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Abstract

TIMELESS (TIM) was first identified as a molecular cog in the Drosophila circadian clock. 

Almost three decades of investigations have resulted in an insightful model describing the critical 

role of Drosophila TIM (dTIM) in circadian timekeeping in insects, including its function in 

mediating light entrainment and temperature compensation of the molecular clock. Furthermore, 

exciting discoveries on its sequence polymorphism and thermosensitive alternative RNA splicing 

have also established its role in regulating seasonal biology. Although mammalian TIM (mTIM), 

its mammalian paralog, was first identified as a potential circadian clock component in 1990s 

due to sequence similarity to dTIM, its role in clock regulation has been more controversial. 

Mammalian TIM has now been characterized as a DNA replication fork component and has been 

shown to promote fork progression and participate in cell cycle checkpoint signaling in response 

to DNA damage. Despite defective circadian rhythms displayed by mtim mutants, it remains 

controversial whether the regulation of circadian clocks by mTIM is direct, especially given the 

interconnection between the cell cycle and circadian clocks. In this review, we provide a historical 

perspective on the identification of animal tim genes, summarize the roles of TIM proteins in 

biological timing and genomic stability, and draw parallels between dTIM and mTIM despite 

apparent functional divergence.
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Introduction

Circadian rhythms are common features in all domains of life and are driven by molecular 

clockworks [1–6]. Molecular clocks incorporate a range of environmental time cues, such 

as light–dark and temperature signals, and metabolic signals to orchestrate daily rhythms 

in physiology and behavior [4,6,7]. This allows organisms to synchronize their biology to 

their external environment, thereby promoting organismal health and fitness [8–11]. The 

animal circadian clock is powered by cell-autonomous interlocked transcription–translation 

feedback loops (TTFLs) [6]. In the primary TTFL in Drosophila, which relies heavily 

on Drosophila TIM (dTIM) function, transcription factors CLOCK (CLK) (ortholog of 

mammalian CLOCK) and CYCLE (CYC) (ortholog of mammalian BMAL1) are positive 

elements that heterodimerize and activate the expression of negative elements, PERIOD 

(PER) (ortholog of mammalian PER1, PER2, and PER3) and dTIM (functionally replaced 

by CRYPTOCHROMEs (CRYs) in mammalian clockworks). In addition to core clock 

components, CLK-CYC also activates the transcription of other clock-controlled output 

genes [12–14], often in tissue-specific manner [15–17]. To complete the TTFL, PER, and 

dTIM form a repressor complex that enters the nucleus in a time-of-day-dependent manner 

[18–22] to repress CLK-CYC transcription activity [23–25]. This repression is relieved 

when both PER and dTIM are degraded in a proteasome-dependent manner [26–30]. In 

addition to its role within the molecular clock, thermosensitive alternative splicing of dtim 
RNA [31–34] and light sensitivity [35–38] of TIM protein are key features that allow dTIM 

to function at the interface between circadian and seasonal timing.

In the mammalian clock, CRYs replace TIM to partner with PERs to maintain circadian 

rhythms [39–44]. Whether mammalian TIM (mTIM) is a key component of the mammalian 

clock has been heavily debated since it was first characterized [45–47]. On the other hand, 

evidence supporting the role of mTIM in DNA replication and DNA damage response is 

strong. We will discuss the controversial role of mTIM in timekeeping below.

This review summarizes the various roles played by dTIM in Drosophila circadian clocks, in 

the regulation of seasonal biology, and other non-circadian processes. We will then discuss 

the circadian and non-circadian functions of mTIM, highlighting data that either support its 

role in circadian timekeeping or are in conflict with the notion. Finally, we conclude the 

review by summarizing recent findings on the potential functional parallel between dTIM 

and mTIM.

Drosophila TIM plays critical roles in circadian timekeeping

Drosophila TIM in the molecular clock

Circadian timekeeping relies on cycling genes and proteins that maintain a free-running 

period of approximately 24 h. Investigations to elucidate the inner workings of the molecular 

clockwork started around 50 years ago, when Konopka and Benzer [48] isolated the first 

three clock mutants in Drosophila melanogaster via genetic screening. The mutations were 

all located in the same loci, which were later confirmed as the key clock gene, period 
(per) [49–53]. Hardin et al. [54] suggested that PER may feedback to repress its own 

mRNA expression to establish molecular oscillations that manifest into behavioral and 
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physiology rhythms. In the next few years, taking advantage of high throughput genetic 

screening in Drosophila, Sehgal et al. [55] identified dtim as the second clock gene. This 

gene encodes a protein with novel structure at the time and the only recognizable sequence 

feature the authors highlighted was a stretch of acidic residues [56]. The arrhythmic PER 

nuclear localization as well as locomotor activity in dtim null mutants has led to the 

model illustrating how the coordination of per and dtim may generate 24-h free-running 

period via negative feedback: (a) transcriptional activation of per and dtim in midday due 

to the absence of nuclear PER; (b) PER and dTIM heterodimerize and enter the nucleus 

at dusk; (c) increasing amount of nuclear PER blocks per and dtim mRNA transcription 

and accumulation at night; (d) nuclear PER and dTIM decline because of inhibited mRNA 

production and subsequent protein turnover in late night to early morning (Fig. 1) [57]. 

This model was eventually expanded to incorporate CLK [58,59] and CYC [60] after their 

characterization, thereby establishing the TTFL model of the Drosophila clock.

As a negative component in the molecular clockwork, dTIM does not have intrinsic 

repression activity. Instead, it is essential in maintaining rhythmic PER expression and 

activity (Fig. 1). This is strongly supported by observations that PER rhythmic expression 

and behavioral rhythmicity are abolished in dtim null mutant [18] and mutants that are 

defective in TIM nuclear entry [61,62]. Early studies suggest that dTIM binds to and blocks 

the cytoplasmic localization domain (CLD) of PER and thus reduces PER cytoplasmic 

retention [63]. Another study described a mechanism by which dTIM antagonizes the 

activity of DOUBLETIME (DBT, homolog of mammalian casein kinase 1 delta/epsilon) in 

inhibiting PER nuclear entry [22]. dTIM also acts as the major cargo recognized by the 

Importin-α1 (IMPα1) nuclear entry machinery, thus transporting PER into the nucleus [64]. 

Saez et al. [61] identified a functional nuclear localization signal (NLS) that is potentially 

recognized by IMPα1 (Fig. 2). Once in the nucleus, dTIM appears to be bound to PER 

constitutively and facilitates PER repression [25,65]. Sun et al. [66] suggested that dTIM 

may act as a scaffold to promote PER-CLK interaction. Alternatively, dTIM may facilitate 

yet-to-be-characterized CLK kinase(s) [23,24,67] in the PER-dTIM repressor complex to 

phosphorylate CLK and inactivate transcriptional activity.

dTIM function is extensively regulated by posttranslational modifications (PTMs). Notably, 

phosphorylation is the best-studied protein modification to achieve dTIM time-of-day 

specific functions. Casein kinase 2 (CK2) and SHAGGY [SGG, homolog of mammalian 

glycogen synthase kinase-3β (GSK3β)] have been shown to phosphorylate both PER and 

dTIM and promote nuclear entry [68–72] (Fig. 1). Interestingly, once in the nucleus, 

PER-dTIM complexes are subjected to phosphorylation-dependent nuclear export, providing 

an additional means to control nuclear accumulation [21,67]. Protein phosphatases also 

participate in regulating PER-dTIM nuclear accumulation [73–75]. Over the past 10 years, 

site-specific functions of dTIM phosphorylation have been characterized in a few studies 

(Fig. 2). In vivo functional analysis leveraging mutagenesis of dTIM protein revealed that 

T113 is critical for rhythmic dTIM expression [62]. Mutating T113 to non-phosphorylatable 

alanine (A) abolishes dTIM nuclear entry, whereas mutations at a nearby proline (P115) 

produce similar defects. Combining genetic and biochemical studies, Top et al. [72] showed 

that SGG and CK2 phosphorylate five residues at ST region (S297, T301, T305, S309, 

and S313) to promote dTIM nuclear accumulation. Interestingly, SGG and CK2 appear 
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to regulate PER-dTIM only in a subset of clock neurons, which may contribute to the 

divergent functions of specific neuronal groups within the circadian neuronal circuitry. 

This could potentially explain how alteration in TIM phosphorylation in flies carrying 

timblind allele (A1128V, L1131M) results in lengthened locomotor activity rhythms but 

normal eclosion rhythms [76]. Activity and eclosion rhythms are two well characterized 

output of the Drosophila clock and are normally altered to the same extent in most fly 

mutants, including the three per mutants Konopka and Benzer identified in 1971 [48]. The 

mechanisms by which kinases phosphorylate PER-dTIM in specific neurons remain unclear. 

Since alternative pre-mRNA splicing patterns were observed in different clock neurons 

including for sgg mRNAs [77], we speculate that this may result in cell-type-specific 

posttranslational modification programs for key clock proteins, including dTIM.

Recently, two studies harnessed mass spectrometry proteomics to identify dTIM 

phosphorylation sites [67,75] (Fig. 2). Kula-Eversole et al. [75] identified five dTIM 

phosphorylation sites in Drosophila S2R+ cells coexpressing dTIM and relevant kinases 

(SGG and CK2). S586 and T991 are shown to be dephosphorylated by Phosphatase of 

Regenerating Liver-1 (PRL-1), which in turn promotes dTIM nuclear accumulation. In Cai 

et al. [67], we identified 12 phosphorylation sites in PER-bound dTIM from Drosophila 
tissues. In particular, we showed that S1404 phosphorylation inhibits the interaction between 

dTIM and the nuclear export complex, thereby promoting dTIM nuclear accumulation. 

S1404 phosphorylation status in fly tissues was confirmed using phospho-specific antibody.

In addition to nuclear accumulation, phosphorylation also regulates dTIM protein 

turnover. CULLIN-3 (CUL-3) and SKP1-CUL1-F-box-protein/SUPERNUMERARY LIMB 

complex (SCF/SLIMB) differentially facilitates dTIM degradation depending on its 

phosphorylation status [27,78], thus fine-tuning dTIM phase-specific functions (Fig. 1). 

Besides phosphorylation, O-GlcNAcylation at multiple residues on dTIM was also identified 

[67]. Since O-GlcNAcylation modifies serine/threonine residues and regulates the function 

of many proteins including PER and CLK [79–82], it will be interesting to determine 

how the two types of PTMs coordinate to regulate dTIM phase-specific functions. Given O-

GlcNAcylation is nutrient-sensitive, this could be a mechanism by which metabolic signals 

can integrate with time-of-day environmental signals to promote robust circadian rhythms.

Finally, besides PTMs, dtim expression is regulated by posttranscriptional mechanisms. 

Carbon catabolite repression-negative on TATA-less deadenylation complex (CCR4-NOT) 

has been shown to regulate dtim mRNA stability to support phase-specific dTIM function 

[83]. Drosophila tim also exhibits alternative splicing pattern in response to environmental 

conditions, which will be described later.

Drosophila TIM and light entrainment of circadian rhythms

To confer fitness, a circadian clock must be synchronized to local time. Environmental 

time cues such as daily light–dark or temperature cycles entrain the circadian clock [84]. 

Identification of clock genes paved the way to investigations on molecular components that 

mediate clock entrainment. Two years after the identification of dtim in 1994, four exciting 

papers showed that dTIM displays light sensitivity, thus coupling the molecular clockwork 

to photic input from the environment [35–38] (Fig. 1). CRY is the major photoreceptor 
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that mediates TIM light-dependent degradation [85–87]. Light induces CRY conformational 

change, thus enabling CRY to bind to dTIM. Thereafter, E3 ubiquitin ligase JETLAG 

(JET) along with CRY promotes rapid TIM proteasomal degradation [28,87,88] upon 

yet uncharacterized TIM tyrosine phosphorylation [89]. QUASIMODO (QSM), a light-

responsive protein expressing predominantly in CRY-negative clock neurons, also trigger 

dTIM degradation upon light exposure [90]. dTIM degradation promotes PER turnover, thus 

resetting the circadian clock [37].

Drosophila TIM and temperature compensation of the circadian clock

Whereas rates of chemical reactions are often temperature-dependent on a molecular level, 

a clock is only meaningful if its period length stays constant over a wide range of 

temperatures. The circadian clock has the property of temperature compensation; its pace 

is stable over a wide range of temperatures [84]. PER was first identified to participate 

in this process. A repetitive threonine-glycine (Thr-Gly) tract in PER exhibits more 

flexible conformation in higher temperature [91], which correlates with the observation 

that flies expressing PER with a deletion in the Thr–Gly tract display impaired temperature 

compensation of the circadian clock [92]. In wild D. melanogaster populations, the Thr–Gly 

tract is polymorphic in length; this is adaptive and enables flies to maintain the pace of the 

clock in environments with different range of temperatures [93].

dtim has also been demonstrated to contribute to temperature compensation of the 

clock. At the posttranscriptional level, manipulating dtim thermosensitive splicing results 

in defective temperature compensation [32,33]. Elucidating the function of each dtim 
isoform under different temperatures could help understand how they regulate temperature 

compensation in future studies. At the posttranslational level, mutant lines bearing a number 

of amino acid substitutions, timrit (P1116A) and timblind, exhibit impaired temperature 

compensation [94,95]. The mechanism by which dTIM regulates temperature compensation 

remains unclear. One possibility is that temperature directly modulates PER-dTIM 

interaction. Another possibility is that temperature may indirectly modulate site-specific 

phosphorylation to regulate phase-specific functions of PER-dTIM and achieve temperature 

compensation. In mammalian systems, temperature has been shown to determine the priority 

of competing phosphorylation sites to regulate PER2 turnover rate [96,97]. Therefore, mass 

spectrometry-based phosphorylation site mapping in combination with molecular genetics 

may further expand our understanding of how dTIM phosphorylation confers temperature 

compensation in flies.

Sequence polymorphism and alternative splicing of Drosophila tim 

regulates seasonal biology

To prepare for seasonal changes, plants and animals rely on internal photoperiodic timers, 

allowing them to undergo physiological and behavioral changes to survive unfavorable times 

[98–100]. Genetic analysis of wild D. melanogaster populations as well as molecular studies 

revealed that polymorphism at the dtim locus facilitates seasonal adaptation (Fig. 3A). ls-tim 
is a derived dtim allele that evolved 300–3000 years ago in Europe [101] and has a G 

nucleotide insertion upstream of the original ATG translational start site [102,103]. This 
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generates an extra ATG 23 amino acids upstream of the TIM-S start codon. ls-tim allele 

thus generates two protein isoforms: TIM-S and a 23-aa longer TIM-L (Fig. 2) (TIM-S and 

TIM-L were originally named S-TIM and L-TIM but we are renaming them to follow the 

convention used in more recent publications describing other TIM protein isoforms resulting 

from alternative pre-mRNA splicing). TIM-L displays reduced light sensitivity, largely due 

to its reduced binding affinity to CRY [88]. Since light-dependent degradation of dTIM is 

critical to the resetting of the clock, reduced light sensitivity is thought to keep the molecular 

clockwork rhythmic in long summer days [104]. Furthermore, in anticipation of the onset 

of winter, flies carrying ls-tim alleles enter reproductive dormancy earlier in autumn as 

compared with flies carrying only s-tim alleles [103]. This is expected to be adaptive for 

flies inhabiting higher latitudes where harsh conditions are common in winter. For this 

reason, it was surprising that Tauber et al. [103] initially found the highest ls-tim allele 

frequency in southeastern Italy and decrease of ls-tim as the sampling distance increases 

both northward and southward. Subsequent analysis now suggests that this derived allele is 

only 300–3000 years old; it is still under selection and has not yet achieved fixation [101]. In 

fact, more extensive sampling in Spain [101] and in North America [105] reported a strong 

latitudinal cline where ls-tim allele increases in frequency as latitude increases.

In addition to sequence polymorphism at the dtim locus, dtim displays thermosensitive 

alternative splicing. This has been proposed to be a temperature sensing mechanism 

to regulate D. melanogaster seasonal biology. In response to temperature changes, dtim 
produces four splice variants: tim-cold, tim-short and cold (tim-sc), tim-M (also called 

tim-tiny), and tim-L (full-length isoform) (Fig. 2). At moderate temperature (25 °C), 

constitutively spliced tim-L is the major isoform and produces full-length TIM [32] 

(Fig. 3B). tim-cold and tim-sc are major isoforms in colder temperatures (10–18 °C) 

[32–34,106], whereas tim-tiny intron is retained in higher temperatures, resulting in high 

levels of tim-M isoform (29–35 °C) [31,32,107]. Thermosensitive alternative splicing is also 

observed in three other Drosophila species, indicating this could be a conserved mechanism 

across the genus [32]. Less is known regarding the functional divergence of each dtim 
splice variant and how the pattern of splicing modulates the circadian clock in different 

seasonal conditions. Since some splicing events generate truncated TIM proteins, they could 

differentially affect TIM function in the circadian clock. For example, the TIM-SC protein 

lacks the C-terminal CLD and part of PER-binding domain, which may compromise nuclear 

accumulation of the PER-dTIM complex. Further functional studies on TIM isoforms are 

required to test this hypothesis.

There has been a substantial amount of evidence to support the role of dtim in regulating 

seasonal biology in addition to the studies mentioned above. They include the observed 

correlation between tim alleles and photoperiodic diapause in D. triauraria [108], changes 

in tim expression levels in response to photoperiod in several insect species [109,110], 

and differential photosensitive alternative splicing of tim observed in cold-adapted D. 
montana populations collected in a wide latitudinal range [111]. We recently provided 

evidence supporting the role of dTIM in seasonal physiology in D. melanogaster [34] (Fig. 

3B). We showed that dtim null mutants fail to enter reproductive dormancy in simulated 

winter condition, while flies overexpressing dtim exhibit higher incidence of reproductive 

dormancy. We report evidence indicating that the cold-induced and light-insensitive isoform 
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TIM-SC facilitates the accumulation of EYES ABSENT (EYA) protein in winter condition, 

an event that is sufficient to promote reproductive dormancy. It remains unclear why TIM-

SC is not subjected to light-dependent degradation and how it interacts with EYA. One 

possibility is that the truncated protein reduces the binding affinity to CRY and/or JET, and 

somehow stabilizes EYA via yet unknown mechanisms. A temperature-dependent alternative 

splicing event is also observed in frequency (frq), a key repressor in the Neurospora 
clockwork [112–114]. It is possible that this temperature-regulated event also contributes 

to Neurospora seasonal adaptation.

What is the mechanism by which temperature regulates dtim alternative splicing? So 

far, splicing regulator P-element somatic inhibitor (PSI) [33] and triple small nuclear 

ribonuclearprotein (tri-snRNP) spliceosome [31] have been shown to regulate dtim splicing. 

Temperature is known to modulate alternative splicing at multiple levels, including the 

expression of splicing-related genes [115,116], PTMs [117], spliceosome assembly [118], 

and spliceosome localization [119,120].

Non-circadian roles of Drosophila TIM

The fact that dTIM is expressed and differentially regulated in non-clock cells has led 

to the investigation of non-circadian roles of dTIM. A few studies revealed unexpected 

results regarding dTIM circadian expression pattern and light sensitivity in non-clock cells. 

dTIM and its binding partner PER remain constitutively cytoplasmic in the fly ovary, which 

is known to lack intracellular molecular clocks [121–123]. This is unlike the subcellular 

shuttling of PER-dTIM observed consistently in clock neurons. Furthermore, dTIM in the 

follicle cells is not susceptible to light-induced degradation [123,124]. It is noteworthy that 

egg-laying rhythms persist under constant light, in contrast to the arrhythmic eclosion and 

locomotor activity rhythms in the same condition [125]. Whether the peculiar PER-dTIM 

behavior in ovaries relates to rhythmic egg laying under constant light remains unclear. 

Although dtim null mutants display reduced fitness in terms of female fertility and fecundity 

[123], it has been proposed that this is likely due to the overall loss of the circadian 

clock [11]. To examine non-circadian roles of dtim, it is necessary to manipulate dtim 
specifically in target cells/tissues. One possibility is that dtim expressed in non-clock cells 

has a residual role in maintaining chromosome integrity inferred from its ancestral paralog 

dTIMEOUT, the homolog of mTIM [126] (Fig. 4A). The non-circadian function of mTIM 

will be discussed below.

Debate on mammalian TIM function in circadian timekeeping

Evidence supporting the role of mammalian TIM in the circadian clock

Whether mTIM is a core component in the mammalian clock has been controversial. Due to 

their sequence similarity, mTIM was first identified as the homolog of dTIM in late 1990s 

[127–130]. Because of its rhythmic mRNA expression in the mammalian brain [127,131] 

and physical interaction to core clock proteins mPER1/2/3 [130,132] and CRY1/2 [133–

136], mTIM was implicated as a clock protein. In addition, short-term mTIM knockdown 

causes phase resetting, whereas long-term knockdown of mTIM disrupts circadian neuronal 

activity rhythms [132]. Recently, Kurien et al. [137] reported a mutation in human 

Cai and Chiu Page 7

FEBS J. Author manuscript; available in PMC 2022 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TIM (hTIM) that causes familial advanced sleep phase syndrome (FASPS), reviving the 

discussion of the potential role of mTIM in mammalian clockworks. This mutation inhibits 

TIM nuclear accumulation and destabilizes PER/CRY2 repressor complex at the molecular 

level.

Evidence contradicting a direct role of mammalian TIM in regulating circadian rhythms

Multiple lines of evidence argue against a direct role of mTIM in the molecular clock. 

Homozygous mTim mutant mice are lethal in embryonic stage, whereas other homozygous 

clock mutants remain viable, suggesting a critical non-circadian role of mTIM [45]. 

The binding of mTIM to CRY1/2 does not necessarily support a circadian role of 

mTIM given that CRY1/2 also participates in non-circadian processes. CRY1 and CRY2 

are known to modulate DNA damage response [138] and cell proliferation [139], and 

the interaction of mTIM-CRY1 and mTIM-CRY2 are critical for checkpoint activation 

[140,141]. Furthermore, phylogenetic analysis revealed that mTIM is an ortholog of 

dTIMEOUT [142]. Drosophila TIMEOUT is the widely conserved ancestral paralog of 

dTIM among eukaryotes that originated from gene duplication at the time of Cambrian 

Explosion [45,46,143]. Unlike dTIM, dTIMEOUT is an essential gene in Drosophila 
development and maintenance of chromosome integrity [126].

Non-circadian roles of mammalian TIM

There have been extensive investigations focusing on non-circadian roles of mTIM (Fig. 

4B,C). Similar to its yeast homolog topoisomerase 1-associated factor 1 (tof1) [144], 

mTIM and its evolutionally conserved partner Tim-interacting protein (TIPIN) maintain 

replisome stability [145,146] and promote fork progression through hard-to-replicate regions 

[147–151]. In response to DNA damage, mTIM collaborates with cardinal signaling 

kinases ataxia telangiectasia-mutated checkpoint kinase 1 (ATR-CHK1) [140,152], ataxia 

telangiectasia and Rad3-related checkpoint kinase 2 (ATM-CHK2) [153], and poly [ADP-

ribose] polymerase 1 (PARP1) [154,155] to facilitate proper checkpoint control and DNA 

repair [156–158]. Because of its role in genome maintenance, it is not surprising that mTIM 

dysregulation is commonly found in many cancer types [153,159,160]. Specifically, mTIM 

promotes cancer development by protecting cancer cells from replication stress and cell 

cycle arrest [153,161,162]. Thus, mTIM appears to be a promising target for anticancer 

treatment. However, given its ability to influence the circadian clock, the side effect of clock 

disruption needs to be considered, as clock disruption has been linked to increased risks of 

many diseases including metabolic disorders and cancers [163,164].

Considering the role of mTIM discussed in this section, it is noteworthy that the period 

shortening phenotype on the molecular clock resulting from the mTIM(R1081X) mutation 

is limited to proliferative cells [137]. Since the circadian clock ticks regardless of cell 

proliferation status, why was the period shortening phenotype only observed in proliferating 

cells? We speculate that mTIM modulates the circadian clock through its role in other 

cellular processes occurring only in proliferating cells. Specifically, its elevated expression 

in proliferative tissues such as spleen and thymus are consistent with its cell cycle-related 

function [137,165]. DNA damage has been shown to induce a circadian phase shift [166–

168], with mTIM downregulation attenuating this effect [165]. Interestingly, the FASPS 
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mutation found in hTIM lacks the C-terminal domain critical for mTIM-mediated DNA 

repair and checkpoint activation through replication stress response regulator SDE2 and 

PARP1 binding, respectively [153,154,162]. Taken together, it is plausible that the period 

shortening effect in proliferating cells can be attributed to a non-circadian role of mTIM.

Despite functional divergence of mTIM and dTIM, there are still some parallels. Drosophila 
TIMEOUT is expressed in the optic lobe of adult Drosophila and contributes to light 

entrainment, analogous to light sensitivity of dTIM [126]. Decreased dTIM and mTIM 

nuclear accumulation in Drosophila and mammals respectively both lead to similar outcome 

in circadian rhythms at the molecular and behavioral levels [67,137] (Fig. 5). This highlights 

an unexpected functional parallel between mTIM and dTIM in circadian regulation.

Conclusion and perspectives

The very name of the timeless gene hints at its critical function in biological timing. 

Since its discovery, almost three decades ago in D. melanogaster, a large body of work 

have uncovered the role of dTIM as a cardinal clock protein necessary to maintain 

circadian timekeeping, mediate light entrainment, and modulate temperature compensation. 

Thermosensitive splicing of tim mRNA in combination with the light sensitivity of dTIM 

protein enables its role in regulating seasonal physiology. Its ancestral paralog timeout 
(mTIM in mammals) surprisingly plays a distinct role in the maintenance of genomic 

stability. An important unanswered question regarding the role of dTIM in biological 

rhythms is how splice variants affect dTIM protein function in response to thermal and 

photic cues. The answer would clarify how the circadian clock interplays with seasonal 

timing. Another area of interest is to elucidate how mTIM regulates the molecular 

clockwork and potentially sits at the intersection between circadian clocks and cell cycle 

regulation. This would further shed light on the functional similarity and divergence of 

the two TIM paralogs. More importantly, this would extend our understanding of the 

interconnection between the circadian clock and the cell cycle. Circadian regulation of the 

cell cycle has been found in all domains of life [169–178], and the cell cycle also influences 

the phase and amplitude of circadian rhythms [166,179,180]. Given the accumulating 

evidence on circadian regulation of the cell cycle in the context of cancer and tissue 

regeneration upon injury [181–186], understanding the interaction of the circadian clock 

and the cell cycle could pave the way for innovative therapeutics for cancer and improved 

recovery of patients who suffered injuries.
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CLK CLOCK

CRY CRYPTOCHROME

CYC CYCLE
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dTIM Drosophila TIM

mTIM mammalian TIM

PER PERIOD

PTM posttranslational modification

TIM TIMELESS

TTFL transcription–translation feedback loop
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Fig. 1. 
Drosophila TIM (dTIM) is a core component of the molecular oscillator. During the 

day, CLK-CYC heterodimers activate the transcription of rhythmic genes, including per 
and tim in the nucleus [6]. In the cytoplasm, dTIM undergoes proteasomal degradation 

mediated by CRYPTOCHROME (CRY) [35–38] and JETLAG (JET) [28,88] upon light 

exposure. CULLIN-3 (CUL-3) has also been observed to mediate dTIM degradation in a 

light-independent manner [27]. Early in the night, SHAGGY (SGG) [68], casein kinase 1α 
(CK1α) [187], casein kinase 2 (CK2) [69,70], Importin-α1 (Impα1) [64] and phosphatase 

of regenerating liver-1 (PRL-1) [75] promote nuclear accumulation of PER-dTIM complex. 

This is antagonized by DOUBLETIME (DBT) [25], protein phosphatase 1 (PP1) [74] and 

protein phosphatase 2A (PP2A) [73]. Once PER-dTIM complex is in the nucleus, CK2-

dependent phosphorylation of dTIM (S1404) inhibits PER-dTIM nuclear export by exportin 

1 (XPO1) complex, retaining PER-dTIM complex in the nucleus [67]. At midnight, nuclear 

PER–dTIM complex interacts with CLK-CYC and represses their transcriptional activity 

[23,25]. From late night to early morning, CRY and JET mediate light-dependent TIM 

degradation [28,88], whereas DBT and SUPERNUMERARY LIMBS (SLIMB) mediate 

PER degradation [26,29]. There have also been reports suggesting the involvement of 

SLIMB in TIM degradation [27].
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Fig. 2. 
Schematic illustrating domain structure of TIM isoforms generated from alternative splicing. 

All amino acid numbering is based on the TIM-L1421 isoform. ‘TIM-S start’ denotes 

alternative translation start site for TIM-S. Previously described domains of TIM: 32 

amino acid region (amino acid [aa] 260–291) [188], also known as serine-rich domain 

(SRD) (aa 260–292) [71]; serine/threonine (ST)-rich region (aa 293–312) [72]; a stretch 

of acidic amino acid residues (acidic aa) (aa 383–412) [56]; PER binding domain 1 

(PER BD1) (aa 536–610) [61]; nuclear localization sequence (NLS) (aa 558–593) [61]; 

C-terminal tail-like sequence (CTL) (aa 640–649) [87]; PER binding domain 2 (PER BD2) 

(aa 747–946) [61]; and cytoplasmic localization domain (CLD) (aa 1261–1421) [61]. P = 

phosphorylation sites [62,67,72,75]. Phosphorylation sites in black = identified via mass 

spectrometry; blue = identified via in vivo functional analysis but have not been validated by 

mass spectrometry or phospho-specific antibodies. TIM-cold, TIM-SC, TIM-M isoforms are 

based on Shakhmantsir et al., Foley et al., Martin Anduaga et al. [31–33].
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Fig. 3. 
Role of Drosophila TIM in regulating seasonal biology. (A) Flies carrying s-tim allele 

express TIM-S, whereas flies carrying ls-tim allele express both TIM-L and TIM-S. 

Sampling of flies in North America [105] and on the eastern side of the Iberian Peninsula 

[101] showed that ls-tim allele frequency exhibits a latitudinal cline and increases with 

latitude. Since TIM-L is less susceptible to light-activated CRY-dependent degradation, 

flies carrying ls-tim allele interpret light signal differently and have higher inducibility of 

reproductive dormancy at the onset of winter to survive harsh conditions [103]. (B) High 

temperature promotes accumulation of TIM-M isoform [31]. TIM-L is the major isoform 

at warm temperature [32]. Cold temperature promotes the accumulation of TIM-SC and 
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TIM-cold isoforms [32,33]. TIM-SC can potentially stabilize EYES ABSENT (EYA) to 

promote reproductive dormancy [34].
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Fig. 4. 
Drosophila TIMEOUT and mammalian TIMELESS in genome maintenance. (A) 

Drosophila TIMEOUT interacts with Ataxia telangiectasia and Rad3-related (ATR) 

(genetically) to maintain genomic stability [126]. (B) mTIM and Tim-interacting protein 

(TIPIN) couple replicative DNA helicase CMG (CDC45, MCM2-7, GINS) and DNA 

polymerase (Pol) [145,146] in progressing replication fork. (C) In response to DNA damage, 

mTIM physically interacts with and recruits poly [ADP-ribose] polymerase 1 (PARP1) to 

damaged sites [153,154]. ATR and ataxia telangiectasia mutated (ATM) can both sense DNA 

damage and phosphorylate checkpoint kinase 1/2 (CHK1/2) [189]. This is dependent on a 

number of partner proteins including mTIM [140,152,153].
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Fig. 5. 
Functional parallel between Drosophila and mammalian TIM. Drosophila TIM(S1404A) 

elevates PER-dTIM nuclear export [67]. The reduced abundance of nuclear PER-dTIM 

repressor complex leads to altered phosphorylation status of CLK and transcriptional 

activity of CLK-CYC, resulting in advanced behavioral rhythms. Mammalian TIM 

(R1081X) results in reduced nuclear mTIM [137], similar to the phenotype observed in 

dTIM(S1404A). This promotes destabilization of PER2-CRY2 repressor complex, thus 

altering transcriptional activity of CLOCK-BMAL1 and resulting in advanced sleep phase 

syndrome. Phosphorylation status of CLOCK or BMAL1 was not examined in [137].
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