a publication bias favoring positive 

results. If papers are selected for publication based on a significance criterion such as p < .05, then it is 

more likely that studies overestimating effect sizes will be published than studies that underestimate the 

effects (Cumming, 2008; Fiedler & Prager, 2018; Gelman, 2018b; Hedges, 1984; Lane & Dunlap, 1978; 

Piper et al., 2019; Vasishth et al., 2018). In cases where many low powered studies are performed, as we 

might expect in comparative cognition, effect sizes can be overestimated upwards of 100%, and the 

likelihood of an exact replication study producing a significant effect in the same direction as the original 

study can be low, as our later simulation studies will show. But first, to illustrate this descriptively, we 

now discuss three hypothetical scenarios of a direct replication study, in which the original study 

estimated the unknown true effect size either exactly, underestimated it or overestimated it. These direct 

replication studies have the same sample size as the original study and sample from the same population.  

 

Scenario 1 – Original Study Estimated the Real Effect Size Exactly.  

 

If an original study estimated the real effect size for that design exactly, then the likelihood of the 

replication study to return a positive result is the power of the statistical test to detect this effect size. 

Therefore, if the original study returned a positive result that was just statistically significant, such as p = 

.049, then the likelihood of an exact replication study returning a positive result is approximately 50%; 

like tossing a coin (Piper et al., 2019). This is because, 50% of the time the replication study will 
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overestimate the effect size, resulting in p < .049, whereas 50% of the time it will underestimate the effect 

size, resulting in p > .049, and this is non-significant with an alpha of .05. However, as the p-value of the 

original study decreases, then ceteris paribus, the chances of a positive replication result increase.  

 

Scenario 2 – Original Study Underestimated the Real Effect Size   

 

If the original study underestimated the real effect size, then it becomes more likely that a direct 

replication study of equal sample size will return a positive result as the replication study will exceed that 

effect size over 50% of the time. In the example of a just significant result, p = .049, in the original study, 

the likelihood of a positive direct replication with the same sample size is now greater than 50%.  
 

Scenario 3 – Original Study Overestimated the Real Effect Size  
  

However, the most likely scenario is that the original study will have overestimated the real effect 

size, particularly for studies that produced p-values just below the alpha level. This scenario is most likely 

for two reasons. First, as publications are selected based on a cut-off point, studies that overestimate 

effect sizes are more likely to be published than studies which underestimate effect sizes (Hedges, 1984). 

For example, if exactly estimating the “true” effect size would have yielded a p-value of .06 in a design, 

then only samples overestimating the effect size would be published. Hence, in direct replication studies, 

the replication p-value would regress to the mean, .06, and the original study would have less than a 50% 

chance of a positive direct replication with the same sample size. Second, the overestimation of published 

effect sizes is further exacerbated if research practices that produce more significant results are used, 

which appears relatively common (Fraser et al., 2018; John et al., 2012; Simmons et al., 2011). Hence, the 

default expectation when directly replicating a study with a p-value in the range of .01 < p < .05 is that 

there is a good possibility that a direct replication study with the same sample size will not produce a 

statistically significant result in the same direction as the original study, even if there is a real underlying 

effect.  

Section 1.1 – Simulation Study 

Another way to view these ideas is through simulation studies, and to this end we simulated a 

very simple model of comparative cognition research (for details and code see the Appendix). First, we 

simulated 40,000 studies, comprising of four sets of 10,000 studies with a power of 80%, 50%, 20% and 

5% (i.e., false positive results only in the 5% group) to detect a known difference between two groups of 

10 animals. The groups were compared using a one-tailed two-sample t-test and results with p < .05 were 

termed significant and “published.” The results of these hypothetical studies are displayed in Table 1, 

along with a comparison of the specified and “published” effect sizes. 

 
Table 1 

The Results of 40,000 Simulated Comparative Cognition Studies by Power.  

Power Proportion Published 

 Unstandardized Effect Size 

 
All Samples Published Mean overestimation in “published” findings 

80 0.796  5.77 6.53 13% 

50 0.494  3.82 5.56 45% 

20 0.205  1.89 4.88 158% 

5 0.053  0.007 4.45 64486% 

Note. The proportion published represents the proportion of studies producing p < .05, and the unstandardized effect sizes are the 

mean differences between the groups. 
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In total, 15,471 of the 40,000 simulated studies produced significant results, with approximately 

half of these from the 80% powered designs (Table 1). However, even when running studies with 80% 

power, the average effect size was inflated as only the significant studies were published. As the power of 

the tests decreased, the degree of inflation increased. Next, we derived the expected proportion of direct 

replication studies that would return a significant result if all of the 15,471 published studies from the 

simulation were replicated exactly. Again, these exact replications had equal sample size to the original 

studies, and the results are broken down across different ranges of the published p-values in Table 2. The 

overall expected replication rate of this group of research, conducted with a quarter of studies having 

80%, 50%, 20% and 5% power was 0.60.  

 
Table 2 

The Mathematically Derived Probability of a Successful Replication Attempt of an Original Study Randomly Selected from a 

Given Range of p-values from the 15,471 "Published" Simulation Studies. 

p-value original study p ≤ 0.01 0.01 < p ≤ 0.02 0.02 < p ≤ 0.03 0.03 < p ≤ 0.04 0.04 < p ≤ 0.05 

Probability of successful replication 0.67 0.57 0.52 0.50 0.48 

 

These results show that the expected replication rate of published research from this model can be 

close to 0.5, or even below 0.5, for just significant results. Notably, these results are in the absence of any 

false positive inflating research practices (Fraser et al., 2018; John et al., 2012; Simmons et al., 2011); 

they are solely the consequence of only publishing research with p < .05 and performing at least some 

research with relatively low power. However, this simulation does not accurately characterize the field of 

comparative cognition: Not all comparative cognition research is performed with 80%, 50%, 20% or 5% 

power, or using two-sample t-tests comparing two groups of 10 animals. As such the numbers should not 

be taken as a literal estimate of the replicability of comparative cognition research; rather the simulation 

study shows that the research and publication methods used in comparative cognition do lead to effect 

sizes being over-estimated and a replication success likely to be closer to 50% than 100% for just 

significant published findings. Conversely, experiments reporting very low p-values, with associated 

effect sizes with confidence intervals that are narrow and far from 0 can be good indicators of a reliable 

statistical effect. Finally, one scenario in which these conclusions might be inappropriate is when 

considering research using designs and test combinations in which the p-value distribution is not uniform 

or near uniform under the null hypothesis, such as with a binomial test and a small number of 

observations. 

 

Conclusion 1: Comparative cognition should not expect just significant initial findings to replicate 

consistently, and published effect sizes are likely to be overestimated because of a publication bias 

towards positive results. 

 

  Section 2 now focuses on whether the differences in research methods across comparative 

cognition, that were not considered in the simulation study, can allow us to estimate the replicability of 

research in comparative cognition. 

Section 2 – Replications Across Comparative Cognition: What can we Expect? 

 

Section 1 showed that, all else being equal, studies in comparative cognition with lower p-values 

are more likely to replicate than studies with higher p-values, although the p-value is only a weak 

predictor of replication success (Cumming, 2008). However, this begs the question: which features of 
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comparative cognition research lead to effect sizes large enough to be reliably detected, and thus produce 

low p-values and successful replication studies?1 

One of the areas in which comparative cognition research methods differ markedly is in the 

number of trials they use, for example experiments using touchscreens and short time periods can use 

hundreds or thousands of trials (e.g., Beran, 2006) whereas experiments using more constrained behaviors 

such as food caching usually use considerably fewer trials (e.g., Ostojić et al., 2017). Given that sample 

sizes are often small in comparative cognition, many “effects” might be too small to detect on a single 

trial, as the errors associated with measuring these behaviors on a single trial are large. Having many 

trials in within-subjects designs can address this issue by enabling more precise estimation and 

consequently smaller p-values and more replicable results to manifest. All things being equal, within-

subject designs are more powerful to detect effects than between-subject designs with similar resources, 

and studies with more trials will be more likely to detect effects than those with few trials. This tendency 

of within-subject design with many trials to be more replicable is visible in the human replication 

literature (Open Science Collaboration, 2015; Zwaan et al., 2018). Many reliable findings in comparative 

cognition will have harnessed this ability to perform repeated tests on individual animals that are often 

highly trained on the task, although whether a certain number of trials are “sufficient” or not will depend 

on particular features of the task at hand, notably the size of the effect and the measurement error. 

  

Conclusion 2: Studies using within-subject designs with many trials and less-noisy behaviors are more 

likely to produce replicable results than studies with similar resources that use between-subjects designs, 

within-subject designs with few trials or more-noisy behaviors. 

 

To illustrate this point in an applied setting, we performed another simulation based on a real 

experiment. Emery and Bird (2010) reported that seven rooks looked longer at two images of physically 

impossible events than two images of physically possible events. On average, the rooks looked for around 

1000ms at each image, and approximately 200ms longer at the physically impossible events than the 

physically possible ones (data from Emery & Bird, 2010: Experiment 1).  

To investigate the role of trial number and effect size on the replicability of significant results in 

experiments like this, we simulated data for a series of hypothetical experiments, in which seven rooks 

were given either 1, 5 or 100 trials in each condition, and where the average effect size was either 200 ms, 

100 ms or 50 ms. We decided that 200 ms is likely quite a large effect, as it was detected in a sample size 

of 7 from two trials per condition, and so  also included two smaller effects in the simulation. For each 

design we ran 10,000 simulations to estimate the power of the design and test combination. In the data 

simulation, we included a fixed main effect of condition, random intercepts and slopes for each 

individual, and a small random intercept for the stimuli (See Appendix). Figure 1 plots an example of the 

data from one of these experiments, and the power for each design is presented under each graph.  

Figure 1 shows that both increasing trial number and studying larger effects can lead to large 

increases in power, even with a constant sample size. When there was only 1 trial per condition (leftmost 

panels), the power of the design to detect the whole range of effect sizes was low. Notably, this design 

was prone to producing results in the opposite direction to the true effect (see Gelman & Carlin, 2014). 

For the smallest effect size, 50 ms, 32% of single trial experiments led to effects estimated in the opposite 

direction to the true effect, and 13% of the significant results were in the opposite direction to the true 

effect. This design was completely insensitive to individual differences in the effect, and the significant 

results from these studies, if published, would lead to large overestimations of the true effect size and 

exact replication studies often would return non-Signiant results, at the rate of 1 – power (as per the 

results of the simulation in Section 1). One striking aspect of Figure 1 is just how misleading 

visualizations of single trial studies can be. As the uncertainty is never measured for each bird in each  

                                                           
1 While this paper focuses on statistical significance, as this is the framework that most research is performed in, the quality of 

statistical and scientific thinking of researchers might be improved by moving beyond significance and focusing on accepting and 

communicating uncertainty (Gelman, 2017; Gelman & Carlin, 2017; McShane & Gal, 2016; McShane et al., 2019).  
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Figure 1. Graphs showing example data from nine different designs of a looking-time experiment in rooks. These designs vary on 

the underlying effect size (50 ms, 100 ms, 200 ms), and the number of trials per condition (1, 5, 100). N = 7 for all designs. The 

power of each design is printed below each graph and was calculated by simulating 10,000 studies in each design and calculating 

the proportion of p-values less than .05. 

condition, we cannot include this on the visualization, resulting in a plot that looks clean but gives us little 

information about the uncertainty of our estimates. 

The benefits of increasing trial number are visible when there were 5 trials per condition (middle 

panels). At the largest effect size, the design would nearly always detect the main effect of condition. 

However, this design is still quite insensitive to the real individual differences we included in the 

simulation, and exact replication studies would still only return significant results around 50% of the time 

for the 100 ms effect. This contrasts with the 100 trials per condition design (rightmost panels), which, in 

addition to detecting even the smallest effect very reliably, was also sensitive to many of the individual 

differences between animals within each study simulation. Studies using such designs in comparative 

cognition can produce, and in many areas already do produce, very replicable results. 

However, this benefit of running many trials across participants may not be accessible for some 

areas of comparative cognition. This is the case when theoretical constraints restrict experimental designs 

to using a single test trial, in order to avoid experimental confounds. For example, in some memory tests 

the animals are tested in extinction, to prevent cues from the to-be-remembered items directly influencing 

their searching or responding behavior (Adams & Dickinson, 1981; Clayton & Dickinson, 1998). Such 

studies cannot use many test trials in within-subjects designs because this would invalidate the test itself; 

for example, the animals could learn that no food is provided in the test trials and therefore that there is no 

value in searching for the food. Hence, for some hypotheses in comparative cognition, the optimal 
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methodological design may not be one that produces highly replicable results, if replicability is measured 

by statistical significance only. Nevertheless, all else being equal, studies employing many trials will 

produce more replicable results than studies using few trials. However, this does not mean that most 

many-trial studies and no few-trial studies will replicate successfully. Further, even if this were true, it 

does not mean that many trial studies are always “better”. As ever, there are trade-offs between likely 

replicability, validity and resource investment. Many experiments that use many trials, such as reaction 

time studies in humans, can have participants perform hundreds of trials in minutes, whereas in many 

animal studies this is not possible. The reliability-resource trade-off is just that: a trade-off, and 

researchers should seek to evaluate and improve reliability with this in mind.  

 

Conclusion 3: Some areas of comparative cognition face replicability/validity and replicability/resource 

trade-offs. 

Section 2.1 – Replications Across Comparative Cognition: Small-N, Many Replicates 

One research area that consistently uses many trials to produce replicable results is small-N 

research. Small-N research capitalises on the benefits of using many trials on each individual subject, yet 

rather than seek to estimate population parameters they treat the individual as the replication unit (Little & 

Smith, 2018; Smith & Little, 2018). Each individual is its own experiment, and experiments are thus 

replicated by using more than one individual. Smith and Little (2018) explain this approach:  

 

We argue that some of the most robust, valuable, and enduring findings in psychology were 

obtained, not using statistical inference on large samples, but using small-N designs in which a 

large number of observations are made on a relatively small number of experimental participants. 

We argue that, if psychology is to be a mature quantitative science, its primary theoretical aim 

should be to investigate systematic, functional relationships as they are manifested at the 

individual participant level. The estimation of population parameters, while not unimportant, is 

arguably of secondary concern and should probably be investigated using more refined 

techniques for characterizing individual differences than the blunt instrument of simple averaging 

that conventional statistical methods provide. (p. 2084) 

 

The small-N approach is found across psychological research, for example in Ebbinghaus’ 

forgetting curve and many psychophysical experiments. And interesting hypotheses are often tested at the 

individual level in comparative cognition - think of studies of number comprehension in Alex the parrot 

(Pepperberg & Gordon, 2005), of fast mapping with Chaser the dog (Kaminski et al., 2004) and of 

working memory in Ai and Ayumu (Inoue & Matsuzawa, 2007). Individual-level data are also widely 

used in comparative psychology. Learning curves, for example, are usually most informative when 

plotted at the individual level, and this is part of the reason why Skinner rejected null-hypothesis 

significance testing (Gigerenzer et al., 2004; Skinner, 1956). Small-N research and individual-level data 

are particularly informative when we can be confident that the results will generalize to at least some 

more individuals. For example, understanding the learning mechanisms of Lab Rat 377 logically will 

inform us about rat learning more generally, and hence a small-N approach might be appropriate here. 

However, while small-N research has a formal approach to inference at the individual level (Smith & 

Little, 2018), there is no formal method of generalizability. In comparative cognition, when strong 

evidence is found at the individual level, the question “will it replicate?” asks “how will it generalize to 

similar individuals who have had similar experiences?” In contrast, group-level comparative cognition 

research, the question “will it replicate?” may be more synonymous to “is it a reliable statistical effect in 

the given population?” Notably, the choice between a small-N and “large-N” design is not dichotomous. 

Large-N studies in comparative cognition can, and do, capitalize on the benefits of small-N designs. 

Large-N research can make both individual level and population level inferences without large costs. In 

performing high powered tests at the individual level, this also increases the power for any population 

level inferences made.  
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Therefore, the small-N vs large-N distinction may be somewhat misleading when discussing 

replicability and could instead be replaced by many vs. few trials. It is misleading to say that the 

researchers’ hypothesis level (individual vs population) changes something general about the replicability 

of the data they produce. But importantly, if comparative cognition researchers wish to make statistical 

inferences at the population level in order to address evolutionary questions, then group level analyses are 

necessary. However, the accuracy of these population inferences will be limited by the representativeness 

animals studied with respect to the target population or species in general. If we cannot be confident that 

the samples we use are representative of the populations we wish to make inferences about, then we 

should be cautious in how we use their data in evolutionary models. Moreover, it is certainly possible to 

qualitatively address evolutionary questions with individual level data, particularly when individual level 

data offer convincing existence proof of what certain species are capable of. For example, when Megan 

passed the trap tube task (Povinelli, 2003), this was overwhelming evidence that chimpanzees are in 

theory capable of learning how to pass this particular form of the task. Note, the evidence is only 

overwhelming because of how inconsistent Megan’s behavior was with her not avoiding the trap, i.e., a p-

value of .000000000135 (80/100 correct trials, with a null hypothesis as 50/100).  

 

Conclusion 4: Different research approaches have different meanings by replicability (see Lazic et al., 

2018). While these approaches answer different questions, comparative cognition can benefit from both 

approaches, and can often employ both simultaneously.  

Section 2.2 – The Data are not Everything 

Thus far, this paper has considered statistical and design features of replicability. However, there 

is much more information about replicability than can be gleaned from reported statistics alone. When 

Daryl Bem provided evidence for a physically impossible skill, precognition, across nine studies, 

statistical markers were part of the subsequent refutation (Francis, 2012; Schimmack, 2012; 

Wagenmakers et al., 2011). However, it was the sheer implausibility of the effect that provided the 

clearest indicator that it would not replicate (Chambers, 2017). This ability of researchers to detect 

findings that are likely unreliable extends from the physically impossible to more plausible research 

results too. Research using forecasting and prediction markets has shown that groups of experts, on 

average, can be surprisingly accurate at identifying research that will not replicate (Dreber et al., 2015; 

Forsell et al., 2018) – and there is no reason why this should be any different in comparative cognition. If 

your belief in something is very low, then a just-significant result should not affect this belief greatly. 

This is not to say that researchers should be insensitive to evidence, but they should critically assess 

whether there is sufficient evidence that a given statistical effect is accurate, and whether this statistical 

effect is strong evidence of the authors’ claims. In particular, extra-ordinary claims require extra-ordinary 

evidence, and this will usually not be provided by single studies with just-significant results, or even a set 

of such studies.  

 

Conclusion 5: The data aren’t the full story – aggregated expert beliefs about replicability might be 

accurate, whatever they are based on. 

Section 3 – Difficulty in Performing and Interpreting Replication Studies in Comparative Cognition 

 

Given that many research findings might be unreliable in comparative cognition, a next step 

could be to call for a suite of systematic, direct replications studies to identify findings that are robust, 

which would enable researchers to perform meaningful meta-analyses on rich datasets with low bias. 

While we believe there are strong reasons to support such claims (e.g., see Beran, 2018; Stevens, 2017, 

although neither make such a strong claim), there are many valid barriers to performing and interpreting 

replication studies in comparative cognition that should be considered. These barriers mean that it may 

not be possible to perform truly direct replication studies in comparative cognition, because:  
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• Restricted resources mean that it is not possible to directly replicate some findings 

• Statistical estimates from both original and replication studies will be too noisy to be able to 

detect differences between them with confidence 

• There will be real and often large differences between animal behavior in original and replication 

studies 

Section 3.1 - Restricted Resources Mean that It is not Possible to Directly Replicate Some Findings 
 

As comparative cognition is a small field represented by many different research questions in 

many different species (Beran et al., 2014; Shettleworth, 2009), when a laboratory stops working on a 

certain species the likelihood of direct replication studies of these results in the near future approaches 

zero. For example, our Comparative Cognition laboratory in Cambridge performed a series of studies on 

cache-protection strategies in California scrub-jays (Aphelocoma californica) which it no longer houses2. 

Consequently, the possibility of these studies being directly replicated with California scrub-jays in this 

lab in the coming years is very low. Multi-lab collaborations could help, for example there is one 

laboratory that currently publishes on caching in California scrub jays (Clary et al., 2019), however such 

collaborations will be difficult to implement without a change in incentive structure and attitude towards 

replication studies (ManyPrimates et al., 2019b; Nosek et al., 2012). 

Furthermore, the small and specialist structure of comparative cognition means that often it will 

be very difficult for people outside of a few laboratories to probe the reliability of findings through direct 

replication studies. Comparative cognition researchers engaging in empirical work should recognize this 

privileged position, invite dissenters to collaborate with them, and embrace the challenge to produce 

reliable research findings – as often others will not be able to help. Yet while researchers should take on 

the responsibility for estimating and justifying the reliability and accuracy of their own results, this also 

requires endorsement from, and collaboration with, other researchers, funding bodies and editors and 

journals.  

 

Conclusion 6: Often, direct replications will not be immediately possible due to a lack of resources and 

researchers should explore collaborative methods to estimate the reliability of their research. 

 

Section 3.2 Statistical Estimates from Both Original and Replication Studies will be Too Noisy to be 

Able to Detect Differences Between Them with Confidence 
 

In order to detect a difference between the results of an original study and its direct replication, 

only looking at the significance of the results is not appropriate. Considering statistically significant 

replications to be the only “successful” replication studies, and all others to be “unsuccessful”, is 

misleading (Gelman, 2018a) as it dichotomizes replication attempts as either successful (p < .05), or 

unsuccessful (p > .05). While a replication study with p = .049 would be considered a success, a 

replication study with p = .051 would be considered a failure. If the sample size of a replication study is 

not much larger than the original study, it is not surprising that many replication studies will not yield 

significant results, even if there is a real effect being studied (see Section 1). In fact, more liberal, and 

perhaps more appropriate, interpretations of large-scale replication studies results provide higher 

estimates of replicability than those first publicized. For example, it is often reported that the Open 

Science Collaboration (2015) produced only 35 positive replication results from 97 positive original 

findings. However, Etz and Vandekerckhove (2016) used a Bayesian analysis to suggest that “75% of 

[replication] studies gave qualitatively similar results [to the original studies]”, but also noted that “the 

majority of the studies (64%) did not provide strong evidence for either the null or the alternative 

hypothesis in either the original or the replication” (p. 1).  Future replication projects in human 

                                                           
2 This was because the existing birds died and it has not been possible to obtain new birds for various practical reasons. 
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psychology have attempted to address this concern by swamping the sample sizes of the original studies 

(e.g., Camerer et al., 2018). However, as Morey and Lakens note (2016), “sample sizes are so small in 

psychology that often one cannot detect even large differences between studies. High-powered 

replications cannot answer this problem, because the power to find differences in results from a previous 

study is limited by the sample size in the original study” (p. 1). When this concern is translated to 

comparative cognition, and its constraints on sample sizes, it is clear that producing replication studies 

that can assess the veracity of the original claim will be very challenging.  

 

Conclusion 7: Comparative cognition might not have the resources to produce highly-powered and 

informative replication studies of many claims. 

 

Section 3.3 - There Will be Real and Often Large Differences Between Animal Behavior in Original 

and Replication Studies 
 

Assuming that some form of direct replication studies are performed, interpreting their results 

becomes even more difficult when the many reasons why a comparative cognition replication study might 

fail to produce significant results are considered, even if the original effect was “true”. One example is 

that animal behavior often has large seasonal and developmental variation. For example, a food-caching 

experiment would fail to replicate outside of caching seasons, and a memory experiment performed on 

young animals might not replicate when the same animals are tested in their old age. Such failures to 

replicate could be due either to the original results being a false positive, or a well-motivated alternative 

hypothesis, like the memory performance of animals decreasing with age. Furthermore, the experiences of 

animals, particularly those that are highly trained on certain apparatuses, can prevent results from being 

easily replicable. This can be either in principle (e.g., some zoos might not be able to house the same 

equipment of laboratories), or in practice (e.g., the same equipment might have different effects in 

different laboratories).    

 

Conclusion 8: Temporal and developmental variation in animal behavior will influence the likelihood of 

replication success. 

  

Needless to say, when direct replication studies using a new sample from the same population can 

be performed, these will be an effective method of assessing the validity of an effect. However, in 

comparative cognition, it is not feasible to assume new samples can be repeatedly taken from the same 

population – in fact it is often unclear what “populations” we are studying in general. Rather, different 

groups of animals of the same species from different research sites may be best viewed as different 

populations with respect to many cognitive effects. In biomedical research, researchers report differences 

in physiology and behavior between laboratories, even when they test the exact same strain of animals 

with the exact same protocol (Crabbe et al., 1999). These real differences in nominally similar animals 

when exposed to the same treatment means that results are difficult to reproduce between-laboratories 

(Voelkl & Würbel, 2016)3, but also within laboratories when the same animals are tested repeatedly (Karp 

et al., 2014). That these differences are present in highly standardized conditions, such as biomedical 

mouse research, raises the likelihood that real and potentially large effects of site and time will reduce the 

replicability of animal cognition research.  

A recent example in animal cognition comes from the ManyPrimates collaboration 

(ManyPrimates et al., 2019a, b). Here, they collected data on 176 individual primates from 12 species on 

a delayed response task, in which primates had to wait either 0, 15 or 30 s before choosing the location 
                                                           
3 These differences in behavior might reflect an adaptive response to many subtle environmental differences between sites, and as 

such “independent replicate studies that fail to reproduce the original findings might not necessarily indicate that the original 

study was poorly done or reported, but rather that the replicate study was probing a different region of the norm of reaction” 

(Voelkl & Würbel, 2019, p. 3). The reaction norm is a concept used by Voelkl and Würbel to represent gene x environment 

interactions acknowledging both plasticity and canalization.  
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where food was hidden (ManyPrimates et al., 2019b). While there are notable similarities within and 

between species’ behavior across sites, some large differences can still be observed. For example, the 12 

chimpanzees from the Wolfgang Köhler Primate Research Center greatly outperformed the 12 

chimpanzees from Edinburgh Zoo. If such a between-site difference is present in a relatively simple and 

robust cognitive task, in which inter-individual differences might be expected to be low (Hedge et al., 

2018), this suggests that even larger between site differences could manifest for more noisy behaviors in 

comparative cognition replication studies. While in the ManyPrimates data the variation within 

chimpanzee performance was low compared to the variation between species, and some species (e.g., 

capuchin monkeys) were very similar across sites, it was only possible to know this because they did 

sample different groups of animals from the same and different species. In contrast, multi-site studies in 

comparative cognition that do not sample from multiple groups of the same species risk confounding or 

obscuring between-species differences in behavior because they are unable to dissociate the contributions 

of species and site differences to the data. Even when making within-species comparisons, direct 

replications between sites in comparative cognition could be seen as similar to cross-cultural studies in 

humans, and as such lie closer to conceptual rather than direct replications. Further, if we want to 

replicate the between species inferences that are a cornerstone of comparative cognition, ideally new 

samples from new sites of each species should be recruited. This will be very difficult to achieve in 

practice, but researchers must recognize the uncertainty in between-species inferences based on data from 

single sites. 

 

Conclusion 9: Site specific differences in behaviors make direct replication studies sampling from new 

populations difficult to interpret, and could confound many between species comparisons. 

  

Overall, it will not be possible for researchers to identify results as “false positives” through a 

limited number of direct replication studies. Often, a researcher wanting to replicate a study will not have 

access to the desired species, and even if they did, they would be unlikely to be able to produce a result 

that they could confidently conclude is statistically different from the original study. Furthermore, our 

default assumption should be that there will be real quantitative differences between the results of 

replication and original studies. This holds both for effects which we might be confident are true 

positives, for example the observed difference between Edinburgh zoo chimpanzees and Wolfgang 

Köhler Primate Research Center chimpanzees in ManyPrimates, and for effects that we might be 

uncertain are true, such as those supported by a few just significant p-values. Many of the claims that are 

supported by a few just significant results may be practically unfalsifiable – precisely because we would 

not expect them to replicate consistently in similar studies even if there was a true effect. However, this 

does not mean that all findings reflect “true effects” in comparative cognition, instead it means that single 

small replication studies will not absolutely falsify a claim, and neither have many original studies proven 

their claims. Instead of focusing on the “presence” or “absence” of an effect in a replication study, a more 

fruitful approach would be to focus on whether there are meaningful differences between original and 

replication (Gelman, 2018a; Morey & Lakens, 2016). However, often the estimates of both the original 

study and the replication study will be so imprecise that we often will not have the resources to detect 

these differences. To account for this, comparative cognition researchers can focus on expressing the 

uncertainty about their findings, rather than the absolute veracity of a claim or its statistical significance. 

This should act prospectively when interpreting the results of replication studies and new studies, but also 

retrospectively for small studies that have made bold claims on the basis of weak statistical evidence. 

 

Conclusion 10: Single replication studies are unlikley to absolutely falsify claims. A focus on effect sizes, 

meaningful differences between studies and communicating uncertainty should be a long-term aim for 

comparative cognition research.  
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Section 4 – Recommendations for a more Reliable Comparative Cognition 

 

While direct replication studies will often be difficult to perform and interpret in comparative 

cognition, they will be a useful tool to identify effects that are reliable and robust, and effects that are not. 

Furthermore, the results of these direct replication studies will help to calibrate researchers’ expectations 

about the replicability and evidential value of past research and improve the replicability of future 

research. If many effects do turn out to be difficult to replicate in comparative cognition, then the field 

could consider increasing the standards of evidence required to support a statistical claim. This could 

include measures to ensure the current nominal false positive rate of 5% is not greatly inflated, which can 

be achieved through a greater awareness of how analytical flexibility affects false positive rates (Gelman 

& Loken, 2013; Simmons et al., 2011). Furthermore, pre-registrations and registered reports can facilitate 

researchers in controlling their false positive rate by reducing unintentional biases in data collection, 

analysis and publication (Bishop, 2019; Chambers, 2017; Nosek et al., 2018), and open data and code can 

facilitate error detection and correction.  

A more extreme intervention to increase the proportion of true claims in the comparative 

cognition literature would be to decrease the field’s false positive rate by changing the level of 

significance to p < .01 or p < .001 before a null hypothesis can be rejected (Benjamin et al., 2018), or by 

requiring that all effects are replicated directly before they can be published. While this would decrease 

the likelihood of misleading findings entering the literature, it would come at a large cost of either 

increasing the rate of false negative results or reducing the number of studies that can be performed in 

total. In a field where resources are limited and false negative results likely common, such a large and 

proscriptive shift against false positive results might have greater costs than benefits. Perhaps then it is 

better for individual researcher groups to set and justify the standard of evidence that they find acceptable 

after considering a range of questions (Lakens et al., 2018): what resources do you have? how important 

is the question? what are the consequences of getting the answer wrong? can you justify why you have 

chosen to allocate the resources you have to a particular question? And then if a result is unclear, 

researchers should describe their uncertainty and consider replicating the study. Embracing and 

describing such uncertainty is incredibly important to avoid misleading conclusions, particularly when 

using dichotomizing tools such as hypothesis tests (Glass, 2010; Lambdin, 2012; McShane et al., 2019). 

Many of the claims that will turn out to be misleading in comparative cognition will be those that have 

been prematurely accepted in light of weak and uncertain statistical evidence against a null hypothesis. 

When a just significant result is obtained, rather than claiming the presence of a real statistical effect that 

a theory is true, researchers should recognize they have weak evidence of a true statistical effect that 

might corroborate their theoretical claim.  

In the future, researchers may consider increasing the informativeness of the evidence that they 

produce. To achieve this, there are a range of design factors to consider. As well as increasing the sample 

size, increasing the number of trials in a design can increase its power to detect theoretically important 

effect sizes (Rouder & Haaf, 2018), and increasing the salience of manipulations can increase the size of 

an underlying effect, making it easier to detect with our resources (but see Fiedler, 2011). While sample 

size calculations and design decisions can be difficult, there is a growing literature on power and sample 

size planning that can help researchers think about these issues (Gelman & Carlin, 2014; Morey, 2019; 

Rothman & Greenland, 2018; Rouder & Haaf, 2018). Importantly, power analyses and their analogues 

should not be viewed as a box-checking exercise or a golden bullet, and in many cases comparative 

cognition researchers could be better off performing design or sensitivity analyses based on their resource 

constraints. Such analyses ask, given our limited sample size, what size of effect would our study designs 

be able to detect, and what is the effect of increasing trial number or manipulation salience on this?  

Hence there are several steps that researchers can immediately take to produce more reliable, 

informative and accurately described results from small sample studies. In the longer term, an important 

goal for comparative cognition is to estimate the natural variation in behavior of animals across sites and 

times. This will help us to understand how the results of individual studies might generalize to other 
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samples of the same species, and thus the confidence that we can have in the between-species inferences 

we make when testing evolutionary hypotheses (Klein et al., 2018; ManyPrimates et al., 2019a; Voelkl & 

Würbel, 2019). Currently, many of these inferred differences between species may be inaccurate as they 

are made from non-representative samples and are confounded by a host of site-specific factors (Voelkl & 

Würbel, 2019; Yarkoni, 2019). If the results from individual samples are not reliable, then the differences 

between multiple samples might not be either. Comparative cognition would therefore benefit from large-

scale projects aimed at estimating the magnitude of between site differences in behavior of the same 

species across a range of research designs, and whether this itself varies across species. These projects 

will increase the value of all comparative cognition research, past, present and future. This is particularly 

important for research with uncommon or hard-to-reach samples, which will need to generalize from the 

results of multi-site collaborations with other species to understand the robustness of their effects.  

However, these many-site studies should not be seen as unimpeachable. Comparative cognition 

will falter if it begins to roll-out insensitive studies across a large number of species with a view to 

understanding the evolution of cognition from single studies with small samples across a range of taxa. It 

is therefore encouraging that the ManyPrimates collaboration are taking a considered approach towards 

establishing an infrastructure that will allow them to map the variability of primate behavior 

(ManyPrimates et al., 2019a, b).  

While this paper has argued for an assessment of the replicability of comparative cognition 

research and has advocated for large-scale collaboration in order to map the variability of animal 

behavior, it is important not to lose the diversity of our research (Beach, 1950). Studies which increase the 

amount of resources used (e.g., sample sizes, trials, sites) may wish to build-in more diversity into their 

study designs and analyses to provide more generalizable results (Baribault et al., 2018; Yarkoni, 2019). 

In terms of replication studies, choosing which studies will be most important and informative to replicate 

is a key issue (Coles et al., 2018). For example, a key claim based on weak evidence probably should be 

replicated before being used as a building block for future research, whereas a study with a known 

confounding variable might be less helpful to replicate, even if it was historically significant. Finally, it is 

essential to realize that there will be no one-size-fits all solution to replicability across comparative 

cognition. Some areas may already know they have few issues, some may be beginning a longer journey 

to trace which of it results are reliable. Moving forward, comparative cognition should discuss how 

reliable it wants its research to be. A reliable comparative cognition is not a comparative cognition that 

always produces p < .0001. Such a system could severely restrict the hypothesis-space we can sample. 

Rather, reliability should be something we can predict and justify as a community given our goals and 

resource constraints. One solution could be having parallel research streams, one involving large-scale 

multi-site collaborations mapping the variability of animal performance and providing stronger tests of 

evolutionary theory, one involving small-scale exploratory research to generate hypotheses about animal 

cognition, and one providing robust assessments of these hypotheses at the individual-level or group-level 

but with small sample sizes. Each of these streams should take responsibility for estimating and justifying 

the reliability of its approach and focus on how it can communicate the uncertainty of the data it 

generates. However, the optimum reliability and uncertainty of the results might differ between the 

streams. 

Finally, the steps to understand the replicability and reliability of comparative cognition research 

have large resource, infrastructure and pedagogical requirements. While individual laboratories can 

contribute by assessing the robustness of their own results, the most effective and long-lasting solutions 

will require communication and collaboration between laboratories, funding bodies, journals, editors and 

endorsement by senior researchers. Establishing an infrastructure for a reliable and productive 

comparative cognition requires a long-term vision. Projects such as ManyPrimates and The Atlas of 

Comparative Cognition (https://sites.google.com/view/acoco) can help to form a field that can create and 

combine data necessary to understand how cognition evolves. However, to realize these benefits they 

require investment to create and maintain them. Such projects will be slow and long-term, and this 

presents us with a challenge to overcome the current incentives promoting rapid “discovery.” While 

comparative cognition’s issues with replicability are in many ways yet to be revealed, the finding that 

https://sites.google.com/view/acoco
https://sites.google.com/view/acoco
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many claims might be unsubstantiated represents a unique opportunity for the field to understand and 

improve itself as a science. For readers who are interested in learning more about replication science we 

have made a list of suggested introductory reading in Table 3.  

 
Table 3 

Recommended Reading to Introduce Readers to Current topics in Replication Research  

Title Reference 

Reproducibility of scientific results Fidler & Wilcox (2018) 

 

Detecting and avoiding likely false-positive findings—A 

practical guide. 

 

Forstmeier et al. (2017) 

Justify your alpha Lakens et al. (2018) 

 

The regression trap and other pitfalls of replication science Fiedler & Prager (2018) 

 

Re-thinking reproducibility as a criterion for research quality Leonelli (2018) 
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Appendix 

 

Simulation Study 1 Details 

The code for the simulations is available at: https://github.com/BGFarrar/P-value-

simulations/blob/master/CCreplicationsV1.R). 

Data were simulated from two normal distributions for each of the four sets of simulations:  

 

Power Population 1 Population 2 

80% X ∼ N(50, 5) X ∼ N(55.78, 5) 

50% X ∼ N(50, 5) X ∼ N(53.82, 5) 

20% X ∼ N(50, 5) X ∼ N(51.87, 5) 

5% X ∼ N(50, 5) X ∼ N(50, 5) 

 

The difference between Population 1 and Population 2 was calculated in order to give the desired 

power for a one-tailed two sample t-test with n = 10 per group.  

10,000 samples were then taken from each Population and compared to each other, and the p-

values and mean difference between each sample recorded. The proportion of p-values under .05 was 

calculated, and the mean difference between samples associated with these p-values was compared to the 

mean difference across all samples to calculate the unstandarised effect size inflation.  

Next, the expected number of exact replication studies that produced a significant result in the 

same direction as the original was calculated by multiplying the number of significant results from the 

simulation by the power of test again, and this was performed for a range of p values (Table 2), as well as 

overall. 

Finally, although not included in the manuscript, the exact replication studies were also simulated 

– predictably, this was consistent with the mathematical derivation, and the p-value distributions of the 

original published studies and the replication studies are given below in Figures A1 and A2. 

 

https://github.com/BGFarrar/P-value-simulations/blob/master/CCreplicationsV1.R
https://github.com/BGFarrar/P-value-simulations/blob/master/CCreplicationsV1.R
https://github.com/BGFarrar/P-value-simulations/blob/master/CCreplicationsV1.R
https://github.com/BGFarrar/P-value-simulations/blob/master/CCreplicationsV1.R
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Figure A1. The p-value distributions of the original significant studies, by power (top), and the p-value distribution of their exact 

replication studies by power in % (bottom). Violin plots are overlaid displaying the range and quantiles 25, 50 and 75. 
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Figure A2. Density distributions of the p-values from the first simulation study. Blue plots represent the p-value distribution of 

the original studies, which all fall below .05 due to a simulated publication bias. Red plots represent the p-value distribution of 

the exact replication studies. The four plots are arranged by the power of the studies, from 5% at the uppermost panel, to 20%, 

50% and 80% at the lowermost panel. 

Simulation Study 2 Details 

Again the code for the second simulation can be found at: https://github.com/BGFarrar/P-value-

simulations/blob/master/CCreplicationsV1.R 

The data were simulated using edited code from DeBruine and Barr (2019). Data were simulated 

from the following model: 

 

 
 

This model is identical to DeBruine & Barr (2019, p. 7), but we swapped LT (Looking Time) for 

RT (Reaction Time). The looking time for subject s on item i, , is composed of a population grand 

mean , a by-subject random intercept , a by-item (either physically possible or impossible image) 

random intercept , a fixed slope , a by-subject random slope , and a trial-level residual .  is 

the condition.  

Across all of our simulations, the following parameters were simulated with the following:  

 

: 1000 

 ~ N(0, 100) 

 ~ N(0, 5) 

 ~ N(0, 40) 

: 200 

https://github.com/BGFarrar/P-value-simulations/blob/master/CCreplicationsV1.R
https://github.com/BGFarrar/P-value-simulations/blob/master/CCreplicationsV1.R
https://github.com/BGFarrar/P-value-simulations/blob/master/CCreplicationsV1.R
https://github.com/BGFarrar/P-value-simulations/blob/master/CCreplicationsV1.R
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Subjects were simulated with a correlation between intercepts and slopes of 0.2, meaning that 

subjects with larger looking times showed on average larger looking time differences.  

Across the simulations we varied the main effect of condition and the number of trials in a 3 x 3 

design: 

 

 (200, 100, 0) x trials (1, 5, 100) 

 

10,000 datasets were simulated for each design, and the analyses differed slightly between the 

designs to avoid singular fits. For the single trial designs, the data were analyzed using paired  t-tests, and 

for the five and one hundred trial designs, the data were analyzed using a mixed effect model with the 

following structure:  

 

lmer(LookingTime ~ Condition + (1 | subj_id), simulateddata, REML = FALSE)  

 

Finally, for the five trial conditions, the calculated p-values might be slightly inaccurate as a 

small proportion of simulations still led to singular fits. This may also be something to consider when 

interpreting the analysis of Bird and Emery (2010), which has even more parameters in the model.  

 


