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Accurate segmentation and classification of nuclei in histology images is critical but challenging due to nuclei 
heterogeneity, staining variations, and tissue complexity. Existing methods often struggle with limited dataset 
variability, with patches extracted from similar whole slide images (WSI), making models prone to falling into 
local optima. Here we propose a new framework to address this limitation and enable robust nuclear analysis. 
Our method leverages dual-level ensemble modeling to overcome issues stemming from limited dataset variation. 
Intra-ensembling applies diverse transformations to individual samples, while inter-ensembling combines 
networks of different scales. We also introduce enhancements to the HoVer-Net architecture, including updated 
encoders, nested dense decoding and model regularization strategy. We achieve state-of-the-art results on public 
benchmarks, including 1st place for nuclear composition prediction and 3rd place for segmentation/classification 
in the 2022 Colon Nuclei Identification and Counting (CoNIC) Challenge. This success validates our approach for 
accurate histological nuclei analysis. Extensive experiments and ablation studies provide insights into optimal 
network design choices and training techniques. In conclusion, this work proposes an improved framework 
advancing the state-of-the-art in nuclei analysis. We will release our code and models to serve as a toolkit for the 
community.
1. Introduction

Advancing the analysis of pathology images remains crucial for im-
proving cancer diagnosis and prognosis [66]. Pathologists heavily rely 
on information extracted from pathology images to determine tumor 
grades [18], predict patient survival rates [2], and anticipate responses 
to various therapies [55]. Among the many analytical steps involved, 
nuclear segmentation and classification, as well as cellular composition 
prediction, are particularly fundamental, as they enable the extraction of 
cell-based features useful for numerous downstream tasks [2,46,54,55]. 
While manual analysis is vulnerable to intra- and inter-observer variabil-
ity [15], automatic methods can enable consistent and rapid analysis of 
these tasks.

Researchers have leveraged image processing techniques since the 
1990s to analyze morphological cell features [8,26,12]. The recent 
advent of deep learning has further accelerated the field, with neu-
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ral networks becoming a popular choice for solving biomedical chal-
lenges [36,65,44,50,51,9]. This has led to the development of sev-
eral deep learning approaches for nuclear segmentation and classifica-
tion [25,13,53,49], which have demonstrated substantial improvements 
over traditional techniques.

Instance segmentation in digital pathology is challenging due to the 
high degree of overlap between adjacent nuclei [34]. Recently, vari-
ous methods have been proposed to tackle this challenge. These meth-
ods can be broadly categorized into two types: segmentation-only ap-
proaches and simultaneous segmentation and classification approaches. 
Segmentation-only approaches focus on segmenting individual instances 
without considering their classification information [1,27]. On the other 
hand, simultaneous segmentation and classification approaches aim to 
segment and classify instances simultaneously. For example, methods 
based on Mask R-CNN [3,48] propose regions of interest before segment-
ing and classifying objects within. However, inaccurate region proposals 
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can degrade segmentation and classification. An alternative approach is 
to use U-Net architectures [25,14,49], which directly predict pixel-level 
maps and apply post-processing for instance segmentation and classifi-
cation. These methods are particularly well-suited for highly overlap-
ping scenarios.

Cellular composition prediction can provide valuable insights into 
tumor types and cell populations [30,64]. As manual counting is tedious 
and subjective, automated approaches typically employ either regres-
sion to directly predict cell counts [37,62,13] or object detection to 
first identify cells and then count them [61,11]. While regression meth-
ods are simple and effective, detection provides both segmentation and 
counting within a single framework.

In this work, we present a novel deep-learning framework for joint 
nuclear segmentation, classification, and cellular composition predic-
tion in digital pathology images. The framework is designed to improve 
robustness through ensemble modeling, fusing predictions from diverse 
improved base models.

Our framework consists of specialized base models, each trained on 
different data folds with varying encoder backbones. To enhance compu-
tational efficiency, we replace the heavy decoder branches of prior arts 
[25]. The predictions from each base model are then fused via averag-
ing and post-processing to harness diversity. For cellular composition, 
detected nuclei are counted by class, establishing interdependency be-
tween nuclear identification and cellular composition analysis.

To evaluate the performance of our framework, we participated in 
the 2022 CONIC Challenge and achieved top rankings in cellular compo-
sition prediction and 3rd in nuclear segmentation/classification. Addi-
tional experiments on external datasets PanNuke [20,21] and MoNuSAC 
[56] also demonstrate superior performance over the state-of-the-art.

We list our key contributions as follows:

• Proposing a dual-ensemble system leveraging intra-model and 
inter-model ensembling to avoid overfitting by a single model that 
may fall into local optima.

• Developing an enhanced architecture for nuclear instance segmen-
tation and classification by upgrading HoVer-Net with advanced 
encoders, transformed decoders, and regularization techniques.

• Demonstrating state-of-the-art performance of the enhanced frame-
work on publically benchmarks for nuclear instance segmentation, 
classification, and composition prediction.

2. Related work

2.1. Nuclear segmentation and classification

Nuclear segmentation and classification have gained significant at-
tention in recent years within computational pathology research [34,25,
63,3,48,1,27,49]. The field can be broadly categorized into two types: 
segmentation-only approaches and simultaneous segmentation and clas-
sification approaches.

Segmentation-only approaches focus on segmenting individual in-
stances without considering their classification information. For in-
stance, Abdel-Nasser et al. proposed a staining-invariant encoder and 
a weighted hybrid dilated convolution block to efficiently segment nu-
clear instances without color normalization [1]. Similarly, Hassan et al. 
proposed a learnable aggregation network to ensemble a set of individ-
ual nuclear segmentation models [27].

Simultaneous segmentation and classification approaches aim to seg-
ment and classify instances simultaneously. For example, methods based 
on Mark R-CNN propose candidate regions and then attempt to seg-
ment nuclear instances within each region proposal before classifying 
the detected nuclei [3,48]. However, the prevalence of overlapping nu-
clei introduces significant noise during region proposal, which cascades 
into errors in downstream segmentation and classification. To address 
this, some researchers have explored alternative frameworks based on 
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U-Net architectures. A two-stage approach is often taken, where nu-
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clei coordinates are first detected and then patches are cropped around 
these coordinates to feed into a separate classification model [53]. Other 
methods opt for a single model that elegantly handles both tasks of seg-

mentation and classification simultaneously [25,63,49]. Notably, the 
advent of HoVer-Net [25] has a significant contribution in this area, 
which inspired several innovative variants. One such variant integrates 
tissue segmentation [58] to provide a contextual framework that aids in 
the precise identification of nuclei. Another variant introduces a mul-

tiple filter unit [57], designed to capture a wider range of features. 
In parallel, the CellViT [31] represents a shift towards utilizing vision 
transformers as encoders, taking advantage of the rich feature extraction 
capabilities of large-scale pretrained models like the Segment Anything 
Model [40]. Motivated by these advancements, our method echoes the 
unified model approach of [25], but with specific enhancements tailored 
for our research objectives.

Inter-image variability inherent to histology data is another major 
difficulty in nuclear recognition. H&E stained specimens sourced from 
different tissue types, fixation methods, or even hospitals can exhibit 
dramatic visual differences. Many publicly available datasets such as 
PanNuke [20,21] and CoNSeP [25] comprise H&E patches with rela-

tively homogeneous styles since they draw data from only one or two 
sites. Models trained exclusively on such narrow datasets tend to over-

fit, rendering their ability to generalize to more diverse input lacking. 
Therefore, we opt to train our model on the CoNIC data [24], the largest 
pathology dataset to date spanning diverse sources from 5 different insti-

tutions. By learning from such heterogeneous data, we aim to develop a 
segmentation and classification model with broader applicability across 
visual domains.

2.2. Cellular composition prediction

Cellular composition prediction in histology slides plays a crucial 
role in computational pathology, enabling analyses for various cancer 
types. For instance, accurately quantifying mitotic figures provides a 
critical parameter for tumor grade in breast cancer [16,34]. Addition-

ally, the percentage of tumor nuclei within the tumorbed area indicates 
the effect of neoadjuvant therapy in various cancers [4]. Computational 
composition analysis also sheds light on the tumor microenvironment 
(TME) [19], revealing the balance of malignant, immune, stromal, and 
healthy cell populations coexisting within the tumor ecology.

The manual process of counting cells slide-by-slide is laborious and 
prone to subjective errors and variability across pathologists. The ad-

vent of digital pathology has enabled the development of automated 
computational approaches for cellular composition estimation aimed at 
supplementing pathologists’ analyses.

We can categorize existing research into two approaches: direct re-

gression methods that output overall cell type counts without explicitly 
localizing individual nuclear instances [37,62,13], and methods that 
first detect and segment all nuclei before tallying counts per category to 
derive composition [61,11]. Since our goal is to develop an integrated 
model capable of both nuclear recognition and downstream composition 
prediction, we opt for the detection-based approach of first identifying 
nuclei via segmentation and classification, after which we can readily 
infer overall composition by counting nuclei in each predicted category.

2.3. Ensemble modeling

Model ensembling has emerged as an effective technique for improv-

ing the performance of deep learning systems. The approach involves 
combining multiple models to create an ensemble system that lever-

ages the complementary strengths of the individual models [42]. A key 
advantage of ensembling is reducing the generalization error and vari-

ability of predictions [42]. The base models comprising the ensemble 
are often trained separately, using distinct architectures, algorithms, 

or training data splits [41]. Though containing multiple components, 
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Fig. 1. Overview of the proposed method. A) The base model architecture utilizes an encoder-decoder structure adapted from HoVer-Net [25]. To improve compactness 
and effectiveness, the three decoder branches have been consolidated into one. Heavy dropout layers are also incorporated in the decoder to regularize training. 
While any encoder with a similar structure can be used, this example implements a SEResNeXt50 backbone [33]. B) The intra-model ensemble approach augments 
the input image with horizontal and vertical flips. Each base model makes predictions on the original and flipped inputs, which are averaged together after flipping 
the outputs back to the original orientation. This allows the network to leverage multiple views of the input during inference. C) The inter-model ensemble averages 
the output maps from base models with different encoder backbones to improve robustness. D) Post-processing utilizes the output maps for final instance recognition. 
Instances are first segmented using the nuclear presence (NP) and HoVer maps. These segmentation results are then grouped with the nucleus classification (NC) 
map for instance classification. E) Evaluation uses the multi-class panoptic quality (𝑚𝑃𝑄+) metric applied to the full input patch and multi-class coefficient of 
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determination (𝑅2) applied to the 224 × 224 pixel center region.
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the ensemble model essentially functions as a single unified model with 
lower aggregate error [42].

Model ensembling has been successfully applied in many medical 
imaging applications. For example, [10] averaged the predictions of 
several networks to reduce variance in segmenting neuronal structures, 
winning the 2012 ISBI EM Segmentation Challenge. [43] also utilized an 
ensemble of fully convolutional networks to detect white matter hyper-
intensities, achieving state-of-the-art performance in the 2017 MICCAI 
WMH Segmentation Challenge. Such results demonstrate the potential 
of ensemble techniques to boost performance.

Common ensembling approaches include max voting, which selects 
the majority vote [47,5], and averaging, which computes the mean pre-
dicted probabilities [5]. We implement an averaging ensemble, as it is 
widely adopted. Through designing ensemble algorithms tailored for our 
application, we aim to improve overall performance by synergistically 
combining multiple specialized base models.

3. Methods

Our proposed framework incorporates three vital components: 1) 
the base models for nucleus detection, 2) an ensemble system to com-
bine base model outputs, and 3) post-processing techniques to refine 
ensemble predictions. At last, we describe the evaluation metrics and 
experimental setup.

3.1. Base models

Our approach is built upon diverse base models, each employing a 
different encoder architecture as the backbone. Inspired by the HoVer-
Net framework [25], which has achieved state-of-the-art performance 
on joint nuclear segmentation and classification tasks, our base models 
share a common architecture, as illustrated in Fig. 1. Each base model 
outputs three maps: 1) a nuclear pixel (NP) map predicting nuclei seg-
mentation, 2) a horizontal/vertical distance (HoVer) map encoding the 
coordinates of nuclear centers, and 3) a nucleus classification (NC) map 
categorizing each nucleus.

The NP map indicates whether each pixel belongs to a nuclear fore-
ground region or the background. The HoVer map provides normalized 
horizontal and vertical distances to the centers of mass for clustered nu-
clei. By combining these two outputs, the model can separate touching 
and overlapping instances using a watershed transform during post-
processing. Finally, the NC map classifies each segmented nucleus by 
performing pixel-wise voting within the predicted region. The category 
receiving the most votes defines the final call for that nucleus.

In our design, all three output maps share parameters within a com-
mon decoder pathway. By training these complementary maps jointly, 
we provide regularization for the decoder to learn robust features. We 
employ a single convolutional layer as the head for each map, minimiz-
ing added parameters. Our experiments validate that this simplified yet 
unified architecture achieves strong performance on both segmentation 
and classification. Moreover, by reducing computations, it allows us to 
use large batch sizes that accelerate training.

We utilize two state-of-the-art models: SEResNeXt50 and SERes-
NeXt101 [32], as encoder backbones. We train a specialized base model 
for each encoder variant. Next, we detail our ensemble approach to syn-
ergistically combine the strengths of these diverse base models.

3.1.1. Model regularization

To further enhance model generalization, we employ regularization 
strategies. As illustrated in Fig. 1A, we incorporate dropout layers peri-
odically within the decoder after each upsampling layer. Dropout ran-
domly omits or ‘drops out’ a subset of units during training, preventing 
the model from relying too heavily on particular features or cues that 
may vary across domains. This encourages the model to synthesize more 
holistic representations that do not overfit to nuances of the training dis-
tribution. Futhermore, our experiments demonstrate that the inclusion 
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of dropout improves model performance on unseen test data.
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3.1.2. Loss function

Following HoVer-Net [25], we employ a composite multi-task loss 
to optimize the model:

𝐿 =𝑤𝑁𝑃𝐿𝑁𝑃 +𝑤𝐻𝑜𝑉 𝑒𝑟𝐿𝐻𝑜𝑉 𝑒𝑟 +𝑤𝑁𝐶𝐿𝑁𝐶, (1)

where 𝑤𝑁𝑃 , 𝑤𝐻𝑜𝑉 𝑒𝑟, and 𝑤𝑁𝐶 are the weights for the different loss 
sets, and 𝐿𝑁𝑃 , 𝐿𝐻𝑜𝑉 𝑒𝑟, and 𝐿𝑁𝐶 represent the loss terms for the nuclear 
pixel (NP) segmentation map, horizontal/vertical (HoVer) distance map, 
and nucleus classification (NC) map outputs respectively.

For the nuclear pixel (NP) branch, we apply a weighted combina-
tion of binary cross-entropy and dice losses. The binary cross-entropy 
loss provides pixel-level supervision for accurate nuclei vs. background 
classification. Meanwhile, the dice loss helps counter class imbalance be-
tween the typically smaller nuclear regions and the larger background 
area. Similarly, the nuclear classification (NC) branch is trained via 
analogous multi-task versions of cross-entropy and dice losses. Finally, 
for the horizontal/vertical distance (HoVer) branch, we utilize mean 
squared error and mean squared gradient error losses. These losses pro-
vide tailored supervision to precisely predict both the distance maps to 
nuclear centers themselves, as well as the distance gradient maps point-
ing to the centers. We refer the readers to the HoVer-Net [25] paper for 
more details of the loss function design.

3.2. Model ensemble system

To harness the diversity of our trained base models, we propose a 
two-level model ensemble system that aggregates their predictions. The 
system consists of two levels: intra-model ensembling and inter-model 
ensembling. Intra-model ensembing combines predictions from differ-
ently augmented inputs with the same based model, while inter-model 
ensembling combines predictions from different base models. This ap-
proach is illustrated in Fig. 1B and Fig. 1C.

3.2.1. Intra-model ensembling

Intra-model ensembling, as illustated in Fig. 1B, combines the pre-
dictions from multiple augmented versions of the same base model. We 
generate augmented inputs by horizontally and vertically flipping the 
original input patch and feed these flipped variants through the base 
model to produce multiple output maps for the same image. We flip the 
nuclear pixel (NP) and nuclear classification (NC) maps back to their 
original orientation and average them to smooth predictions. For the 
horizontal/vertical (HoVer) distance maps, we additionally inverse the 
sign of values based on flip direction before averaging. This intra-model 
ensembling reduces errors and noise by aggregating consistent predic-
tions.

3.2.2. Inter-model ensembling

Inter-model ensembling, as illustated in Fig. 1C, combines the predic-
tions from multiple base models with distinct encoder backbones. Each 
base model undergoes intra-model ensembling to produce averaged out-
put maps, which are then averaged across base models to generate the 
final prediction. By combining the complementary strengths of each 
base model, inter-model ensembling creates a more robust ensemble 
model that leverages the diversity of the individual models.

3.3. Post-processing

We employ post-processing techniques to get the final nuclear in-
stance segmentations and classifications. The process involves two pri-
mary steps: watershed segmentation and pixel-wise voting. The HoVer 
and NP maps serve as inputs to the watershed algorithm, where the 
HoVer map defines an energy landscape with nuclear centers as catch-
ment basins, and the NP map removes background areas by zeroing their 
HoVer distances. Following segmentation, each nucleus is classified via 
pixel-wise voting within the nuclear instance region, assigning the most 

frequent class. By leveraging all three output maps in concert, the model 
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Table 1

Detailed information of the datasets. We provide a detailed overview 
of the three public datasets, including the number of patches, nuclei, 
and classes, to illustrate the composition of the datasets.

No. Patches No. Nuclei Classes

MoNuSAC

[56]
310 ≈46,000

epithelial, lymphocyte,

neutrophil, macrophage

PanNuke

[20,21]
7901 ≈200,000

neoplastic, inflammatory,

connective, dead, epithelial

Lizard

[23]
4981 ≈500,000

epithelial, lymphocyte,

plasma, eosinophil,

neutrophil, connective tissue

is able to perform end-to-end detection, segmentation, and classifica-

tion.

The workflow is illustrated in Fig. 1D, where the HoVer and the NP 
maps are utilized for instance segmentation, and the NC map is used 
for classification. The resulting segmented and classified instances are 
then used to count the number of nuclei of each category, enabling the 
prediction of nuclear composition within the central 224 × 224 region 
for image patches as shown in Fig. 1E.

3.4. Datasets

The quality and diversity of training data are crucial for developing 
robust computational pathology models. Histopathology images exhibit 
high variability due to factors such as tissue type, fixation method, and 
source institution. To mitigate dataset bias and train more generaliz-

able models, we leverage multi-site datasets with heterogeneous visual 
styles for pre-training. We opt to train on the large-scale Lizard repos-

itory, which contains annotated pathology images aggregated from 6 
unique domains, with iterative pathologist input to refine labels. We also 
validate our method on two other datasets: PanNuke and MoNuSAC. De-

tailed information on these datasets is illustrated in Table 1.

3.4.1. MoNuSAC

The MoNuSAC dataset [56] contains over 46,000 nuclei across 37 
hospitals, 71 patients, 4 organs, and 4 nuclear classes - epithelial, lym-

phocyte, neutrophil, and macrophage. Sourced from TCGA, the whole 
slide images are sampled at 40x magnification. Annotations were per-

formed by engineering graduate students and quality was checked by 
domain experts. Considering that the MoNuSAC dataset [56] does not 
provide additional data splits in its original publication, we chose not 
to perform cross-validation on it. Instead, we present the mean and 
standard deviation of 10 experimental runs, ensuring a consistent ap-

proach that facilitates direct comparison of performance metrics across 
all datasets.

3.4.2. PanNuke

The PanNuke [20,21] dataset contains multi-organ data across 19 
tissue types with nearly 200,000 annotated nuclei in 5 clinically rele-

vant classes - neoplastic, inflammatory, connective, dead, and epithelial. 
It consists of 481 visual fields sampled at 40x magnification where 
nuclei are semi-automatically segmented and verified by experts. To 
facilitate robust model evaluation, the dataset is pre-split into three 
folds. We adhere to the original split of the PanNuke dataset to per-

form cross-validation, as detailed in Table 10. Note that all other results 
for PanNuke presented in this paper are based on Fold 0, with mean and 
standard deviation calculated from 10 independent experimental runs, 
maintaining uniformity in our dataset evaluations.

3.4.3. Lizard

The Lizard dataset [23] contains colon tissue samples sourced from 
5 distinct repositories - Glas [52], CRAG [22], CoNSep [25], Digest-

Path, PanNuke [20,21]. It is used by the CONIC 2022 challenge, with 
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the composition detailed in an excel file provided by the challenge orga-
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Fig. 2. Example nuclei from the 6 categories in the Lizard dataset, illustrating 
the challenges in segmentation and classification. Note the high degree of simi-

larity among certain classes (e.g., Fig. 2(b) Epithelial, Fig. 2(c) Lymphocyte, and 
Fig. 2(d) Plasma), which hinders classification.

nizers [24,67].1 To maintain the integrity of the original sources and to 
align with the cross-validation approach, we split the Lizard dataset into 
five folds corresponding to these sources to perform cross-validation, as 
shown in Table 10. Note that all other results for Lizard presented in 
this paper are performed on Fold 0, with mean and standard variations 
calculated from 10 times of experiments, as for MoNuSAC and PanNuke.

The dataset is cropped into 4981 256×256 patches containing 
around 500,000 annotated nuclei. Fig. 2 illustrates example patches 
from each nucleus category to provide intuition. While images of colon 
tissues from PanNuke are included in Lizard, we evaluated these two 
datasets independently without any overlap between training and test 
sets to avoid information leakage. Regions of interest are extracted from 
the whole slide images at 20x magnification and nuclei are annotated 
into 6 categories - epithelial, lymphocyte, plasma, eosinophil, neu-

trophil, and connective tissue. Example patches from Lizard are shown 
in Fig. 3.

4. Experiments

We conduct extensive experiments to evaluate the performance of 
our proposed framework. This section describes the evaluation metrics 
and experimental setup.

4.1. Evaluation metrics

We evaluate nuclei detection, segmentation, and composition esti-

mation using two key metrics: 𝑚𝑃𝑄+ for nuclear instance recognition 
and classification and 𝑅2 for nuclear composition regression.

The 𝑚𝑃𝑄+ metric evaluates combined nuclear segmentation and 
classification performance, adapted from the Panoptic Quality (PQ) met-

ric [39] introduced in [25] for computational pathology tasks. Specifi-

cally, for each nuclear type 𝑡, 𝑃𝑄𝑡 is defined as:

𝑃𝑄𝑡 =
|𝑇𝑃 𝑡|

|𝑇𝑃 𝑡|+
1
2 |𝐹𝑃 𝑡|+

1
2 |𝐹𝑁𝑡|

×
Σ(𝑥𝑡,𝑦𝑡)∈𝑇𝑃 𝑡

𝐼𝑜𝑈 (𝑥𝑡, 𝑦𝑡)
|𝑇𝑃 𝑡|

(2)

Here, 𝑥𝑡 refers to a ground truth nucleus of type 𝑡, 𝑦𝑡 refers to a pre-

dicted nucleus, and 𝐼𝑜𝑈 (𝑥𝑡, 𝑦𝑡) > 0.5 for matched nuclei pairs (𝑥𝑡, 𝑦𝑡) ∈
1 https://conic -challenge .grand -challenge .org/.

https://conic-challenge.grand-challenge.org/
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Fig. 3. Example images from the Lizard dataset. Note the high degree of nuclei overlapping, which poses a significant challenge for instance segmentation methods.

Table 2

Performance comparison of the proposed framework against other methods on the nuclear recognition and composition prediction 
tasks over multiple datasets. The proposed framework consistently outperforms the other methods by a substantial margin in most 
cases. Even in the rare instances where our approach does not surpass all others, it remains comparable to the best models. This 
demonstrates the effectiveness of our method for nuclear recognition and quantification. Further analysis of the results is provided 
in Section 5.1.

𝑚𝑃𝑄+ 𝑅2

Lizard PanNuke MoNuSAC Lizard PanNuke MoNuSAC

Mask R-CNN [28] 0.4281±0.0110 0.4024±0.0246 0.5072±0.0069 0.4459±0.0233 0.6771±0.1016 0.6105±0.0187

Cascaded R-CNN [6] 0.4493±0.0077 0.4420±0.0125 0.5278±0.0027 0.4907±0.0214 0.7640±0.0201 0.6484±0.0272

QueryInst [17] 0.3549±0.0017 0.4405±0.0031 0.4938±0.0149 0.4552±0.0049 0.7134±0.0147 0.5813±0.2020

StarDist [60] 0.4194±0.0128 0.3855±0.0108 0.4097±0.0068 0.4795±0.0470 0.5662±0.0236 0.6774±0.1475

HoVer-Net [25] 0.4893±0.0217 0.3736±0.0111 0.4501±0.0154 0.7081±0.1148 0.5913±0.0237 0.5933±0.1419

Ours 0.5599±0.0086 0.4738±0.0061 0.5567±0.0125 0.8437±0.0454 0.7127±0.0553 0.7968±0.0470
𝑇𝑃 𝑡. Unmatched ground truth and predicted nuclei are counted as false 
negatives (𝐹𝑁𝑡) and false positives (𝐹𝑃𝑡) respectively.

The 𝑚𝑃𝑄+ metric evaluates segmentation and classification perfor-
mance by averaging the 𝑃𝑄𝑡 score across all nuclear types 𝑡. Critically, 
𝑃𝑄𝑡 is calculated over the full dataset rather than individual images, ad-
dressing potential issues that may arise from zero denominators when 
classes are absent from some images. For full details on the 𝑚𝑃𝑄+ for-
mulation and its advantages over standard 𝑚𝑃𝑄, we direct readers to 
the work presenting this evaluation framework in the context of the 
CoNIC Challenge [24].

For quantitative composition estimation, we report the 𝑅2 coeffi-
cient of determination. For each nuclear type 𝑡, 𝑅2

𝑡
is:

𝑅2
𝑡
= 1 −

Σ𝑛
𝑖=1(𝑦𝑖,𝑡 − 𝑦̂𝑖,𝑡)

Σ𝑛
𝑖=1(𝑦𝑖,𝑡 − 𝑦̄𝑡)2

(3)

Here, 𝑦𝑖,𝑡 is the ground truth count for nuclei of type 𝑡 in image patch 
𝑖, 𝑦̂𝑖,𝑡 is the predicted count, and 𝑦̄𝑡 is the mean 𝑦𝑖,𝑡 across patches. The 
overall multi-class 𝑅2 score averages the per-type 𝑅2

𝑡
metrics.

As illustrated in Fig. 1E, 𝑚𝑃𝑄+ is computed over the full image 
patch (256 × 256), while 𝑅2 uses only the central 224 × 224 region to 
avoid edge effects.

4.2. Implementation details

In this work, we employ two powerful encoder backbones, SERes-
NeXt50 and SEResNeXt101 [32], to extract robust features in our multi-
task segmentation framework. The SEResNeXt models are built upon 
the ResNeXt architecture and incorporate Squeeze-and-Excitation blocks 
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to improve feature representation. During inference, we ensemble the 
Table 3

Comparison of the top 10 teams on the CoNIC 2022 challenge 
leaderboard for the two evaluation metrics. Our proposed approach 
achieved 3rd place for multi-class panoptic quality (𝑚𝑃𝑄+) and 1st 
place for composition regression (𝑅2). The blind test set indicates the 
superiority of our method on unseen custom data.

Team 𝑚𝑃𝑄+ Team 𝑅2

EPFL |StarDist 0.50132 Pathology AI 0.76413

MDC Berlin |IFP Bern 0.47616 AI_medical 0.76250

Pathology AI 0.46310 EPFL |StarDist 0.75498

LSL000UD 0.46278 CIA Group 0.71902

AI_medical 0.45759 Softsensor_Group 0.71589

Arontier 0.45707 LSL000UD 0.70325

CIA Group 0.45092 Arontier 0.69145

MAIIA 0.43674 MBZUAI_CoNiC 0.67440

ciscNet 0.42947 MDC Berlin |IFP Bern 0.66432

MBZUAI_CoNiC 0.42078 Denominator 0.65498

predictions of both models to obtain the final segmentation result. By 
combining diverse models, we can leverage their strengths and improve 
robustness and accuracy.

Our training is performed on a high-performance workstation with 
4 NVIDIA 3090 GPUs using distributed parallel training. This allows us 
to train with a large batch size of 16 for faster convergence. Models 
are trained for 50 epochs each, using the Adam optimizer [38] with an 
initial learning rate of 3e-4. The learning rate is decayed by a factor of 
0.1 every 10 epochs after the first 30 epochs to improve convergence at 
the end of training. To prevent overfitting, we employ an early stopping 
strategy based on the validation loss in the challenge. Training stops 
once the loss stabilizes and stops improving, and we use the model from 

several epochs prior.
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Table 4

Performance comparison between our proposed framework and the original HoVer-Net [25] on the Lizard dataset [23]. Our approach consistently and significantly 
outperforms HoVer-Net on these categories on both evaluation metrics, demonstrating the advantages of our method.

𝑚𝑃𝑄+ 𝑅2

Neutrophil Epithelial Lymphocyte Plasma Eosinophil Connective Neutrophil Epithelial Lymphocyte Plasma Eosinophil Connective

HoVer-Net 0.2987±0.0399 0.6216±0.0213 0.7108±0.0196 0.4611±0.0177 0.3085±0.0524 0.5353±0.0084 0.8980±0.0436 0.9470±0.0244 0.5768±0.2246 0.7331±0.1057 0.6553±0.1481 0.4387±0.3953

Ours 0.3941±0.0227 0.6684±0.0028 0.7503±0.0047 0.5180±0.0114 0.3980±0.0218 0.6305±0.0084 0.9586±0.0126 0.9847±0.0048 0.7531±0.0495 0.7147±0.2430 0.7881±0.0450 0.8628±0.0393
Table 5

Performance comparison between our method and CellViT. 
The results indicate that our method, which does not lever-

age large-scale pretrained models, demonstrates performance 
that is highly comparable to CellViT.

𝐶𝑒𝑙𝑙𝑉 𝑖𝑇256 CellViT-SAM-H Ours

𝑚𝑃𝑄 0.4846±0.0503 0.4980±0.0413 0.5060±0.0022

𝑏𝑃𝑄 0.6696±0.0340 0.6793±0.0318 0.6353±0.0065

To enhance robustness and prevent overfitting, we apply extensive 
data augmentation techniques to our training set. These include random 
horizontal/vertical flips, random 90-degree rotations, random transpos-

ing, color jittering of brightness, contrast, saturation and hue, Gaussian 
blurring, median blurring, and motion blurring of the images. We only 
apply one blurring operation each time to avoid corrupting the image 
too much.

We use a weighted combination of loss components from each 
branch. Through a grid search, we found that 𝑤𝑁𝑃 , 𝑤𝐻𝑜𝑉 𝑒𝑟, and 
𝑤𝑁𝐶=1 work best. The NP branch uses 𝑤𝐶𝐸=2 and 𝑤𝐷𝑖𝑐𝑒=2 for 
its cross entropy and Dice loss components. The hover branch uses 
𝑤𝑚𝐶𝐸=3 and 𝑤𝑚𝐷𝑖𝑐𝑒=1 to weight its modified cross entropy and Dice 
losses. The keypoint loss uses 𝑤𝑚𝑠𝑒=2 and 𝑤𝑚𝑠𝑔𝑒=2 for the MSE and 
MSGE losses. Carefully balancing the loss components prevents one task 
from dominating the others during training.

5. Results

In this section, we present experimental results comparing our pro-

posed multi-task segmentation framework against current state-of-the-

art methods on two key tasks: 1) Nuclear instance segmentation and 
classification, and 2) Nuclear composition regression, as defined in the 
CoNIC 2022 Challenge [24]. We also use Dice to calculate the model’s 
performance on segmentation. Ablation studies are conducted to inves-

tigate the contribution of each component of our framework.

5.1. Comparison with other state-of-the-art methods

We compare our approach to several state-of-the-art methods on 
nuclear instance segmentation and classification, including Mask R-

CNN [28], Cascaded R-CNN [6], and QueryInst [17]. We also compare 
against HoVer-Net [25] and star-dist [49,60,59], two specifically de-

signed methods for nuclear instance segmentation and classification. We 
show the quantitative results in Table 2, reporting standard evaluation 
metrics such as segmentation and classification (𝑚𝑃𝑄+), as well as nu-

clear composition regression (𝑅2 score). Our framework demonstrates 
superior performance across the majority of datasets and evaluation 
metrics, showcasing its robustness and versatility. In instances where 
our model does not lead in a particular metric, it remains highly compet-

itive, exhibiting performance on par with the state-of-the-art methods. A 
case in point is the 𝑅2 score for the PanNuke dataset, where our model, 
despite not achieving the foremost position, closely matches the perfor-

mance of the leading cascaded R-CNN approach.

We have also conducted a comparative analysis of our method with 
the composite work CellViT [31] (see Table 5), utilizing the metrics 
employed in its original publication: 𝑚𝑃𝑄 and 𝑏𝑃𝑄, which are variants 
of our enhanced metric, 𝑚𝑃𝑄+. For a comprehensive understanding of 
these metrics, we direct the readers to the CellViT paper for detailed 
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explanations.
We showcase visual results on the Lizard dataset in Fig. 4, high-

lighting cleaner and more accurate segmentations and classifications 
compared to other methods. Our multi-task approach appears to learn 
a robust feature representation that captures distinguishing character-

istics between classes. Furthermore, the ensemble ability of our model 
allows it to incorporate information that may be overlooked in single 
models. Additionally, we break down results by each cell category in the 
Lizard dataset in Table 4, showing top scores in every category for both 
𝑚𝑃𝑄+ and 𝑅2 metrics compared to the HoVer-Net baseline. These con-

sistent gains demonstrate the broad improvements from our proposed 
approach and validate the utility of our architecture modifications.

In summary, both quantitative metrics and qualitative results con-
firm the effectiveness of our multi-task framework relative to state-of-

the-art methods for nuclear instance segmentation, classification, and 
composition regression. The joint training provides complementary in-

formation that boosts performance across related tasks.

5.2. Comparison to top teams in CoNIC 2022 challenge

We participated in the 2022 Colon Nuclei Identification and Count-

ing Challenge (CoNIC 2022 Challenge) organized by [24], a competi-
tion aimed at advancing research on automatic nuclear instance char-

acterization for computational pathology applications. The challenge 
involved segmenting, classifying, and counting 6 nuclear types in pro-

vided multi-organ datasets. Blinded test data, including samples from 
new domains not seen during training, posed a significant challenge. To 
generalize well to diverse data, high-performing methods were needed.

Submissions were evaluated based on mean panoptic quality (𝑚𝑃𝑄+) 
for segmentation and classification, and 𝑅2 score for nuclear composi-

tion regression. Table 3 shows the final scores of the top 10 ranked 
teams on the test set. The top methods achieved very close scores, indi-
cating highly competitive solutions were developed by leading research 
groups. Our proposed multi-task framework achieved 1st place for the 
nuclear composition 𝑅2 metric with a score of 0.76413, and 3rd place 
based on the 𝑚𝑃𝑄+ metric with a score of 0.46310.

This demonstrates our method’s ability to generalize successfully to 
new datasets while maintaining top-tier performance relative to state-

of-the-art techniques. The joint multi-task learning provides our model 
with robust representations that transfer well to unseen domains. Our 
strong ranking in this competitive challenge confirms the effectiveness 
of the proposed approach for real-world biomedical image analysis tasks 
requiring generalization.

5.3. Ablation study

To investigate the importance of individual components in our pro-

posed framework, we conduct an ablation study. We analyze the contri-

butions of four key components: encoder backbones, data augmentation 
strategies, class imbalance handling methods, and model ensemble tech-
niques. Understanding the individual contributions of these components 
is essential for further improving the model.

5.3.1. Encoder backbones

The performance of the encoder is a crucial factor in determining 
the overall success of the model. We experiment with various encoder 
architectures, as listed in Table 6, including ResNet50, ResNet101 [29], 
SEResNeXt50, SEResNeXt101 [33], and swin-transformer [7,45]. The 

SEResNeXt models incorporate ResNeXts with squeeze-and-excitation 
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Fig. 4. Qualitative results comparing the proposed method against other state-of-the-art approaches on example images from the Lizard dataset [23]. The overlays 
visualize the output instance segmentation results, with different colors indicating the predicted nuclear categories. Examples of nuclei from each category are 
provided in Fig. 2. The proposed method produces more accurate predictions than other state-of-the-art techniques, as observed by examining the overlays. Our 
approach correctly identifies more instances, with fewer false positives and false negatives. Additionally, the nuclear category predictions match the ground truth 
more closely compared to other methods. This qualitative analysis highlights the improved performance of the proposed framework on this challenging nuclear 
recognition task.

Table 6

Evaluation of base models utilizing different encoder backbones. As shown, larger encoder models tend to achieve better or at 
least comparable performance to smaller models. Consistent with the findings in nnUNet-Revisited [35], we also observe that 
Transformer-based architectures do not surpass the performance of CNNs in our task. Thus, we employ SEResNeXt50 [33] and 
SEResNeXt101 [33] encoders in our framework.

𝑚𝑃𝑄+ 𝑅2

Lizard PanNuke MoNuSAC Lizard PanNuke MoNuSAC

ResNet50 0.4869±0.0234 0.3437±0.0372 0.4569±0.0197 0.6921±0.1254 0.5560±0.0613 0.6356±0.1199

ResNet101 0.4980±0.0279 0.3902±0.0194 0.4686±0.0233 0.7313±0.1087 0.6378±0.0516 0.5487±0.1744

SEResNeXt50 0.5087±0.0327 0.4322±0.0216 0.4712±0.0156 0.7529±0.1143 0.6658±0.0622 0.6356±0.0906

SEResNeXt101 0.5286±0.0373 0.4489±0.0196 0.4815±0.0142 0.7700±0.1667 0.6942±0.0479 0.6288±0.1013
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Swin-Transformer 0.4544±0.0683 0.3030±0.0203 0.4480±0.0062 0.6547±0.0642 0.6176±0.0957 0.5839±0.0631
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Table 7

Impact on the performance of different data augmenta-

tion techniques applied during training using the SERes-

NeXt50 [33] encoder. Models trained with most aug-

mentations outperform no augmentation, except distor-

tion which is unstable. Thus, distortion is excluded from 
our final training pipeline.

𝑚𝑃𝑄+ 𝑅2

No Augmentation 0.5300±0.0128 0.7758±0.0318

Flip 0.5339±0.0126 0.7739±0.0288

Color Jitter 0.5382±0.0102 0.7962±0.0295

Blur 0.5356±0.0091 0.7915±0.0273

Distort 0.5198±0.0084 0.7628±0.0275

Table 8

Evaluation of dropout as a model regularization strat-

egy. Dropout layers are included to prevent the model 
from developing an over-reliance on particular fea-

tures, which could lead to increased sensitivity to vari-

ations in unseen test data.

𝑚𝑃𝑄+ 𝑅2

Without dropout 0.5504±0.0125 0.8394±0.0305

With dropout 0.5599±0.0086 0.8437±0.0454

Table 9

Evaluation of imbalanced class techniques. We explored vari-

ous techniques to address class imbalance but found that they 
did not significantly improve performance. Therefore, we did 
not incorporate them into our method.

𝑚𝑃𝑄+ 𝑅2

Original 0.5599±0.0086 0.8437±0.0454

Focal Loss 0.5431±0.0112 0.8159±0.0306

Weighted Cross-Entropy 0.5520±0.0082 0.8374±0.0255

Table 10

Performance comparison across folds for Lizard and PanNuke datasets. The 
table details the performance of our model across the five folds of the Lizard 
dataset and the three folds of the PanNuke dataset. The Lizard dataset’s 
composition, stemming from five distinct sources, justifies its division into 
separate folds for a comprehensive evaluation. For the PanNuke dataset, 
we adhered to the original data split as described in its publication. We ex-

cluded MoNuSAC from this analysis due to its singular test dataset, aligning 
with the original split for consistency with other studies.

Dataset Split 𝐷𝑖𝑐𝑒 𝑚𝑃𝑄+ 𝑅2

Lizard

Fold 0 0.6557±0.0259 0.5599±0.0086 0.8437±0.0454

Fold 1 0.6270±0.0185 0.5172±0.0096 0.7211±0.1257

Fold 2 0.4779±0.0204 0.4768±0.0114 0.5982±0.0654

Fold 3 0.6362±0.0223 0.5456±0.0096 0.7998±0.0941

Fold 4 0.6483±0.0088 0.5603±0.0076 0.8366±0.0402

PanNuke

Fold 0 0.6355±0.0058 0.4738±0.0061 0.7127±0.0553

Fold 1 0.6428±0.0102 0.4875±0.0099 0.7600±0.0658

Fold 2 0.6442±0.0155 0.4892±0.0117 0.8041±0.0292

blocks to enhance representation learning, while the swin-transformer 
leverages attention mechanisms to emphasize important features.

Our results indicate that larger models, such as SEResNeXt101, tend 
to perform better due to their increased capacity to model complex pat-

terns. However, this trend is not absolute, as evident from the slight 
outperformance of ResNet101 on the 𝑅2 metric. Furthermore, very large 
models can overfit on the limited training data. Notably, our findings 
align with those in nnUNet-Revisited [35], suggesting that Transformer-

based architectures do not surpass the performance of CNNs in our task. 
Based on these findings, we select SEResNeXt50 and SEResNeXt101 
as our encoder backbones, as they achieve top performance on most 
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datasets.
Computational and Structural Biotechnology Journal 24 (2024) 699–710

5.4. Data augmentation

Data augmentation is a powerful tool for improving the generaliza-

tion of our model. We carefully select augmentations suitable for H&E 
histology images to avoid distorting important color and texture cues. 
As shown in Table 7, most techniques such as 1) random flips with a 
probability of 0.5, 2) random rotation with a probability of 0.5, 3) color 
jittering with brightness jitter of 0.2, contrast jitter of 0.25, saturation 
jitter of 0.2, and hue jitter of 0.5, 4) Gaussian blur with a blur limit of 
3, 5) Median blur with a blur limit of 3, improve performance of our 
model by introducing more variation. However, we also observe that 
distortion augmentation can sometimes decrease performance metrics. 
This may due to over-augmentation. Thus, we exclude distortion and fo-

cus on other effective augmentation techniques to optimize our model’s 
performance.

5.5. Class imbalance

Class imbalance is a common issue in nuclear instance segmentation, 
where the majority class (background) dominates the minority class (in-

stances). To address this challenge, we experimented with focal loss 
and weighted cross-entropy loss on the Lizard dataset with our method. 
The results, as shown in Table 9, demonstrate that these techniques 
can indeed improve performance. However, we also acknowledge that 
these techniques often require dataset-spefic tuning, which can be time-

consuming and labor-intensive. Nevertheless, our method still achieved 
good performance without the need for these techniques.

5.6. Cross validation

As shown in Table 10, our cross-validation experiments consistently 
show that our model performs robustly across different folds, indicat-

ing its strong generalization capabilities. The slight variability in results 
could possibly be attributed to the differences between the training and 
test datasets in each fold. Fold 2 of Lizard dataset stands out with results 
that are notably different from the rest, possibly due to unique charac-

teristics or biases present in that specific subset. Despite this outlier, the 
overall consistency across the other folds confirms the reliability and 
generalization ability of our model.

5.7. Model regularization

By avoiding overfitting to specific, possibly spurious correlations 
within the training set, the model with dropout demonstrates improved 
robustness and accuracy when confronted with the variability inherent 
in real-world data. Our experimental results, as evidenced in Table 8, 
illustrate the improvement in model performance when dropout is em-

ployed as a regularization technique.

5.8. Model ensembling

Ensembling combines multiple diverse models to improve robust-

ness. We use two ensemble strategies: 1) intra-model: averaging predic-

tions from flips and rotations of the same input, and 2) inter-model: 
averaging predictions from different encoder backbones. Table 11

shows both provide consistent gains. The intra-ensemble leverages model 
smoothness over input variations, while the inter-ensemble benefits from 
complementary information in different backbones. Since real-world 
data varies, ensembling makes our framework adaptable.

In summary, our ablation analyses provide insight into optimal 
model architecture choices and training strategies for robust histology 
image analysis. The findings guide the design of our proposed multi-task 

framework.
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Table 11

Evaluation of intra-model and inter-model ensemble techniques. “Intra-model” employs solely intra-model ensembling, and “Inter-Model” 
utilizes only inter-model ensembling. “Ours” combines both intra-model and inter-model ensembling strategies. The data demonstrates that 
ensemble methodologies consistently enhance models’ performance.

𝑚𝑃𝑄+ 𝑅2

Lizard PanNuke MoNuSAC Lizard PanNuke MoNuSAC

SEResNeXt50 0.5087±0.0327 0.4322±0.0216 0.4712±0.0156 0.7529±0.1143 0.6658±0.0622 0.6356±0.0906

SEResNeXt50 (Intra-model) 0.5488±0.0063 0.4326±0.0218 0.4916±0.0211 0.8455±0.0270 0.6659±0.0630 0.6988±0.0885

SEResNeXt101 0.5286±0.0373 0.4489±0.0196 0.4815±0.0142 0.7700±0.1667 0.6942±0.0479 0.6288±0.1013

SEResNeXt101 (Intra-model) 0.5482±0.0264 0.4506±0.0185 0.5011±0.0228 0.8009±0.1796 0.6955±0.0481 0.6904±0.1020

Inter-model 0.5352±0.0159 0.4686±0.0082 0.5101±0.0255 0.8185±0.0361 0.7260±0.0528 0.7134±0.1027

Ours (ensemble all) 0.5599±0.0086 0.4738±0.0061 0.5567±0.0125 0.8437±0.0454 0.7127±0.0553 0.7968±0.0470
6. Discussion

6.1. Practical usage

Our proposed method has the potential to be used in various practical 
applications in digital pathology. One potential application is in estimat-
ing tumor burden by counting the number of tumor nuclei and dividing 
the number by the total number of nuclei. This could be a valuable tool 
for clinicians, as it could aid in prognostic estimation and patient treat-
ment planning for neo-adjuvant therapy. Our model could be embedded 
in a software that enables pathologists to view whole-slide images with 
our segmentation overlay, similar to Fig. 4, and our cellular composition 
prediction results displayed alongside. This could potentially aid doctors 
in their diagnostic workflow and ultimately improve patient care.

6.2. Limitations

A notable constraint of our approach is the computational complex-
ity in our method’s ensembling strategy. The necessity to process data 
across various base models in multiple iterations can lead to increased 
processing times, which may be considered a drawback for applications 
demanding real-time analytical capabilities. The computational inten-
sity is primarily due to the extensive parameterization of our model, 
with a total of 88,739,206 parameters. This parameter count consists of 
the two encoder models: 33,671,843 parameters for the SEResNeXt50-
based model and 55,067,363 parameters for the SEResNeXt101-based 
model. In comparison, the original HoVerNet model comprises a more 
modest 37,639,691 parameters.

Furthermore, the inference time of our method, measured on a 
NVidia 3090 GPU, stands at 0.1421 seconds per image. This is notably 
higher than the 0.0262 seconds required by HoVerNet under identical 
conditions. The increased inference time can be attributed to the tripled 
model inference demands for each intra-model ensemble, compounded 
by the inter-model ensemble, which itself requires two distinct intra-
model ensembles. While this imposes certain limitations on the speed of 
our method, it is a reasonable trade-off for the enhanced accuracy and 
robustness that our ensembling strategy provides.

7. Conclusion

In this study, we present an enhanced framework for nuclear in-
stance segmentation, classification, and composition prediction in his-
tology images. Our approach builds upon the popular HoVer-Net ar-
chitecture and incorporates several enhancements to improve its per-
formance. Specifically, we employed advanced SEResNeXt encoders to 
extract richer features, modified the decoder for improved efficiency, 
and added dropout for regularization. Furthermore, we implemented a 
two-level model ensembling strategy to enhance generalization capa-
bilities. Extensive experiments demonstrate the effectiveness of these 
contributions, resulting in significant complementary performance im-
provements that enable our framework to surpass state-of-the-art meth-
ods on public benchmarks. Our approach can be effortlessly extended to 
nuclear counting and composition regression tasks, achieving top results 
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on the task. Ablation studies provide insights into optimal architectures 
and training strategies for robust multi-task histology image analysis. 
The proposed framework has the potential to facilitate accurate cellular 
characterization and analysis in various pathology applications. Future 
work involves expanding the framework to additional modalities and 
pathology applications requiring accurate cellular characterization. To 
facilitate further research in this direction, we have released our code 
and models. Overall, this study demonstrates the effectiveness of our 
enhanced framework for nuclear instance segmentation, classification, 
and composition prediction in histology images, and its potential appli-
cations in computational pathology.
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