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Slow component of oxygen uptake (VO2SC) kinetics and maximal oxygen uptake

(VO2max) attainment seem to influence endurance performance during constant-work

rate exercise (CWR) performed within the severe intensity domain. In this study, it was

hypothesized that delaying the attainment of VO2max by reducing the rates at which VO2

increases with time (VO2SC kinetics) would improve the endurance performance during

severe-intensity intermittent exercise performedwith different work:recovery duration and

recovery type in active individuals. After the estimation of the parameters of the VO2SC

kinetics during CWR exercise, 18 males were divided into two groups (Passive and

Active recovery) and performed at different days, two intermittent exercises to exhaustion

(at 95% IVO2max, with work: recovery ratio of 2:1) with the duration of the repetitions

calculated from the onset of the exercise to the beginning of the VO2SC (Short) or to the

half duration of the VO2SC (Long). The active recovery was performed at 50% IVO2max.

The endurance performance during intermittent exercises for the Passive (Short = 1523

± 411; Long = 984 ± 260 s) and Active (Short = 902 ± 239; Long = 886 ± 254 s)

groups was improved compared with CWR condition (Passive = 540 ± 116; Active =

489 ± 84 s). For Passive group, the endurance performance was significantly higher

for Short than Long condition. However, no significant difference between Short and

Long conditions was found for Active group. Additionally, the endurance performance

during Short condition was higher for Passive than Active group. The VO2SC kinetics was

significantly increased for CWR (Passive = 0.16 ± 0.04; Active = 0.16 ± 0.04 L.min−2)

compared with Short (Passive = 0.01 ± 0.01; Active = 0.03 ± 0.04 L.min−2) and Long

(Passive = 0.02 ± 0.01; Active = 0.01 ± 0.01 L.min−2) intermittent exercise conditions.

No significant difference was found among the intermittent exercises. It can be concluded

that the endurance performance is negatively influenced by active recovery only during

shorter high-intensity intermittent exercise. Moreover, the improvement in endurance

performance seems not be explained by differences in the VO2SC kinetics, since its

values were similar among all intermittent exercise conditions.
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INTRODUCTION

The parameters of the power-time relationship, termed critical
power (CP) and the curvature constant (W’), have been used to
analyze the physiological responses and endurance performance
during high-intensity exercise (Poole et al., 1988). CP has been
considered the lower boundary of the severe-intensity domain
and the W’ determines the amount of external work that can be
performed above CP, irrespective of the rate of its expenditure
(Jones et al., 2010). By definition, all severe-intensity work
rates (i.e., >CP) performed until voluntary exhaustion drive
pulmonary oxygen uptake (VO2) to a maximal value (i.e.,
maximal oxygen uptake—VO2max) (Jones et al., 2010). However,
during exhaustive exercise performed above the upper bound of
the severe intensity domain, exercise duration would be too short
to permit attainment of VO2max Caputo and Denadai (2008).
Several studies have demonstrated that endurance exercise
performance within severe-intensity domain was coincident with
the depletion of the W’, accumulation of metabolites associated
with fatigue (i.e., PCr, Pi, and H+), and attainment of VO2max
due to VO2 slow component (VO2SC) development (Fukuba
et al., 2003; Chidnok et al., 2013). Indeed, VO2SC has been
associated with loss in muscular efficiency (Jones et al., 2011) and
has been negatively related with endurance performance (Zoladz
et al., 1995; Murgatroyd et al., 2011; Barbosa et al., 2014a).

VO2 kinetics and muscle [PCr] responses to high-intensity
exercise have been reported to present both fundamental and
slow component phases (Rossiter et al., 2002) being intrinsically
linked. Indeed, Rossiter et al. (2002) have reported similar
values of the time constant (τ) of the fundamental component
([PCr] = 38 s; VO2 = 39 s), as well as the relative amplitude
of the slow component ([PCr] = 13.9%; VO2SC = 15.3%) of
muscle [PCr] and VO2 during high-intensity exercise. It has been
proposed that progressive intramuscular depletion [PCr] during
exhaustive exercise performed within severe intensity domain
provides the appropriate stimulus to oxidative phosphorylation,
determining the development of VO2SC and, consequently, the
attainment of VO2max (Rossiter et al., 2002). Thus, both creatine
phosphate depletion and development of the VO2SC seem to
be intimately associated with endurance performance during
constant-work rate exercise (CWR) performed within the severe
intensity domain.

While this scenario is well established during CWR exercise,
very little information is available during intermittent exercise,
which has been considered an important tool in training
programs aiming to improve aerobic fitness in health and in
disease (Laursen and Jenkins, 2002; Hwang et al., 2011). Indeed,
intermittent exercise can improve performance comparing to
CWR during high-intensity exercise (Millet et al., 2003; Chidnok
et al., 2012), since the former allows resynthesis of intramuscular
substrates ([PCr]) and/or clearance of fatigue-related metabolites
(i.e., reconstitution of W’) (Chidnok et al., 2013). However,
several aspects seem to influence endurance performance during
high-intensity intermittent exercises. For instance, endurance
performance is progressively shorter when the work-recovery
“duty-cycle” (e.g., 10:20 s, 30:60 s, 60:120 s, and 90:180 s) (Turner
et al., 2006) and/or exercise intensity performed during active

recovery is increased (i.e., light, moderate, heavy and severe)
(Chidnok et al., 2012). These aspects influence PCr kinetics
(Chidnok et al., 2013) and hypothetically, the changes of the
rates at which VO2 increases during high-intensity intermittent
exercises (i.e., VO2SC). Indeed, Chidnok et al. (2012) have
demonstrated that enhanced endurance performance during
severe-intensity intermittent exercise could be explained by
the reconstitution of W’ during recovery intervals performed
at lower-intensity domains (i.e., light and moderate). At this
condition, the reconstitution of W’ was associated with a
blunted increase in both VO2 and integrated EMG with
time, supporting the hypothesis that VO2SC kinetics influences
endurance performance during intermittent exercise. However,
as discussed above, endurance performance during severe
intermittent exercise is markedly modulated by both work-
recovery duration and exercise intensity performed during active
recovery. Thus, the possible relationship between VO2SC and
endurance performance during intermittent exercise performed
with different durations (e.g., short vs. long) and recovery type
(i.e., passive vs. active) remains elusive, and further studies are
warranted.

However, an important issue must be considered when the
possible influence of VO2SC on endurance performance is
investigated. Knowing that work-recovery duration influences
endurance performance during severe intermittent exercise
(Turner et al., 2006), it appears appropriate to compare exercise
duration before (short condition) and after (long condition)
the emergence of VO2SC. However, many studies have verified
that both the emergence and the amplitude of VO2SC (and
possibly the [PCr]) present a large intra-individual variation
(Murgatroyd et al., 2011; Barbosa et al., 2014b). Thus, it would
be interesting to analyze the responses of VO2 kinetics and
endurance performance during severe intermittent exercise,
with both the duration of exercise and recovery periods being
determined based on the individual VO2SC kinetics response.

Thus, the current study was undertaken to compare the
endurance performance and VO2SC kinetics during high-
intensity intermittent exercise performed with different
work:recovery duration (short vs. long) and recovery types
(passive vs. active) in active individuals. It was hypothesized
that: (a) endurance performance would be improved during the
exercise with passive recovery, regardless of the duration of the
repetition, and; (b) endurance performance would be improved
during the intermittent exercise with short duration, regardless
of the recovery type. We also hypothesized that the possible
interaction between exercise duration and recovery type during
intermittent high intensity exercise would influence the changes
to the rates at which VO2 increases with time (VO2SC kinetics)
and consequently, endurance performance.

MATERIALS AND METHODS

Subjects
Eighteen male students (24.7 ± 4.1 years; 80.5 ± 12.5 kg; 178.1
± 7.6 cm) that were physically active but did not participate in
any regular physical exercise or sport program volunteered for
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the study. All participants were healthy and free of cardiovascular,
respiratory, and neuromuscular disease. All risks associated with
the experimental procedures were explained prior to involvement
in the study and each participant signed an informed consent
form. The study was performed according to the Declaration of
Helsinki and the protocol was approved by the University’s Ethics
Committee.

Experimental Design
The participants were instructed to report to the laboratory at
the same time of the day (±2 h) on four separate occasions
within a period of 2–3 week. Firstly, each volunteer performed
an incremental test until exhaustion to determine the lactate
threshold (LT), VO2max and the intensity associated with
VO2max (IVO2max). Thereafter, the volunteers were divided
into two groups: passive recovery (PR) and active recovery (AR)
with similar IVO2max values. They performed the following
protocols, on different days: (1) a total of two repetitions of
square-wave transitions from rest to a power corresponding
to 95% of the IVO2max to determine the parameters of VO2

kinetics. Each bout was separated by 60min of passive rest. The
VO2 responses to the two severe exercise bouts were averaged
before the analysis to reduce the breath-to-breath noise and
enhance confidence in the parameters derived from the modeling
process (Lamarra et al., 1987) and; (2) two intermittent exercises,
with the duration of the repetitions calculated from the onset
of the exercise to the beginning of the VO2SC (Short) or to
the half duration of the VO2SC (Long). The interval between
the experimental sessions was 48–72 h. The participants were
instructed to arrive at the laboratory in a rested and fully hydrated
state at least 3 h post-prandial. They were also asked not to
perform any strenuous activity during the day before each test.

Procedures
Incremental Test
Each participant performed an incremental exercise test to obtain
volitional fatigue on an electronically braked cycle ergometer
(Excalibur sport, Groningen, Netherlands) to determine the
participant’s LT, VO2max, and IVO2max. The incremental
protocol started at a power output of 35W, with increasing
increments of 35W every 3min. Previous studies have
demonstrated no differences in VO2max between incremental
tests involving 1- or 3-min stage durations (Bentley and
McNaughton, 2003; Roffey et al., 2007; Adami et al., 2013). The
pedal cadence was kept constant (70 rpm) (Marsh and Martin,
1997). Throughout the tests, the respiratory and pulmonary gas-
exchange variables were measured using a breath-by-breath gas
analyzer (Quark PFTergo, Cosmed, Italy). The VO2max was
defined as the highest average 15-s VO2 value recorded during
the incremental test. IVO2maxwas defined as the power output at
which the VO2max occurred. At the end of each stage, an earlobe
capillary blood sample (25 µL) was collected into an eppendorf
tube and analyzed for its lactate concentration ([La]) using an
automated analyzer (YSI 2300 STAT, Yellow Spring, Ohio, USA).
Plots of the blood [La] against the power output and VO2 were
given to two independent reviewers, who determined LT as the

first sudden and sustained increase in the blood lactate level
above the resting concentrations.

Constant-Workload Exercise
The participants performed two exercise transitions at 95%
IVO2max, separated by 60min of rest. The first transition lasted
6min and was conducted to determine the VO2 kinetics. The
second transition was conducted until voluntary exhaustion to
determine the VO2 kinetics (first 6min) and the tlim (time
to exhaustion). The protocol began with a 5min warm-up at
50% IVO2max and was followed by a 7min of passive rest.
Then, the participants performed 3min of unloaded cycling
at 20W, followed by a step change in the power output to
95% IVO2max. The pedal cadence was kept constant at 70 rpm.
The second transition was terminated when the participant
could not maintain a cadence of >65 rpm for >5 s despite
verbal encouragement. The end-exercise VO2 was defined as
the mean VO2 measured during the final 15 s of exercise.
For the determination of [La] peak, capillary blood samples
were collected 1, 3, and 5min after the exercise, as previously
described.

Intermittent Exercises
The intermittent exercises were performed at 95% IVO2max,
with the duration of the repetitions calculated from the onset
of the exercise to the beginning of the VO2SC (i.e., time delay
before the onset of the development of the VO2SC—Short) or
the half duration of the VO2SC (i.e., 50% of the difference
between the Short work interval duration and the time to achieve
VO2max—Long) (Figure 1). The recovery was passive (PR) or
active (AR) (50% IVO2max), with duration corresponding to the
half of the repetition (effort:recovery ratio of 2:1). The exercises
were performed until voluntary exhaustion. The criterion of
exhaustion used was the same used for the constant-workload
exercise. The end-exercise VO2 was defined as the mean VO2

measured during the final 15 s of exercise. If the duration of
the last repetition was shorter than 90 s, the highest value of the
previous bout was considered, to avoid underestimating the VO2

value.

FIGURE 1 | Definition of the work intervals of the Short (beginning of

the slow component) and Long (half duration of the slow component)

intermittent protocols.
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Modeling of VO2 during Constant-Workload Exercise
The breath-by-breath data from each exercise were manually
filtered to remove outlying breaths, which were defined as breaths
±3 SD from the adjacent five breaths. The breath-by-breath data
were interpolated to give second-by-second values. For CWR, the
two transitions were then time aligned to the start of the exercise
and averaged to enhance the underlying response characteristics.
The first 20 s of data after the onset of exercise (i.e., the phase
I response) (Whipp and Rossiter, 2005) were deleted, and the
biexponential model was used to analyze the VO2 response to
severe exercise, as described by the following equation:

VO2(t) = VO2baseline+ Ap [1− e−(t−TDp)/
τ
p]

+ As [1− e−(t−TDs)/
τ
s] (1)

where: VO2(t) is the absolute VO2 at a given time t; VO2baseline
is the mean VO2 in the baseline period; Ap, TDp, and τp
are the amplitude, time delay, and time constant, respectively,
describing the phase II increase in VO2 above baseline; and As,
TDs, and τs are the amplitude of, time delay before the onset
of, and time constant describing the development of the VO2SC,
respectively. An iterative process was used to minimize the sum
of the squared errors between the fitted function and the observed
values. VO2baseline was defined as the mean VO2 measured
over the final 60 s of exercise preceding the step transition to
severe exercise. The amplitude of the VO2SC was determined as
the increase in VO2 from TDs to the end of the modeled data
(defined as As’). The end-exercise VO2 was defined as the mean
VO2 measured over the final 15 s of exercise. The TD identified
from Equation 1 was utilized to individualize the duration
of the repetitions performed during short and long protocols
(please see Section Intermittent exercises) and to estimate the
VO2SC kinetics [i.e., the slow component trajectory (L.min−2)],
as described below.

In addition, a single-exponential model without time delay,
with a fitting window commencing at t = 0 s (equivalent to the
mean response time), was used to characterize the kinetics of
the overall VO2 response to exercise. The following equation
describes this model:

VO2(t) = VO2baseline + A [1− e−(t/
τ
)] (2)

where: VO2(t) represents the absolute VO2at a given time t,
VO2baseline represents the mean VO2 measured over the final
60 s of baseline pedaling, and A and τ represent the amplitude
and time constant, respectively, which describe the overall
increase in VO2 above the baseline. The VO2 was assumed to
have essentially reached its maximal value when the value of
[1–e−(t/τ)] from Equation 2 was 0.99 (i.e., when t = 4.6 × τ);
it was assumed at this time that VO2 was at its maximal
value. Therefore, for each exercise, the time to achieve VO2max
(TAVO2max) was defined as 4.6 × τ. VO2SC kinetics [i.e., the
slow component trajectory (L.min−2)] was also estimated by
calculating the slope of the VO2 response using linear regression
analysis (Chidnok et al., 2012). The data obtained before TDs
(determined from Equation 1) were deleted to remove the
influence of the fundamental response phase, and thereafter,

VO2 values at 60-s intervals were determined until reaching the
TAVO2max value and were fitted using the following equation:

VO2 = ax+ b (3)

where: x represents the time, a represents the slope, and b
represents the y-intercept.

Modeling of VO2 during Intermittent Exercise
VO2SC kinetics [i.e., the slow component trajectory (L.min−2)]
was estimated by calculating the slope of VO2 response using
linear regression analysis (Chidnok et al., 2012). Final VO2 values
(i.e., the average VO2 during 15 s) of each work cycle during
intermittent exercise were determined up to the last completed
cycle and fit using the Equation 3.

Statistical Analysis
The data are presented as means ± SD. The normality of data
was checked by the Shapiro-Wilk test. A 2 × 3 two-way factorial
analysis of variance (group vs. exercise condition), with repeated
measures for the exercise condition factor (CWR vs. Short vs.
Long) was used to analyze the VO2, tlim, slope VO2, [La] and
HR data. When a significant interaction was found, follow-up
analyses were performed using Tukey HSD test. The significance
level was set at p < 0.05, and effect sizes were calculated using
partial eta-squared (η2). All analyses were completed using the
Statistical Package for the Social Sciences (SPSS v.20.0, SPSS Inc.,
Chicago, IL, USA).

RESULTS

Table 1 presents the mean ± SD values of the variables obtained
during the incremental test for both PR and AR groups. No
significant difference was found between the groups (p > 0.05).

The VO2 response profiles of a representative subject obtained
during the different exercise conditions for both PR and AR
groups are depicted in Figure 2. Based on the VO2 kinetics
parameters obtained during CWR, the repetition duration for the
Short (PR = 105 ± 29 s; AR = 132 ± 39 s) and Long (PR = 252
± 50 s; AR = 253 ± 56 s) tests were not significantly different
between the groups (p > 0.05).

Figure 3 presents the mean ± SD values of end-exercise VO2

measured during the different exercise conditions for both PR
and AR groups. There was a significant main effect for the

TABLE 1 | Mean ± SD values of the variables obtained during the

incremental test for both passive (PR) and active (AR) recovery groups.

PR (N = 9) AR (N = 9)

VO2max (mL.min−1 ) 3220.4± 271.8 3332.4±499.1

IVO2max (W) 250.3± 25.5 266.9±44.1

P95% (W) 235.7± 23.0 252.6±42.7

LT (W) 106.0± 31.3 133.1±59.0

LT (%IVO2max) 41± 11 48±16

VO2max, maximal oxygen uptake; IVO2max, intensity at VO2max; P95%, power output

relative to 95% IVO2max; LT, lactate threshold.
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FIGURE 2 | Pulmonary oxygen uptake (VO2) response of a representative subject to constant-work rate (CWR) exercise (closed circles) compared

with intermittent exercise (open circles) performed with passive (A, short and B, long) and active (C, short and D, long) recovery.

FIGURE 3 | Mean ± SD values of the end-exercise VO2 obtained during

the exercise performed in different conditions for passive (PR) (N = 9)

and active (AR) (N = 9) groups. CWR—constant-work-rate exercise; *p <

0.05 in relation to CWR.

exercise condition on end-exercise VO2 values (F = 5.47, p =

0.009, η2 = 0.25), but no effect of group (F = 1.53, p = 0.23, η2

= 0.08) or interaction was detected (F = 1.25, p = 0.29, η2 =

0.07). The end-exercise VO2 values obtained during CWR (PR
= 3236.9 ± 405.8mL.min−1; AR = 3488.6 ± 415.9mL.min−1)
were higher than those attained during Short (PR = 2995.2 ±

337.7mL.min−1; AR= 3205.7± 447.2mL.min−1) and Long (PR
= 3053.3 ± 276.1mL.min−1; AR = 3149.6 ± 476.3mL.min−1)
tests (p < 0.05).

The mean ± SD values of tlim and VO2 slope during
CWR and intermittent exercises for the PR and AR groups are
presented in Table 2. A group vs. exercise condition interaction
(F = 11.08, p = 0.000, η2 = 0.40) indicated longer tlim obtained
during intermittent exercises (Short and Long) than CWR for
both groups (p < 0.05). Considering the duration of the work
and recovery type, tlim at Short was significantly longer than at
Long only for the PR group (p < 0.05). Group effect (i.e., PR vs.
AR) was significant only when comparing the Short intermittent
protocols (p < 0.05), with no significant difference for Long
conditions (p > 0.05). There was a significant main effect for the
exercise condition on VO2 slope values (F = 95.98, p < 0.000,
η2 = 0.90), but no group effect (F = 1.86, p = 0.19, η2 = 0.16)
or interaction was detected (F = 0.02, p = 0.99, η2 = 0.01).
VO2 slope was significantly greater at CWR than Short and Long
conditions (p < 0.05).

The mean ± SD values of [La] and HR during CWR and
intermittent exercises for the PR and AR groups are presented
in Table 3. There was a significant main effect for the exercise
condition on [La] values (F = 4.72, p = 0.01, η2 = 0.22),
but no effect of group (F = 0.05, p = 0.81, η2 = 0.04) or
interaction was detected (F = 1.76 p = 0.18, η2 = 0.09).
The [La] was significantly lower at Short than CWR and Long
condition (p < 0.05). A group vs. exercise condition interaction
(F = 5.00, p = 0.01, η2 = 0.23) indicated that HR was lower
during Short than Long and CWR only for the PR group
(p < 0.05).
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TABLE 2 | Mean ± SD values of the time to exhaustion (tlim) and the slope

of the oxygen uptake response (Slope) during the constant-work-rate

(CWR) and intermittent exercise conditions (Short and Long), for passive

(PR) and active (AR) recovery groups.

PR (N = 9) AR (N = 9) Significance

CWR Short Long CWR Short Long

tlim (s) 540 1523 984 489 902 886 *F = 11.08

116 411‡,† 260‡ 84 239‡,** 254‡ p = 0.000

Slope (L.min−2 ) 0.16 0.01 0.02 0.16 0.03 0.01 ++F = 5.34

0.04 0.01‡ 0.01‡ 0.04 0.04‡ 0.01‡ p = 0.01

*Group vs. condition interaction;
‡
p < 0.05 relative to the CWR condition;

†
p < 0.05

relative to the Long condition; **p < 0.05 relative to the Short condition;++Main effect of

exercise condition.

TABLE 3 | Mean ± SD values of the blood lactate concentration ([La]) and

heart rate (HR) during the constant-work-rate (CWR) and intermittent

exercise conditions (Short and Long), for passive (PR) and active (AR)

recovery groups.

PR AR Significance

CWR Short Long CWR Short Long

[La] (mM) 12.4 10.3 12.1 11.2 10.9 11.8 ++F = 4.72

2.83 3.70 3.02 2.35 2.65 2.78 p = 0.01

HR (bpm) 177 14 170 15† 177 11 184 7 183 6 186 5 *F = 5.00 p = 0.01

*Group vs. condition interaction;
†
p < 0.05 relative to CWR and Long conditions; ++Main

effect of exercise condition.

DISCUSSION

This, we believe, is the first study to compare the endurance
performance and VO2SC kinetics during severe-intensity
intermittent exercise performed with different durations and
recovery types in active individuals. The data demonstrate that
endurance performance during severe-intensity intermittent
exercise is negatively influenced by active recovery only during
shorter (∼120 s) intermittent exercise. Interestingly, slopes
describing the increases in VO2 with time (i.e., VO2SC)
and end-exercise VO2 were reduced during intermittent
exercise (i.e., CWR vs. intermittent exercise). However, VO2

kinetics (VO2SC and end-exercise VO2) were similar between
work:recovery duration (short vs. long) and recovery type
(passive vs. active) analyzed in the present study, therefore
rejecting our original hypothesis. Thus, the relationship
between VO2 kinetics (VO2SC and end-exercise VO2) and
endurance performance observed during CWR exercise
(Jones et al., 2010; Barbosa et al., 2014a) seems to be
differently regulated during severe-intensity intermittent
exercise.

It has been widely reported that endurance performance
during high-intensity intermittent exercise is improved when
compared with CWR exercise (Demarie et al., 2000; Millet
et al., 2003; Chidnok et al., 2012). However, both endurance
performance and metabolic response are influenced by the

characteristics of the protocol utilized during high-intensity
intermittent exercise. Turner et al. (2006) analyzed the influence
of duty cycle duration with the same work:recovery ratio
(10:20 s, 30:60 s, 60:120 s, and 90:180 s) on pulmonary gas
exchange and blood lactate dynamics during intermittent cycling
exercise performed at 120% IVO2max. At this condition, a
greater metabolic response (elevated blood lactate concentration
and attainment of VO2max) and exercise intolerance (i.e.,
subjects could not complete 30min of exercise) were observed
only for the longer duty cycles (i.e., 60:120 s, and 90:180 s).
Although our intermittent exercise protocol presents different
characteristics (e.g., work:recovery = 2:1 and exercise intensity
= 95% IVO2max), it was also verified a reduced endurance
performance during longer duty cycles performed with passive
recovery. The intramuscular PCr concentration ([PCr]) kinetics
both during and following high-intensity exercise presents a
curvilinear profile and seems to be closely linked with VO2

kinetics (Rossiter et al., 2002). For instance, under the conditions
of the present study, is very likely that the amplitude of [PCr]
restoration during the 240 s recovery intervals (Long protocol)
was not doubled than what was presented when 120 s periods of
recovery (Short protocol) were allowed. Moreover, Chidnok et al.
(2013) demonstrated that [PCr] restoration become longer as
the intermittent protocol continued. Thus, [PCr] is progressively
lower immediately before each repetition, particularly when
duty-cycle duration is lengthened. The metabolites generated
by muscle contraction at this condition, such as Pi, ADP, and
AMP, increase glycolytic flux and consequently, glycolytic H+

(Adams et al., 1990; Conley et al., 1997) and lactate (Karpatkin
et al., 1964) production. Low values of muscle [PCr] and pH
(i.e., high values of [H+]) and consistently high values of [Pi]
and [ADP] have been associated with fatigue development during
high-intensity exercise (Jones et al., 2008; Vanhatalo et al.,
2010).

Another factor that can influence both endurance
performance and metabolic response is the activity pattern
performed during the recovery intervals between each bout
(Chidnok et al., 2012). Using the CP model, Chidnok et al.
(2012) demonstrated that endurance performance during
intermittent exercise was enhanced only when the recovery
intervals were performed below CP. Active recovery performed
below CP allows a partial PCr reconstitution and/or clearance
of fatigue-related metabolites (Chidnok et al., 2013), with
the former being apparently more important to enhance
endurance performance during high-intensity intermittent
exercise. Indeed, both endurance performance (Chidnok
et al., 2012) and PCr reconstitution (Chidnok et al., 2013)
are higher during intermittent exercise with passive recovery
than during active recovery performed bellow CP condition.
Thus, a lower PCr reconstitution can explain, at least in part,
the impaired endurance performance during short condition
performed with active recovery, as observed in the present
study.

However, a different scenario emerges from the data
obtained during the Long intermittent exercise protocol. At
this condition, endurance performance was not modified by
the active recovery periods. Two different mechanisms, which
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can occur simultaneously, could help explain this phenomenon.
Firstly, the negative influence of active recovery on PCr
reconstitution could be time-dependent, i.e., longer duty-cycle
could allow more similar PCr reconstitution than a shorter one.
The curvilinear PCr recovery profile supports this hypothesis
(Harris et al., 1976). Secondly, the clearance of lactate and H+

ions within muscles might be higher during the longer duty-
cycle. A higher muscle pH can reduce, directly or indirectly
(a more favorable metabolic milieu for PCr reconstitution),
fatigue during high-intensity exercise. Alternatively, it is
possible that [PCr] kinetics both during and following high-
intensity intermittent exercise would contribute progressively
less to endurance performance when the duty-cycle duration is
lengthened.

The end-exercise VO2 was not significantly different between
CWR exercise and VO2max measured during the incremental
test. This is consistent with the fact that exhaustive exercise
performed within the severe intensity domain (i.e., above
CP) is characterized by the development of the VO2SC,
which is truncated at VO2max. Some interventional (e.g.,
endurance training and priming exercise) (Jones et al., 2007;
Caritá et al., 2014) and correlational studies (Barbosa et al.,
2014a) have produced evidences that both VO2 kinetics (a
proxy for intramuscular PCr kinetics) (Rossiter et al., 2002)
and VO2max attainment is related to endurance performance
during high-intensity exercise. Thus, it was hypothesized
that VO2SC trajectory, which reflects the interaction between
VO2SC and VO2max attainment, could explain the endurance
performance during high-intensity intermittent exercise. Indeed,
it was demonstrated that VO2SC trajectory was faster during
CWR exercise than during intermittent exercise, regardless of
duration and recovery type. However, similar to the results
found by Chidnok et al. (2012), VO2SC trajectory was not
significantly different among intermittent exercise, and end-
exercise VO2 was lower during these conditions than at CWR
exercise. Thus, substrate utilization/accumulation, VO2 kinetics
(VO2SC trajectory and end-exercise VO2) and endurance
performance during high-intensity exercise seem to present
different relationship during CWR and intermittent exercise.
Priming high-intensity exercise has previously been reported to
reduce the amplitude of VO2SC and an increase in apparent W’
during subsequent exercise (Caritá et al., 2014, 2015; Dekerle
et al., 2015). In this context, each preceding intermittent exercise
bout may have “primed” the muscle (i.e., reduces the amplitude
of VO2SC and/or raise the W’) during subsequent bouts.
These modifications are consistent with enhanced endurance
performance, and could help to explain the apparently different
metabolic regulation imposed by the interaction between
intervals duration and recovery type during intermittent exercise.

Our experimental protocol (i.e., exercise intensity,
work:recovery durations and recovery types) was specifically
designed to investigate the hypothetical association between
intermittent endurance performance and VO2SC kinetics.
Similar to previous studies (Caputo and Denadai, 2008;
Barbosa et al., 2014a), both CWR and intermittent exercise
were performed at 95% IVO2max. As demonstrated in the
present study, exhaustive exercise performed at this intensity is

characterized by the development of the VO2SC and VO2max
attainment. Some studies have utilized the “percentage delta”
(for details please see Lansley et al., 2011) aiming to select
a predetermined exercise intensity domain (i.e., heavy or
severe) and/or to standardize the exercise intensity between
subjects. Indeed, when compared to a more traditional method
(e.g., %VO2max), this approach allows a lower inter-subject
variability of physiological responses to CWR exercise (Lansley
et al., 2011). However, for the first time, the present study
have normalized the wok:recovery durations based on the
individual VO2SC kinetics response. Thus, we are confident that
the inter-subject variability of physiological responses during
the intermittent exercise was attenuated. Finally, this study
presented a possible limitation, since the effect of passive and
active recovery on intermittent exercise was analyzed using
2 different groups of active individuals. Hypothetically, this
experimental design could be influenced by the individual
variability on both endurance performance and VO2SC kinetics.
However, PR and AR groups have presented similar data
during incremental (VO2max, IVO2max, 95% IVO2max and
LT) and CWR exercise (endurance performance and VO2SC
kinetics). Therefore, the possibility of inter-subject variability
influencing the recovery types comparisons was probably
reduced. This limitation comes from the heavy testing required
to be undertaken by each subject to test our research hypothesis.
It is important to note that a short-term training program (6
sessions) involving high-intensity exercise (repeated all-out
sprint training) have reduced the amplitude of the VO2SC and
increased tolerance to high-intensity exercise in recreationally
active subjects (Bailey et al., 2009). Thus, if a repeated measures
design has been utilized in our experimental approach, a
confounding factor could be added to our analysis, since the
volunteers would have to perform 6 bouts of severe-intensity
exercise.

CONCLUSION

The present study showed that under our experimental
conditions (i.e., exercise intensity, work:recovery durations
and recovery type), intermittent exercise enhances endurance
performance during severe-intensity exercise, independently
of intervals duration and recovery type. Passive recovery is
superior in relation to active recovery to enhance endurance
performance only during shorter duty-cycles. Although VO2SC
trajectory is attenuated during high-intensity intermittent
exercise, its alteration does not seem to explain the interaction
effects of intervals duration and recovery type on endurance
performance. Moreover, the end-exercise VO2 was lower
during intermittent exercise than at CWR exercise. Thus,
severe-intensity intermittent exercise performed with different
intervals duration and recovery type seems to modify the
relationship between endurance performance and VO2 kinetics
observed during CWR exercise. Further studies using a
repeated measures design are required to examine the effect
of severe-intensity intermittent exercise on both endurance
performance and VO2SC in trained individuals. A threshold
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in the duration of the recovery, from which PCr resynthesis
and/or W’ reconstitution would be less affected by active
recovery could be identified. This can help to explain and
confirm our main results, giving support to elaborate a
more sophisticate interval training programs for different
populations.

AUTHOR CONTRIBUTIONS

Study design: BD and CG. Data acquisition and analysis: LB, BD,
and CG and Writing the paper: LB, BD, and CG.

FUNDING

Supported by Fundação de Amparo à Pesquisa do Estado de São
Paulo (FAPESP) (grant 2009/07700-2 and grant 2016/22907-6),
Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq) and Fundação para o Desenvolvimento da Unesp
(FUNDUNESP).

ACKNOWLEDGMENTS

The authors appreciate the time and effort expended by all
volunteer subjects in this study.

REFERENCES

Adami, A., Sivieri, A., Moía, C., Perini, R., and Ferretti, G. (2013). Effects of step

duration in incremental ramp protocols on peak power and maximal oxygen

consumption. Eur. J. Appl. Physiol. 113, 2647–2653. doi: 10.1007/s00421-013-

2705-9

Adams, G. R., Foley, J. M., and Meyer, R. A. (1990). Muscle buffer capacity

estimated from pH changes during rest-to-work transitions. J. Appl. Physiol.

69, 968–972.

Bailey, S. J., Wilkerson, D. P., Dimenna, F. J., and Jones, A. M. (2009). Influence of

repeated sprint training on pulmonary O2 uptake and muscle deoxygenation

kinetics in humans. J. Appl. Physiol. 106, 1875–1887. doi: 10.1152/japplphysiol.

00144.2009

Barbosa, L. F., Greco, C. C., and Denadai, B. S. (2014a). The slope

of the VO2 slow component is associated with exercise intolerance

during severe-intensity exercise. Acta Physiol. Hung. 101, 517–523.

doi: 10.1556/APhysiol.101.2014.4.13

Barbosa, L. F., Montagnana, L., Denadai, B. S., and Greco, C. C. (2014b). Reliability

of cardiorespiratory parameters during cycling exercise performed at the severe

domain in active individuals. J. Strength Cond. Res. 28, 976–981. doi: 10.1519/

JSC.0b013e3182a1f408

Bentley, D. J., andMcNaughton, L. R. (2003). Comparison ofW(peak), VO2(peak)

and the ventilation threshold from two different incremental exercise tests:

relationship to endurance performance. J. Sci. Med. Sport 6, 422–435. doi: 10.

1016/S1440-2440(03)80268-2

Caputo, F., and Denadai, B. S. (2008). The highest intensity and the shortest

duration permitting attainment of maximal oxygen uptake during cycling:

effects of different methods and aerobic fitness level. Eur. J. Appl. Physiol. 103,

47–57. doi: 10.1007/s00421-008-0670-5

Caritá, R. A., Greco, C. C., andDenadai, B. S. (2014). The positive effects of priming

exercise on oxygen uptake kinetics and high-intensity exercise performance

are not magnified by a fast-start pacing strategy in trained cyclists. PLoS ONE

9:e95202. doi: 10.1371/journal.pone.0095202

Caritá, R. A., Greco, C. C., and Denadai, B. S. (2015). Prior heavy-intensity

exercise’s enhancement of oxygen-uptake kinetics and short-term high-

intensity exercise performance independent of aerobic-training status. Int. J.

Sports Physiol. Perform. 10, 339–345. doi: 10.1123/ijspp.2014-0131

Chidnok, W., Dimenna, F. J., Bailey, S. J., Vanhatalo, A., Morton, R. H., Wilkerson,

D. P., et al. (2012). Exercise tolerance in intermittent cycling: application of the

critical power concept. Med. Sci. Sports Exerc. 44, 966–976. doi: 10.1249/MSS.

0b013e31823ea28a

Chidnok, W., DiMenna, F. J., Fulford, J., Bailey, S. J., Skiba, P. F., Vanhatalo, A.,

et al. (2013). Muscle metabolic responses during high-intensity intermittent

exercise measured by (31)P-MRS: relationship to the critical power concept.

Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R1085–R1092. doi: 10.1152/

ajpregu.00406.2013

Conley, K. E., Blei, M. L., Richards, T. L., Kushmerick, M. J., and Jubrias, S. A.

(1997). Activation of glycolysis in human muscle in vivo. Am. J. Physiol. Cell

Physiol. 273, C306–C315.

Dekerle, J., de Souza, K. M., de Lucas, R. D., Guglielmo, L. G., Greco, C. C.,

and Denadai, B. S. (2015). Exercise tolerance can be enhanced through a

change in work rate within the severe intensity domain: work above critical

power is not constant. PLoS ONE. 10:e0138428. doi: 10.1371/journal.pone.01

38428

Demarie, S., Koralsztein, J. P., and Billat, V. (2000). Time limit and time at VO2max

during a continuous and an intermittent run. J. Sports Med. Phys. Fitness 40,

96–102.

Fukuba, Y., Miura, A., Endo, M., Kan, A., Yanagawa, K., and Whipp, B. J. (2003).

The curvature constant parameter of the power-duration curve for varied-

power exercise. Med. Sci. Sports Exerc. 35, 1413–1418. doi: 10.1249/01.MSS.

0000079047.84364.70

Harris, R. C., Edwards, R. H., Hultman, E., Nordesjö, L. O., Nylind, B., and Sahlin,

K. (1976). The time course of phosphorylcreatine resynthesis during recovery

of the quadriceps muscle in man. Pflügers Arch. 367, 137–142. doi: 10.1007/

BF00585149

Hwang, C. L., Wu, Y. T., and Chou, C. H. (2011). Effect of aerobic interval training

on exercise capacity and metabolic risk factors in people with cardiometabolic

disorders: a meta-analysis. J. Cardiopulm. Rehabil. Prev. 31, 378–385. doi: 10.

1097/HCR.0b013e31822f16cb

Jones, A. M., Fulford, J., andWilkerson, D. P. (2008). Influence of prior exercise on

muscle [phosphorylcreatine] and deoxygenation kinetics during high-intensity

exercise in men. Exp. Physiol. 93, 468–478. doi: 10.1113/expphysiol.2007.

041897

Jones, A. M., Grassi, B., Christensen, P. M., Krustrup, P., Bangsbo, J., and

Poole, D. C. (2011). Slow component of VO2 kinetics: mechanistic bases and

practical applications.Med. Sci. Sports Exerc. 43, 2046–2062. doi: 10.1249/MSS.

0b013e31821fcfc1

Jones, A. M., Vanhatalo, A., Burnley, M., Morton, R. H., and Poole, D. C.

(2010). Critical power: implications for determination of VO2max and

exercise tolerance. Med. Sci. Sports Exerc. 42, 1876–1890. doi: 10.1249/MSS.

0b013e3181d9cf7f

Jones, A. M., Wilkerson, D. P., Berger, N. J., and Fulford, J. (2007). Influence of

endurance training on muscle [PCr] kinetics during high-intensity exercise.

Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R392–R401. doi: 10.1152/

ajpregu.00056.2007

Karpatkin, S., Helmreich, E., and Cori, C. F. (1964). Regulation of glycolysis in

muscle. II. Effect of stimulation and epinephrine in isolated frog sartorius

muscle. J. Biol. Chem. 239, 3139–3145.

Lamarra, N., Whipp, B. J., Ward, S. A., and Wasserman, K. (1987). Effect of

interbreath fluctuations on characterizing exercise gas exchange kinetics. J.

Appl. Physiol. 62, 2003–2012.

Lansley, K. E., Dimenna, F. J., Bailey, S. J., and Jones, A. M. (2011). A ’new’ method

to normalise exercise intensity. Int. J. Sports Med. 32, 535–541. doi: 10.1055/s-

0031-1273754

Laursen, P. B., and Jenkins, D. G. (2002). The scientific basis for high-

intensity interval training: optimising training programmes and maximising

performance in highly trained endurance athletes. Sports Med. 32, 53–73.

doi: 10.2165/00007256-200232010-00003

Marsh, A. P., and Martin, P. E. (1997). Effect of cycling experience, aerobic

power, and power output on preferred and most economical cycling cadences.

Med. Sci. Sports Exerc. 29, 1225–1232. doi: 10.1097/00005768-199709000-

00016

Frontiers in Physiology | www.frontiersin.org 8 December 2016 | Volume 7 | Article 602

https://doi.org/10.1007/s00421-013-2705-9
https://doi.org/10.1152/japplphysiol.00144.2009
https://doi.org/10.1556/APhysiol.101.2014.4.13
https://doi.org/10.1519/JSC.0b013e3182a1f408
https://doi.org/10.1016/S1440-2440(03)80268-2
https://doi.org/10.1007/s00421-008-0670-5
https://doi.org/10.1371/journal.pone.0095202
https://doi.org/10.1123/ijspp.2014-0131
https://doi.org/10.1249/MSS.0b013e31823ea28a
https://doi.org/10.1152/ajpregu.00406.2013
https://doi.org/10.1371/journal.pone.0138428
https://doi.org/10.1249/01.MSS.0000079047.84364.70
https://doi.org/10.1007/BF00585149
https://doi.org/10.1097/HCR.0b013e31822f16cb
https://doi.org/10.1113/expphysiol.2007.041897
https://doi.org/10.1249/MSS.0b013e31821fcfc1
https://doi.org/10.1249/MSS.0b013e3181d9cf7f
https://doi.org/10.1152/ajpregu.00056.2007
https://doi.org/10.1055/s-0031-1273754
https://doi.org/10.2165/00007256-200232010-00003
https://doi.org/10.1097/00005768-199709000-00016
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Barbosa et al. Endurance Performance during Intermittent Cycling

Millet, G. P., Candau, R., Fattori, P., Bignet, F., and Varray, A. (2003). VO2

responses to different intermittent runs at velocity associated with VO2max.

Can. J. Appl. Physiol. 28, 410–423. doi: 10.1139/h03-030

Murgatroyd, S. R., Ferguson, C., Ward, S. A., Whipp, B. J., and Rossiter, H.

B. (2011). Pulmonary O2 uptake kinetics as a determinant of high-intensity

exercise tolerance in humans. J. Appl. Physiol. 110, 1598–1606. doi: 10.1152/

japplphysiol.01092.2010

Poole, D. C., Ward, S. A., Gardner, G. W., and Whipp, B. J. (1988). Metabolic and

respiratory profile of the upper limit for prolonged exercise inman. Ergonomics.

31, 1265–1279. doi: 10.1080/00140138808966766

Roffey, D. M., Byrne, N. M., and Hills, A. P. (2007). Effect of stage duration

on physiological variables commonly used to determine maximum aerobic

performance during cycle ergometry. J. Sports Sci. 25, 1325–1335. doi: 10.1080/

02640410601175428

Rossiter, H. B., Ward, S. A., Kowalchuk, J. M., Howe, F. A., Griffiths, J. R., and

Whipp, B. J. (2002). Dynamic asymmetry of phosphocreatine concentration

and O(2) uptake between the on- and off-transients of moderate- and high-

intensity exercise in humans. J. Physiol. 541, 991–1002. doi: 10.1113/jphysiol.

2001.012910

Turner, A. P., Cathcart, A. J., Parker, M. E., Butterworth, C., Wilson, J., and

Ward, S. A. (2006). Oxygen uptake and muscle desaturation kinetics during

intermittent cycling. Med. Sci. Sports Exerc. 38, 492–503. doi: 10.1249/01.mss.

0000188450.82733.f0

Vanhatalo, A., Fulford, J., DiMenna, F. J., and Jones, A. M. (2010). Influence of

hyperoxia on muscle metabolic responses and the power-duration relationship

during severe-intensity exercise in humans: a 31P magnetic resonance

spectroscopy study. Exp. Physiol. 95, 528–540. doi: 10.1113/expphysiol.2009.

050500

Whipp, B. J., and Rossiter, H. B. (2005). “The kinetics of oxygen uptake:

physiological inferences from the parameters,” in Oxygen Uptake Kinetics in

Sport, Exercise, and Medicine, ed A. M. Jones and D. C. Poole (London:

Routledge), 64–94.

Zoladz, J. A., Rademaker, A. C., and Sargeant, A. J. (1995). Non-linear relationship

between O2 uptake and power output at high intensities of exercise in humans.

J. Physiol. 488, 211–217. doi: 10.1113/jphysiol.1995.sp020959

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Barbosa, Denadai and Greco. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 9 December 2016 | Volume 7 | Article 602

https://doi.org/10.1139/h03-030
https://doi.org/10.1152/japplphysiol.01092.2010
https://doi.org/10.1080/00140138808966766
https://doi.org/10.1080/02640410601175428
https://doi.org/10.1113/jphysiol.2001.012910
https://doi.org/10.1249/01.mss.0000188450.82733.f0
https://doi.org/10.1113/expphysiol.2009.050500
https://doi.org/10.1113/jphysiol.1995.sp020959
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive

	Endurance Performance during Severe-Intensity Intermittent Cycling: Effect of Exercise Duration and Recovery Type
	Introduction
	Materials and methods
	Subjects
	Experimental Design
	Procedures
	Incremental Test
	Constant-Workload Exercise
	Intermittent Exercises
	Modeling of VO2 during Constant-Workload Exercise
	Modeling of VO2 during Intermittent Exercise

	Statistical Analysis

	Results
	Discussion
	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References


