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Aldo–keto reductases comprise of AKR1C1–AKR1C4, four enzymes that catalyze
NADPH dependent reductions and have been implicated in biosynthesis, intermediary
metabolism, and detoxification. Recent studies have provided evidences of strong
correlation between the expression levels of these family members and the malignant
transformation as well as the resistance to cancer therapy. Mechanistically, most studies
focus on the catalytic-dependent function of AKR1C isoforms, like their impeccable
roles in prostate cancer, breast cancer, and drug resistance due to the broad substrates
specificity. However, accumulating clues showed that catalytic-independent functions
also played critical roles in regulating biological events. This review summarizes the
catalytic-dependent and -independent roles of AKR1Cs, as well as the small molecule
inhibitors targeting these family members.
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INTRODUCTION

The AKR1C1–AKR1C4 genes are located on chromosome 10 p15-p14 and comprise of 12 exons.
And the average molecular weight of enzymes is estimated to be 34–42 kDa. These enzymes share a
high percentage of amino-acid sequence identity that ranges from 84 to 98%. In particular, AKR1C1
and AKR1C2, differ by only seven amino-acid residues (Jez et al., 1997).

The AKR1C isoforms play pivotal roles in NADPH dependent reductions. Therefore, the
enzymes are highly related to malignant cancer involve NADPH reductive progress like PCa, breast
cancer, and etc. Whereas, discoveries about the catalytic-independent role of the AKR1C isoforms,
has also been revealed, including their function as a coactivator, regulation in E3-ligase-ubiquirin
system, cell sensitivity, apoptosis, and metastasis.

AKR1C1–C4-HYDROXYSTEROID DEHYDROGENASE

AKR1C isoforms catalyze NADPH dependent reductions at the C3, C5, C17, and C20 positions on
the steroid nucleus and side-chain and act as 3-keto-, 17-keto-, and 20- ketosteroid reductases to
varying extents in humans (Rižner and Penning, 2014).

Abbreviations: 3α-HP, 3α-hydroxyprogesterone; 5αP, 5α-dihydroprogesterone; 20α-DHP, 20α-dihydroprogesterone; ADT,
androgen deprivation therapy; AKR1C isoforms, Aldo–keto reductases; AR, androgen receptor; CRPC, castration-resistant
prostate cancer; DHO, dihydrooracin; DHT, dihydrotestosterone; ER, estrogen receptor; HR, hormone receptors; PCa,
prostate cancer; PGF, prostaglandin factor; PR, prostaglandin receptor.
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AKR1C4 is mainly liver-specific (Deyashiki et al., 1994) and
recently it has been proved to be related to manic/hypomanic
irritability in males (Johansson et al., 2011, 2012). AKR1C4
efficiently catalyzes the reduction of 5α-pregnane-3,20-dione to
yield 3α-hydroxy-5α-pregnan-20-one (allopregnanolone) which
is the precursor of and rosterone (Higaki et al., 2003).

The AKR1C3 protein is also known as PGF synthase that
catalyzes the conversion of prostaglandins H2 and D2 into
PGF2α and 9α,11β-PGF2α respectively (Suzuki-Yamamoto et al.,
1999). It has the highest catalytic efficiency of the AKR1C
enzymes to interconvert testosterone with 14-androstene-
3,17-dione (Sharma et al., 2006). The enzyme will also
reversibly reduce 5α-DHT, estrogen and progesterone to produce
3α-androstanediol, 17β-estradiol and 20α-hydroxprogesterone,
respectively (Penning et al., 2001). There are also significant
correlations between the expression levels of AKR1C3 and CRPC.
And AKR1C3 overexpression is proved to be a promising
biomarker for PCa progression (Tian et al., 2014; Hagberg
Thulin et al., 2016). Positive AKR1C3 immunoreactivity was
also extensively present in both adenocarcinoma and squamous
cell carcinoma arising from the lung and the gastroesophageal
junction (Miller et al., 2012). Strong correlations between
AKR1C3 and tumors were also demonstrated in human
colorectal cancer (Hanada et al., 2012; Nakarai et al., 2015),
columnar epithelium (Miller et al., 2012), and endometriosis
(Sinreih et al., 2015a; Gibson et al., 2016).

While AKR1C4 and AKR1C3 are almost exclusively in
the liver and prostate respectively, AKR1C1 and AKR1C2
are most prominent in the mammary glands includes breast
cancer, endometrial cancer, colorectal cancer (Hanada et al.,
2012; Hofman et al., 2015; Sinreih et al., 2015b; Wang et al.,
2016; Wenners et al., 2016). AKR1C2, is also known as bile-
acid binding protein and DD2, has lower catalytic efficiencies
but preferentially reduces 3-ketosteroids. AKR1C2 preferentially
reduces DHT to the weak metabolite 5α-androstane-3α,17β-diol
(3α-diol) without conversion of 3α-diol to DHT in the PC-3 cell
line (Ji et al., 2003). Progesterone is found to be essential for
maintenance of early pregnancy (Agrawal and Hirsch, 2012) and
blunting estrogen signaling in endometrial cancer (Ham et al.,
1975). And AKR1C1 is the predominant 20-ketosteroid reductase
in man and play an important role in reductive inactivation of
progesterone into 20α-DHP (Rižner et al., 2006).

CATALYTIC-DEPENDENT BIOLOGICAL
ROLE AND CANCER

DHT and Prostate Cancer
Prostate cancer is the most commonly diagnosed solid tumor and
the second cause of cancer-related mortality (Tanaka et al., 1993).
Androgens drive PCa cell growth via the AR. Accordingly, ADT
has been the mainstay in the treatment of advanced PCa patients.
However, patients eventually relapse and develop into the lethal
form of the disease, termed CRPC (Zong and Goldstein, 2013;
Zhang et al., 2016a).

Recent evidence suggests that CRPC may be caused by
augmented androgen/AR signaling, generally involving AR

overexpression (Yuan and Balk, 2009; Taylor et al., 2010; Shiota
et al., 2011). Therefore, newer therapies that target androgen
metabolizing AR are being developed and have shown clinical
efficacy, indicating the continued importance of the androgen
signaling axis in advanced PCa (Higano and Crawford, 2011).

AKR1C3 plays an important role for the biosynthesis of
testosterone and estradiol. Elevated levels of AKR1C3 expression
in CRPC over PCa have been reported (Tian et al., 2014). The
differential distribution of AKR1C isoforms includes AKR1C1
and AKR1C2 has been implicated in the maintenance of a
pro-estrogenic or a pro-androgenic state which contributes to
development of CRPC as well (Hofland et al., 2010).

High affinity binding of DHT to the AR initiates androgen-
dependent gene activation and contributes to PCa development
and progression. DHT is synthesized predominantly by
5α-reduction of testosterone (5α-DHT) (Mohler et al., 2011).

In the prostate, 5α-DHT can be reduced to 3α-diol through
the action of reductive 3α-HSDs. Between the two major 3α-HSD
isozymes, AKR1C2 and AKR1C3, in human prostate, both
isozymes catalyze the reversible reduction of 5α-DHT activity
toward the weakly androgenic metabolite 3α-diol, which is
recognized as a weak androgen with low affinity toward the AR.
AKR1C1, which is associated with the HSD3B pathway of DHT
metabolism, expressed at higher levels than AKR1C2, catalyzes
the irreversible conversion of DHT to 3β-diol (Zhang et al.,
2016a). Therefore, the 3α-HSD regulate the occupancy of the AR
(Ji et al., 2003; Yepuru et al., 2013).

Recent study has found a first-in-class orally available
inhibitor of AKR1C3, ASP9521, which demonstrated anti-
tumor activity in vitro and in vivo preclinical models (Loriot
et al., 2014). SN33638, a selective inhibitor of AKR1C3, can
prevent the conversion of PGD2 to11β-PGF2α. However, due
to the involvement of additional enzymes in testosterone and
17β-estradiol synthesis, its activity at preventing steroid hormone
reduction and resultant CRPC and ER-positive breast cancer
growth is limited to small subpopulation of CRPC patients
with tumors that have upregulated AKR1C3 expression and are
dependent on AKR1C3 for producing the testosterone required
for their growth (Yin et al., 2014).

Progesterone and Breast Cancer
Breast cancer is the most frequently diagnosed cancer in women
worldwide. The ovarian steroid hormone, progesterone, and its
nuclear receptor, the progesterone receptor, are implicated in the
progression of breast cancer (Ross et al., 2000). Progesterone
binding to its receptor supports an increased progesterone-
responsive gene expression and therewith tumor growth and
progression (Ji et al., 2004).

AKR1C3 is known to be abundantly expressed in breast
cancer tissues, and high levels are often associated with adverse
clinical outcome. AKR1C3 is capable to produce intratumorally
testosterone and 17β-estradiol by reducing the androgen
precursors and estrogen, respectively. The local conversion of
less potent hormones to more potent ones will lead to nuclear
receptor activation and tumor progression. Therefore, AKR1C3
has recently been identified as a potential therapeutic target
in both CRPC and ER-positive breast cancer. AKR1C3 is
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responsible for the reduction of PGD2 to11β-PGF2α, both of
which were reported to demonstrate similar affinities toward
their cognate receptor, Prostaglandin receptor (FP receptor). And
the action of FP receptor ligands results in carcinoma cell survival
in breast cancer (Yoda et al., 2015). AKR1C3 is also associated
with doxorubicin resistance in human breast cancer (Zhong et al.,
2015).

However, a large proportion (about 30–60%) of breast tumors
are PR negative (McGuire et al., 1982; Taucher et al., 2003;
Rexhepaj et al., 2008), and about 90% of normal proliferating
breast epithelial cells are receptor negative (Robinson et al., 2000).
Patients with receptor-negative tumors do not respond to current
steroid hormone-based therapies and generally have significantly
higher risk of recurrence and mortality compared with patients
with tumors that are ER- and/or PR-positive (Wiebe et al., 2013).
Overall, this means that for receptor-negative breast cancers,
current explanations based on estrogen and progesterone actions
and receptors are inadequate, and the related hormone-based
therapies are ineffective. Therefore, it is critical to reveal the
potential mechanism in regulating breast cancer.

The expression of AKR1C1 and AKR1C2 was found reduced
in tumorous breast tissue (Lewis et al., 2004). Then in vitro
studies had shown that progesterone metabolites can regulate
PR-negative breast cell tumor formation and growth as well as
tumor regression and maintenance of normalcy. Progesterone is
degraded to its metabolite 20α-DHP by AKR1C1 and to 3α-HP
by AKR1C2. These metabolites promote suppression of cell
proliferation and adhesion. These 20α-DHP and 3α-HP bind to
specific plasma membrane receptors, separate from classical HRs,
and influence anti-proliferative functions on mitosis, apoptosis,
and cytoskeletal and adhesion molecules (Lewis et al., 2004).
Evidence has also been presented that progesterone metabolites,
5αP exhibits pro-cancer effects.

Drug Resistance
Resistance to anticancer drugs and organ specific toxicity are
two of the major problems in chemotherapy. Although this
phenomenon has been repeatedly observed in the experimental
setting, to our knowledge it has not been clinically exploited. An
emerging theme is the role of AKRs in cancer chemotherapeutic
drug resistance (Barski et al., 2008). And the induction of AKRs
was found to be correlated with changes in drug’s properties.

Among the mechanisms of resistance, metabolic inactivation
by carbonyl reduction is a major cause of chemotherapy
failure that applies to drugs bearing a carbonyl moiety. Oracin
is a promising potential cytostatic drug which is presently
in phase II clinical trials. Continuously studies found that
AKR1C1, AKR1C2, and AKR1C4 mediate the carbonyl
reduction of the novel anticancer drug oracin (6-[2-(2-
hydroxyethyl)-aminoethyl]-5,11-dioxo-5,6-dihydro-11H-indeno
[1,2-c]isoquinoline) to its inactive metabolite DHO (Wsol et al.,
2007; Novotna et al., 2008).

AKR1C3 does also catalyze the inactivation of the
anticancer drug doxorubicin. Doxorubicin undergoes metabolic
detoxification by carbonyl reduction to the corresponding
C13 alcohol metabolite, doxorubicinol (Minotti et al., 2004).
In comparison to doxorubicin, doxorubicinol exhibited

dramatically reduced cytotoxicity, reduced DNA-binding
activity, and strong localization to extra nuclear lysosomes
(Heibein et al., 2012). Induction of AKR1C1 and AKR1C3 has
been shown to efficiently abolish the efficacy of daunorubicin
chemotherapy for leukemic U937 cells by metabolizing both
DNR and cytotoxic aldehydes derived from ROS-linked lipid
peroxidation (Matsunaga et al., 2014). Aldo–keto reductase 1C3
(AKR1C3) is also linked to doxorubicin resistance in human
breast cancer which resulted from activation of anti-apoptosis
PTEN/Akt pathway via PTEN loss (Zhong et al., 2015). And the
reduction of daunorubicin and idarubicin, which is catalyzed
by AKR1C3, also contributes to the resistance of cancer cells to
anthracycline treatment (Hofman et al., 2014).

The biochemical basis for resistance to cisplatin in a human
ovarian cancer cell line has also been reported to be due
to overexpression of the AKR1C1 though the underlying
mechanism has not been revealed yet (Deng et al., 2002).
Knockdown of both AKR1C1 and AKR1C3 in the resistant cells
or treatment of the cells with specific inhibitors of the AKRs
increased the sensitivity to cisplatin toxicity (Matsunaga et al.,
2013).

CATALYTIC-INDEPENDENT BIOLOGICAL
ROLE AND CANCER

Coactivator
Previous studies about AKR1C isoforms mostly revealed their
biological function in an catalytic-dependent role. However, their
non-catalytic functions have remained elusive until Yepuru M.
found that AKR1C3 can function as an AR-selective coactivator.

Early studies presented that AKR1C3 catalyzes the adrenal
androgens into testosterone, which binds to AR or get converted
to DHT, resulting in ligand occupancy of AR. Therefore, AKR1C3
is proposed to play a vital role in the emergence of CRPC by
activation of its enzyme activity.

Notably, it was recently reported that AKR1C3 can regulate
AR activity in a catalytically independent role. Yepuru M. and his
co-workers found that as an enzyme converts androstenedione
to testosterone, AKR1C3 also acts as a selective coactivator for
the AR to promote CRPC growth. AR can interact with AKR1C3
and get recruited to the ARE on the promoter of androgen
responsive genes. Thus, recruits related cofactors leading to
activation of transcription on reduction of target genes. And
while the full-length of proteins is necessary to mediate AKR1C3’s
enzymatic functions, amino acids 171–237 were sufficient to
mediate the AR activation. These observations identify AKR1C3
a high priority target in PCa progression, considering its dual role
as a coactivator and androgen biosynthetic enzyme (Figure 1).

E3-Ligase-Ubiquitin System Regulation
Another example of a catalytically independent role of AKR1C3
on AR activity was found in regulating Siah2 stability. Ubiquitin
ligase Siah2 was reported to enhance AR transcriptional activity
and PCa cell growth (Qi et al., 2013). Further study found that
AKR1C3 shows the ability to bind and stabilize Siah2 by blocking
Siah2 self-ubiquitination and degradation (Fan et al., 2015).
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FIGURE 1 | AKR1C3 promotes PCa via catalytic-dependent and independent roles. The catalytic and catalytic-independent functions of AKR1C3 in the
progression of PCa are shown in black arrows and red arrows respectively. AKR1C3 catalyzes androstene-3,17-dione into 5α-DHT, which is reduced into
testosterone by 5α-reductase and binds to androgen recptor. AKR1C3 can also bind to dimerizated and phosphorylated androgen receptors and function as a
coactivator of AR. AKR1C3 is able to stabilize Siah2 and thus enhance AR transcriptional activity.

Interactions between steroid biosynthetic enzymes and steroid
receptors may be exceedingly complex and involved in a variety of
hormone-dependent cancers (Yepuru et al., 2013). Future clinical
trials with AKR1C3 inhibitors will be needed to show their
potential to be the next generation of tissue-specific therapeutics
for CRPC. Therefore, identification of mechanisms underlying
the non-catalytic function of AKR1C3 may provide new targets
for development of novel AKR1C3 inhibitors that complement
inhibitors targeting AKR1C3 catalytic activity as potential CRPC
therapy (Figure 1).

Cell Sensitivity, Growth, Metastasis, and
Apoptosis
The AKRs were also found to be implicated in cell sensitivity,
growth, metastasis, and apoptosis in a catalytic independent role,
though the underlying mechanisms are still not revealed yet.

Firstly, there was evidence that after short-term and long-
term cadmium exposure, the expression of AKR1C1 was elevated
which implies the role of ARKs in cell sensitivity (Garrett et al.,
2013). Then studies found that AKR1C3 siRNA significantly
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enhanced cell radio sensitivity (Xie et al., 2013). Consistently
with this, overexpression of AKR1C3 enhances resistance of
cancer cells to radiation (Xiong et al., 2014; Sun et al., 2016).
Participation of AKR1C3 in cancer development is also well
proven. Down-regulation of AKR1C3significantly decreases PCa
and MCF7 breast cancer cell growth (Downs et al., 2011; Zhang
et al., 2016b). Besides, silencing of AKR1C3 increases LCN2
expression and inhibits metastasis in cervical cancer (Wu et al.,
2014). AKR1C2 is mostly involved in the process of metastasis.
Li et al. (2016) identified two powerful genes in the liver cancer
metastasis process, AEG-1 and AKR1C2. And then AEG-1 was
proved to promote metastasis through downstream AKR1C2 and
NF1 in liver cancer (Li et al., 2014b, 2016). Since AEG-1 and
AKR1C2 promote metastasis, inhibiting those two genes would
effectively control metastasis.

These findings may provide novel potential clinical targets
against metastasis in liver cancer patients. Notably, AKR1C2

is also involved in apoptosis induced by Panax ginseng
polysaccharide (Li et al., 2014a).

SMALL MOLECULE INHIBITORS

Several types of AKR1C1 inhibitors have been identified,
including, benzodiazepines, steroid carboxylates, phytoestrogens,
derivatives of pyrimidine, phthalimide, anthranilic acid and
cyclopentane, flavones and ruthenium complexes (Usami et al.,
2002; Bauman et al., 2005; Brozic et al., 2006b, 2009; Stefane
et al., 2009; Liu et al., 2011; Traven et al., 2015). Notably, 3-
bromo-5-phenylsalicylic acid, an inhibitor designed based on
the structure of AKR1C1 in ternary complex with NADP+ and
DCL, its phenyl group targets a non-conserved hydrophobic
pocket in the active site of the enzyme lined by residues Leu54,
Leu308 and Phe311, resulting in a 21-fold improved potency

TABLE 1 | Small molecular inhibitors.

AKR Representative selective inhibitors Structure Clinical trial phase

AKR1C1 3-Bromo-5-phenyl salicylic acid Preclinical

3-Chloro-5-phenylsalicylic acid Preclinical

AKR1C2 Ursodedeoxycholate Clinically

AKR1C3 Indomethacin Preclinical

AKR1C3 Medroxyprogesterone acetate Clinically

TABLE 2 | Role of human AKRs in health and disease.

AKR Associated disease Selective inhibitors Clinical trial phase

AKR1C1 Colorectal cancer Breast cancer Endometrial cancer Pre-term birth NCSCL 3-Bromo-5-phenyl salicylic acid Preclinical

AKR1C2 Androgen insufficiency Ursodedeoxycholate Preclinical

AKR1C3 HPRC Breast cancer Acute myeloid leukemia NSCLC Indomethacin 6-medroxyprogesterone acetate Clinically

AKR1C4 Paranoia Preclinical

Frontiers in Pharmacology | www.frontiersin.org 5 March 2017 | Volume 8 | Article 119

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


fphar-08-00119 March 14, 2017 Time: 10:39 # 6

Zeng et al. Aldo–Keto Reductase AKR1C1–AKR1C4

(K i = 4 nM) over the structurally similar AKR1C2 (Carbone
et al., 2009). Moreover, compound 3-bromo-5-phenylsalicylic
acid significantly decreased the metabolism of progesterone in
the cells with an IC50 value of 460 nM.

Structure between AKR1C1 and AKR1C2 is rather similar,
only differs by one active-site residue (Leu54 versus Val54).
Therefore, the selectivity of inhibitors targeting AKR1C1 and
AKR1C2 is rather low, and newly designed inhibitors that
mostly interact with Leu54 in AKR1C1 are needed as to
improve the selectivity over AKR1C2. Derivatives of BPSA,
3-chloro-5-phenylsalicylic acid (K i = 0.86 nM), is 24-fold
more selective for AKR1C1 over AKR1C2. Furthermore, the
compound potently inhibited the metabolism of progesterone by
AKR1C1 in the cells with an IC50 value of 100 nM (El-Kabbani
et al., 2010).

AKR1C3 is inhibited by several classes of AKR1C3 inhibitors,
including cinnamic acid (Brozic et al., 2006a), non-steroidal
anti-inflammatory drugs (NSAIDs) and their derivatives (Gobec
et al., 2005; Byrns et al., 2008; Liedtke et al., 2013), steroid
hormone analoges (Bydal et al., 2009), flavonoids (Skarydova
et al., 2009), cyclopentanes (Stefane et al., 2009), benzoic acids
(Adeniji et al., 2011; Jamieson et al., 2012), progestins (Beranic
et al., 2011), baccharin analogs (Zang et al., 2015), ruthenium
complexes (Kljun et al., 2016), and the most widely used anti-
diabetes drugs, sulfonylureas (Zhao et al., 2015). Most inhibitors
of AKR1C3 are carboxylic acids, whose transport into cells
is likely dominated by carrier-mediated processes. Therefore,
development of non-carboxylate inhibitors of AKR1C3 like
1-(4-(piperidin-1-ylsulfonyl)phenyl)pyrrolidin-2-ones (Heinrich
et al., 2013) and morpholylureasis essential (Flanagan et al.,
2014).

Critical concern in exploiting AKR1C3 inhibitors is the cross
inhibition of AKR1C subfamily members, as they have high
amino acid sequence identity and structural similarity. This

prompts us to find new inhibitors with new molecular skeleton
or binding domains (Table 1).

PERSPECTIVE

The aldo–keto reductases AKR1C1–AKR1C4 is a series of four
proteins with a multitude of functions. Recent advances have
been made in terms of the roles played by this family among
a variety of diseases, particularly, those functions related to
their catalytic activities. However, some clues showed that the
catalytic-independent functions of these proteins are totally
arousing as well, and aiding in highlight the AKR1C family as
promising anti-cancer targets for cancer treatment. Nonetheless,
exploration of more potent AKR1C-targeting strategies to
interrupt their catalytic activities or the other critical functions is
still in urgent need. We rest assured that future developments in
this area will absolutely enrich our understanding of the AKR1C
isoforms and provide new avenues for using this knowledge to
improve cancer therapy (Table 2).

AUTHOR CONTRIBUTIONS

BY and HZ conceived, designed the conception of review article,
and made the amendments of the paper. C-MZ conducted the
paper. L-LC, M-DY, JC, and Q-JH collected the related research
articles.

FUNDING

This study was supported by National Natural Science
Foundation of China (81673458).

REFERENCES
Adeniji, A. O., Twenter, B. M., Byrns, M. C., Jin, Y., Winkler, J. D., and Penning,

T. M. (2011). Discovery of substituted 3-(phenylamino)benzoic acids as
potent and selective inhibitors of type 5 17beta-hydroxysteroid dehydrogenase
(AKR1C3). Bioorg. Med. Chem. Lett. 21, 1464–1468. doi: 10.1016/j.bmcl.2011.
01.010

Agrawal, V., and Hirsch, E. (2012). Intrauterine infection and preterm labor. Paper
Presented at: Seminars in Fetal and Neonatal Medicine. Amsterdam: Elsevier.

Barski, O. A., Tipparaju, S. M., and Bhatnagar, A. (2008). The aldo-keto reductase
superfamily and its role in drug metabolism and detoxification. Drug Metab.
Rev. 40, 553–624. doi: 10.1080/03602530802431439

Bauman, D. R., Rudnick, S. I., Szewczuk, L. M., Jin, Y., Gopishetty, S., and Penning,
T. M. (2005). Development of nonsteroidal anti-inflammatory drug analogs and
steroid carboxylates selective for human aldo-keto reductase isoforms: potential
antineoplastic agents that work independently of cyclooxygenase isozymes.
Mol. Pharmacol. 67, 60–68. doi: 10.1124/mol.104.006569

Beranic, N., Gobec, S., and Rizner, T. L. (2011). Progestins as inhibitors of the
human 20-ketosteroid reductases, AKR1C1 and AKR1C3. Chem. Biol. Interact
191, 227–233. doi: 10.1016/j.cbi.2010.12.012

Brozic, P., Cesar, J., Kovac, A., Davies, M., Johnson, A. P., Fishwick, C. W.,
et al. (2009). Derivatives of pyrimidine, phthalimide and anthranilic acid
as inhibitors of human hydroxysteroid dehydrogenase AKR1C1. Chem. Biol.
Interact 178, 158–164. doi: 10.1016/j.cbi.2008.10.019

Lewis, M. J., Wiebe, J. P., and Heathcote, J. G. (2004). Expression of progesterone
metabolizing enzyme genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2)
is altered in human breast carcinoma. BMC Cancer 4:27. doi: 10.1186/1471-
2407-4-27

Brozic, P., Golob, B., Gomboc, N., Rizner, T. L., and Gobec, S. (2006a).
Cinnamic acids as new inhibitors of 17beta-hydroxysteroid dehydrogenase type
5 (AKR1C3). Mol. Cell. Endocrinol. 248, 233–235.

Brozic, P., Smuc, T., Gobec, S., and Rizner, T. L. (2006b). Phytoestrogens as
inhibitors of the human progesterone metabolizing enzyme AKR1C1. Mol. Cell.
Endocrinol. 259, 30–42.

Bydal, P., Luu-The, V., Labrie, F., and Poirier, D. (2009). Steroidal lactones as
inhibitors of 17β-hydroxysteroid dehydrogenase type 5: chemical synthesis,
enzyme inhibitory activity, and assessment of estrogenic and androgenic
activities. Eur. J. Med. Chem. 44, 632–644. doi: 10.1016/j.ejmech.2008.03.020

Byrns, M. C., Steckelbroeck, S., and Penning, T. M. (2008). An indomethacin
analogue, N-(4-chlorobenzoyl)-melatonin, is a selective inhibitor of aldo-keto
reductase 1C3 (type 2 3α-HSD, type 5 17β-HSD, and prostaglandin F synthase),
a potential target for the treatment of hormone dependent and hormone
independent malignancies. Biochem. Pharmacol. 75, 484–493. doi: 10.1016/j.
bcp.2007.09.008

Carbone, V., Zhao, H. T., Chung, R., Endo, S., Hara, A., and El-Kabbani, O. (2009).
Correlation of binding constants and molecular modelling of inhibitors in the
active sites of aldose reductase and aldehyde reductase. Bioorg. Med. Chem. 17,
1244–1250. doi: 10.1016/j.bmc.2008.12.024

Frontiers in Pharmacology | www.frontiersin.org 6 March 2017 | Volume 8 | Article 119

https://doi.org/10.1016/j.bmcl.2011.01.010
https://doi.org/10.1016/j.bmcl.2011.01.010
https://doi.org/10.1080/03602530802431439
https://doi.org/10.1124/mol.104.006569
https://doi.org/10.1016/j.cbi.2010.12.012
https://doi.org/10.1016/j.cbi.2008.10.019
https://doi.org/10.1186/1471-2407-4-27
https://doi.org/10.1186/1471-2407-4-27
https://doi.org/10.1016/j.ejmech.2008.03.020
https://doi.org/10.1016/j.bcp.2007.09.008
https://doi.org/10.1016/j.bcp.2007.09.008
https://doi.org/10.1016/j.bmc.2008.12.024
http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


fphar-08-00119 March 14, 2017 Time: 10:39 # 7

Zeng et al. Aldo–Keto Reductase AKR1C1–AKR1C4

Deng, H. B., Parekh, H. K., Chow, K. C., and Simpkins, H. (2002). Increased
expression of dihydrodiol dehydrogenase induces resistance to cisplatin in
human ovarian carcinoma cells. J. Biol. Chem. 277, 15035–15043. doi: 10.1074/
jbc.M112028200

Deyashiki, Y., Ogasawara, A., Nakayama, T., Nakanishi, M., Miyabe, Y.,
Sato, K., et al. (1994). Molecular cloning of two human liver 3
α-hydroxysteroid/dihydrodiol dehydrogenase isoenzymes that are identical
with chlordecone reductase and bile-acid binder. Biochem. J. 299, 545–552.
doi: 10.1042/bj2990545

Downs, T. M., Burton, D. W., Araiza, F. L., Hastings, R. H., and Deftos, L. J.
(2011). PTHrP stimulates prostate cancer cell growth and upregulates aldo-keto
reductase 1C3. Cancer Lett. 306, 52–59. doi: 10.1016/j.canlet.2011.02.027

El-Kabbani, O., Scammells, P. J., Day, T., Dhagat, U., Endo, S., Matsunaga, T.,
et al. (2010). Structure-based optimization and biological evaluation of
human 20alpha-hydroxysteroid dehydrogenase (AKR1C1) salicylic acid-based
inhibitors. Eur. J. Med. Chem. 45, 5309–5317. doi: 10.1016/j.ejmech.2010.08.052

Fan, L., Peng, G., Hussain, A., Fazli, L., Guns, E., Gleave, M., et al. (2015). The
steroidogenic enzyme AKR1C3 regulates stability of the ubiquitin ligase Siah2
in prostate cancer cells. J. Biol. Chem. 290, 20865–20879. doi: 10.1074/jbc.M115.
662155

Flanagan, J. U., Atwell, G. J., Heinrich, D. M., Brooke, D. G., Silva, S., Rigoreau, L. J.,
et al. (2014). Morpholylureas are a new class of potent and selective inhibitors
of the type 5 17-beta-hydroxysteroid dehydrogenase (AKR1C3). Bioorg. Med.
Chem. 22, 967–977. doi: 10.1016/j.bmc.2013.12.050

Garrett, S. H., Clarke, K., Sens, D. A., Deng, Y., Somji, S., and Zhang, K. K. (2013).
Short and long term gene expression variation and networking in human
proximal tubule cells when exposed to cadmium. BMC Med. Genomics 6(Suppl.
1):S2. doi: 10.1186/1755-8794-6-S1-S2

Gibson, D. A., Simitsidellis, I., Cousins, F. L., Critchley, H. O., and Saunders,
P. T. (2016). Intracrine androgens enhance decidualization and modulate
expression of human endometrial receptivity genes. Sci. Rep. 6:19970. doi: 10.
1038/srep19970

Gobec, S., Brožiè, P., and Rižner, T. L. (2005). Nonsteroidal anti-inflammatory
drugs and their analogues as inhibitors of aldo-keto reductase AKR1C3: new
lead compounds for the development of anticancer agents. Bioorg. Med. Chem.
Lett. 15, 5170–5175. doi: 10.1016/j.bmcl.2005.08.063

Hagberg Thulin, M., Nilsson, M. E., Thulin, P., Ceraline, J., Ohlsson, C., Damber,
J. E., et al. (2016). Osteoblasts promote castration-resistant prostate cancer
by altering intratumoral steroidogenesis. Mol. Cell. Endocrinol. 422, 182–191.
doi: 10.1016/j.mce.2015.11.013

Ham, E., Cirillo, V., Zanetti, M. E., and Kuehl, F. (1975). Estrogen-directed
synthesis of specific prostaglandins in uterus. Proc. Natl. Acad. Sci. U.S.A. 72,
1420–1424. doi: 10.1073/pnas.72.4.1420

Hanada, N., Takahata, T., Zhou, Q., Ye, X., Sun, R., Itoh, J., et al. (2012).
Methylation of the KEAP1 gene promoter region in human colorectal cancer.
BMC Cancer 12:66. doi: 10.1186/1471-2407-12-66

Heibein, A. D., Guo, B., Sprowl, J. A., Maclean, D. A., and Parissenti, A. M. (2012).
Role of aldo-keto reductases and other doxorubicin pharmacokinetic genes in
doxorubicin resistance, DNA binding, and subcellular localization. BMC Cancer
12:381. doi: 10.1186/1471-2407-12-381

Heinrich, D. M., Flanagan, J. U., Jamieson, S. M., Silva, S., Rigoreau, L. J., Trivier, E.,
et al. (2013). Synthesis and structure-activity relationships for 1-(4-(piperidin-
1-ylsulfonyl)phenyl)pyrrolidin-2-ones as novel non-carboxylate inhibitors of
the aldo-keto reductase enzyme AKR1C3. Eur. J. Med. Chem. 62, 738–744.
doi: 10.1016/j.ejmech.2013.01.047

Higaki, Y., Usami, N., Shintani, S., Ishikura, S., El-Kabbani, O., and Hara, A. (2003).
Selective and potent inhibitors of human 20α-hydroxysteroid dehydrogenase
(AKR1C1) that metabolizes neurosteroids derived from progesterone. Chem.
Biol. Interact. 143, 503–513. doi: 10.1016/S0009-2797(02)00206-5

Higano, C. S., and Crawford, E. D. (2011). New and emerging agents for the
treatment of castration-resistant prostate cancer. Urol. Oncol. 29, S1–S8. doi:
10.1016/j.urolonc.2011.08.013

Hofland, J., van Weerden, W. M., Dits, N. F., Steenbergen, J., van Leenders, G. J.,
Jenster, G., et al. (2010). Evidence of limited contributions for intratumoral
steroidogenesis in prostate cancer. Cancer Res. 70, 1256–1264. doi: 10.1158/
0008-5472.CAN-09-2092

Hofman, J., Malcekova, B., Skarka, A., Novotna, E., and Wsol, V. (2014).
Anthracycline resistance mediated by reductive metabolism in cancer cells:

the role of aldo-keto reductase 1C3. Toxicol. Appl. Pharmacol. 278, 238–248.
doi: 10.1016/j.taap.2014.04.027

Hofman, J., Skarka, A., Havrankova, J., and Wsol, V. (2015). Pharmacokinetic
interactions of breast cancer chemotherapeutics with human doxorubicin
reductases. Biochem. Pharmacol. 96, 168–178. doi: 10.1016/j.bcp.2015.05.005

Jamieson, S. M. F., Brooke, D. G., Heinrich, D., Atwell, G. J., Silva, S., Hamilton,
E. J., et al. (2012). 3-(3,4-dihydroisoquinolin-2(1 H)-ylsulfonyl)benzoic acids:
highly potent and selective inhibitors of the type 5 17-β-hydroxysteroid
dehydrogenase AKR1C3. J. Med. Chem. 55, 7746–7758. doi: 10.1021/jm3007867

Jez, J. M., Bennett, M. J., Schlegel, B. P., Lewis, M., and Penning, T. M. (1997).
Comparative anatomy of the aldo-keto reductase superfamily. Biochem. J. 326,
625–636. doi: 10.1042/bj3260625

Ji, Q., Aoyama, C., Nien, Y. D., Liu, P. I., Chen, P. K., Chang, L., et al. (2004).
Selective loss of AKR1C1 and AKR1C2 in breast cancer and their potential effect
on progesterone signaling. Cancer Res. 64, 7610–7617. doi: 10.1158/0008-5472.
CAN-04-1608

Ji, Q., Chang, L., VanDenBerg, D., Stanczyk, F. Z., and Stolz, A. (2003). Selective
reduction of AKR1C2 in prostate cancer and its role in DHT metabolism.
Prostate 54, 275–289.

Johansson, A. G., Nikamo, P., Schalling, M., and Landen, M. (2011). AKR1C4
gene variant associated with low euthymic serum progesterone and a history of
mood irritability in males with bipolar disorder. J. Affect. Disord. 133, 346–351.
doi: 10.1016/j.jad.2011.04.009

Johansson, A. G., Nikamo, P., Schalling, M., and Landen, M. (2012).
Polymorphisms in AKR1C4 and HSD3B2 and differences in serum DHEAS and
progesterone are associated with paranoid ideation during mania or hypomania
in bipolar disorder. Eur. Neuropsychopharmacol. 22, 632–640. doi: 10.1016/j.
euroneuro.2012.01.007

Kljun, J., Anko, M., Traven, K., Sinreih, M., Pavlič, R., Peršič, Š., et al. (2016).
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