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Abstract

Purpose: The relative biologic effectiveness (RBE) rises with increasing linear energy transfer 

toward the end of proton tracks. Presently, there is no consensus on how RBE heterogeneity 

should be accounted for in breast cancer proton therapy treatment planning. Our purpose was to 

determine the dosimetric consequences of incorporating a brachial plexus (BP) biologic dose 

constraint and to describe other clinical implications of biologic planning.

Methods and Materials: We instituted a biologic dose constraint for the BP in the context of 

MC1631, a randomized trial of conventional versus hypofractionated postmastectomy intensity 

modulated proton therapy (IMPT). IMPT plans of 13 patients treated before the implementation of 

the biologic dose constraint (cohort A) were compared with IMPT plans of 38 patients treated on 

MC1631 after its implementation (cohort B) using (1) a commercially available Eclipse treatment 

planning system (RBE = 1.1); (2) an in-house graphic processor unit-based Monte Carlo physical 

dose simulation (RBE = 1.1); and (3) an in-house Monte Carlo biologic dose (MCBD) simulation 

that assumes a linear relationship between RBE and dose-averaged linear energy transfer (product 

of RBE and physical dose = biologic dose).

Results: Before implementation of a BP biologic dose constraint, the Eclipse mean BP D0.01 

cm3 was 107%, and the MCBD estimate was 128% (ie, 64 Gy [RBE = biologic dose] in 25 

fractions for a 50-Gy [RBE = 1.1] prescription), compared with 100.0% and 116.0%, respectively, 

after the implementation of the constraint. Implementation of the BP biologic dose constraint did 

not significantly affect clinical target volume coverage. MCBD plans predicted greater internal 

mammary node coverage and higher heart dose than Eclipse plans.

Conclusions: Institution of a BP biologic dose constraint may reduce brachial plexopathy risk 

without compromising target coverage. MCBD plan evaluation provides valuable information to 
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physicians that may assist in making clinical judgments regarding relative priority of target 

coverage versus normal tissue sparing.

Introduction

Proton beam therapy (PBT) is increasingly being employed for the treatment of early-stage 

and locally advanced breast cancer.1–4 Compared with photon therapy, PBT is attractive 

because of physical properties that enable sharp dose falloff beyond the target, resulting in a 

reduction in dose to nontarget normal tissue while maintaining or improving target volume 

coverage.5 Based on analyses from patients treated with photons correlating radiation 

therapy—related toxicity with dose to organs at risk, the hypothesis has been put forward 

that reducing exposure to the heart, lungs, muscles, bone, skin, and uninvolved normal breast 

tissue with PBT will decrease the risks of adverse events after breast cancer radiation 

therapy.6–9 Furthermore, it has been suggested that more robust target coverage of 

anatomically challenging areas like the internal mammary node (IMN) basin with PBT 

could reduce rates of relapse and death from breast cancer in some high-risk patients.5,10,11

However, PBT does add unique complexities to the treatment planning process that are 

distinct from photon therapy. For example, PBT is more sensitive to soft tissue anatomic 

changes and some interfraction and intrafraction setup uncertainties that must be accounted 

for during PBT treatment planning and delivery.12,13 Variability in proton relative biologic 

effectiveness (RBE) is increasingly recognized as an additional uncertainty that could affect 

clinical outcomes.14

RBE can be defined as the ratio of doses of 2 radiation modalities that cause the same 

biologic effect. A proton RBE of 1.1 has been used in the clinic based on a meta-analysis of 

in vitro and in vivo data on the biologic impact of protons delivered at the middle of the 

spread-out Bragg peak.15 However, numerous studies have now shown that the RBE is 

greater than 1.1 at the Bragg peak, and distal falloff where the radiation ionization density 

(ie, the linear energy transfer [LET]) quickly rises as each particle comes to a stop.16–18 

Pencil beam scanning—based intensity modulated proton therapy (IMPT) is a particularly 

attractive proton therapy technique for breast cancer due to its ability to constrain the dose to 

the skin surface and deliver a more conformal treatment. However, in contrast to passively 

scattered proton therapy, where regions of increased LET are highly predictable, with IMPT, 

areas of high LET could fall almost anywhere in the target volume.19 Such heterogeneity in 

LET and RBE raises the concern that despite the reduced dose to normal tissues with PBT, 

“biologic hot spots” of PBT may actually paradoxically increase the risk of some adverse 

effects if not mitigated during treatment planning.20 Presently, there is no consensus on how 

RBE variability should be accounted for in breast cancer treatment planning.

Brachial plexopathy is a rare but potentially debilitating late adverse effect of breast cancer 

nodal irradiation. Clinically, patients with brachial plexopathy may present with paresthesias 

or pain, which can even progress to loss of arm motor function.21 The risk of brachial 

plexopathy has been correlated with increased dose to the brachial plexus (BP) and larger 

fraction size.22 Women with breast cancer undergoing regional nodal irradiation may have 

excellent prognoses and years to develop late complications of therapy.23 With this 
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background in mind, we investigated the feasibility of implementing physical and biologic 

dose constraints for the BP in the context of MC1631, a randomized trial of 15- versus 25-

fraction IMPT after mastectomy in patients with breast cancer requiring regional nodal 

irradiation (NCT02783690). The goal of the BP constraint was to mitigate the risk of late 

brachial plexopathy with either conventional or hypofractionated PBT. The purpose of this 

manuscript is to report the dosimetric consequences of incorporating a brachial plexus 

constraint. In addition, we present data on biologic and physical dose relating to target 

coverage and organ-at-risk exposure to demonstrate how other information provided by 

biologic dose simulation can be used in the clinic as part of routine breast cancer treatment 

planning.

Methods and Materials

Patients

This study was approved the Mayo Clinic institutional review board (IRB). After 

institutional review board approval, we selected 2 cohorts of patients who were treated with 

postmastectomy IMPT for breast cancer at our institution between July 2015 and May 2017. 

Cohort A consisted of 13 consecutive patients treated with postmastectomy IMPT as part of 

a prospective registry (NCT02457962) between July 2015 and March 2016, before the 

implementation of a BP physical and biologic dose constraint in our clinic. Cohort B 

consisted of 38 consecutive patients treated with postmastectomy IMPT between June 2016 

and May 2017 after the implementation of a BP physical and biologic dose constraint 

enrolled on MC1631, an ongoing randomized trial of 15 versus 25 fractions pencil beam 

scanning proton radiation therapy after mastectomy in patients requiring regional nodal 

irradiation (NCT02783690).

Treatment planning

The details of our immobilization, computed tomography (CT) simulation, and IMPT 

treatment planning process have previously been described.1 In brief, patients were most 

commonly immobilized supine on a breast board with arms up and in a thermoplastic 

facemask to reproducibly maintain head and neck position. CT simulation was done with 2-

mm slices at 120 kVp, routinely in free breathing. The clinical target volume (CTV) 

included the chest wall and regional lymph nodes (axilla, supraclavicular, and IMN basins) 

and was delineated and reported as a single structure. The CTV resembled the Radiation 

Therapy Oncology Group Breast Cancer Atlas with some notable exceptions based on 

previously published nodal mapping studies. First, the chest wall CTV routinely extended no 

deeper than the anterior surface of the ribs and intercostal muscles except in the vicinity of 

the IMNs.24 The CTV was extended to include the ribs and intercostal muscles if these 

structures were invaded. Second, both the medial and lateral supraclavicular lymph nodes 

were routinely included. However, the supraclavicular CTV was not routinely extended 

medial to the lateral border of the internal carotid artery to reduce the dose to midline organs 

given the low risk of nodal presentation or recurrence immediately adjacent to the esophagus 

and trachea.25,26 Finally, the IMN target volume was defined as a 4- to 5-mm medial and 

lateral expansion on the internal mammary vessels and extended from the cranial CT slice of 

the fourth rib to the most caudal extent of the supraclavicular volume near the junction of the 
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internal mammary and brachiocephalic veins. In addition to being encompassed in the chest 

wall and regional nodal CTV, dosimetry was also evaluated and reported separately for the 

IMN target volume.27

Patients were treated with a median of 2 multifield optimized anterior-oblique beams 

arranged at approximately 45°. The prescription dose was either 50 Gy (RBE 1.1 in 25 

fractions or 40 Gy (RBE 1.1) in 15 fractions. Focal lymph node boosts, but not chest wall 

boosts, were permitted. Plans were constructed in the Eclipse (Varian Medical Systems, Palo 

Alto, CA) planning system. For treatment planning, setup uncertainty analyses simulating 

worst-case scenarios of ±5 mm shifts in isocenter along each translation axis and ±3% beam 

range uncertainty were performed for the CTV and organs at risk. Target and normal tissue 

dose-volume objectives have previously been reported.1,28 The first planning priority for 

both cohort A and cohort B was for 90% of the CTV (D90%) to receive ≥90% of the 

prescription dose under even the worst-case uncertainty analysis. The BP was contoured 

according to the validated and standardized method of Hall et al.29 For the BP, the Eclipse 

plan physical dose constraint for cohort B only was maximum dose received by at least 0.01 

cm3 of the volume (D0.01 cm3) ≤ 102% (RBE = 1.1).

Monte Carlo—based biologic dose calculation

All Eclipse breast cancer plans are checked by a very fast and accurate in-house graphic 

processor unit (GPU)-based Monte Carlo system, which our group previously described.30 

Like the dose calculated by the Eclipse treatment planning system, which is referred to in 

this article as the Eclipse physical dose (EPD [RBE 1.1]), our GPU-based Monte Carlo 

physical dose (MCPD [RBE 1.1]) model includes an RBE factor of 1.1. The MCPD (RBE 

1.1) model has been extensively verified with the Tool for Particle Simulation software 

version beta-6 and Geant 4.9.6.30 Furthermore, the GPU-based Monte Carlo handles 

nonelastic interactions on an event-by-event basis by employing a Bertini cascade 

simulation, enabling accurate dose-averaged LET computations.30 To calculate Monte Carlo 

biologic dose (MCBD), a simple linear relationship between LET and biologic dose was 

assumed, as previously published by Beltran et al.31 According to the Beltran model, the 

MCBD approximates previously published models derived from fits to in vitro cell survival 

data.30,32–34 For the BP, the MCBD constraint for cohort B only was maximum dose 

received by at least 0.01 cm3 of the volume (D0.01 cm3) ≤ 120% (product of RBE and 

Monte Carlo physical dose = biologic dose). The MCBD dose was calculated after the 

Eclipse optimization (along with EPD [RBE 1.1] and MCPD [RBE 1.1]). If there were 

MCBD hotspots in the BP or other critical structures, the dosimetrist constrained these by a 

variety of techniques such as changing the beam angles, contouring certain areas, and 

constraining the physical dose within them or limiting the scanning regions for certain 

beams. After these changes were made, another round of Eclipse optimization was started, 

and the MCBD was recalculated and presented to the physician. This process can take 

several iterations before acceptable MCBD, EPD (RBE 1.1), and MCPD (RBE 1.1) 

distributions are obtained. In short, in this work the MCBD did not directly enter the 

optimization function; MCBD hotspots were mitigated in a “forward planning” (and not 

inverse planning) fashion.
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Figure 1 displays BP dose-volume histograms and axial and coronal color wash images at 

the level of the BP for both the EPD (RBE 1.1) and the MCBD plans of a typical patient in 

cohort B with the BP physical and biologic dose constraints applied. The primary planning 

priority for the heart was to limit the mean heart dose to ≤1.5% of prescription, but attempts 

to limit hot spots (ie, prescription dose) were also made on the EPD (RBE 1.1) and the 

MCBD plans.

Outcomes

Categorical clinical variables were compared between the 2 cohorts using chi-squared tests 

or Fisher exact tests as appropriate. Target coverage and normal tissue dosimetric parameters 

for the CTV, IMNs, heart, lungs, ipsilateral breast, and skin were compared using the 

Wilcoxon rank-sum test. Provider assessment of early and late adverse events was performed 

using the Common Toxicity Criteria for Adverse Events version 4.0. Tenpoint linear analog 

scale assessment questions were used to assess patient-reported arm symptoms and are 

provided in the Appendix E1 (available online at https://doi.org/10.1016/j.prro.2019.08.011).
35 The primary emphasis of the patient-reported outcomes analysis was the difference 

between baseline and follow-up scores to account for any variability in baseline conditions. 

The 2-sided Welch-Satterthwaite t test was used to assess for differences in changes of 

patient-reported arm function between the 2 cohorts.

Results

The median follow-up for all patients was 24 months (range, 12-45 months). Clinical 

characteristics of the 13 patients treated before the implementation of a BP physical and 

biologic dose constraint (cohort A) and the 38 patients treated with postmastectomy IMPT 

after the implementation of a BP physical and biologic dose constraint (cohort B) are 

displayed in Table 1. Patients in cohort A were younger and more commonly presented with 

clinical stage 3 and left-sided disease. There were no differences in tumor grade, estrogen 

receptor, progesterone receptor, or human epidermal growth factor receptor 2 status.

BP doses, CTV coverage, and arm toxicity

As demonstrated in Figure 2 using α/β = 2 Gy, the BP biologic dose as determined by the 

Beltran MCBD model used for our study was comparable to other previously published 

models by Carabe et al, McNamara et al, and Wedenberg et al derived from fits to in vitro 

cell survival data.31–34 For cohort A and cohort B, the median BP D0.01 cm3 on the EPD 

(RBE 1.1), MCPD (RBE 1.1), and MCBD models were 107% versus 100% (P < .0001), 

111% versus 103% (P < .0001), and 128% versus 116% (P < .0001), respectively (Table 2). 

According to our model, for a prescription of 50 Gy in 25 fractions, assuming an α/β ratio of 

2 for late effects, the median BP MCBD D0.01 cm3 of 128% for cohort A translates into a 

biologically effective dose of 73 Gy in 2 Gy fractions. In contrast, the median BP MCBD 

D0.01 cm3 of 116% for cohort B translated into a more clinically acceptable biologically 

effective dose of 63 Gy in 2 Gy fractions.

To determine the impact of the BP constraints on target coverage, we also evaluated the 

CTV D95% before (cohort A) and after (cohort B) implementation of the BP constraints. 
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The median EPD (RBE 1.1), MCPD (RBE 1.1), and MCBD CTV D95% were 99% versus 

97% (P = .0002), 99% versus 97% (P = .0404), and 103% versus 101% (P = .0854) for 

cohort A and cohort B, respectively. Although the CTV D95% was significantly higher for 

cohort A in the EPD (RBE 1.1) and MCPD (RBE 1.1) plans, these absolute differences were 

small and likely of negligible clinical significance. Furthermore, we cannot rule out the 

possibility that other factors unrelated to the BP constraint could have affected differences in 

target coverage between the 2 cohorts, such as the more adverse disease biology in cohort A 

(Table 1).

There have been no brachial plexopathy adverse events to date. Patient-reported measures of 

arm function are being assessed prospectively, as displayed in Table 3. At 3 months 

compared with baseline, there were no significant differences between the 2 cohorts in the 

change in patient-reported ability to lift items over 10 pounds, to reach or extend the arm 

above shoulder level, or to bend and straighten the affected arm or in numbness or tingling 

of the ipsilateral arm.

IMN coverage and cardiac sparing

The steep dose gradients at the interface of the IMNs with the heart are areas of high LET in 

breast proton radiation therapy treatment plans resulting from optimizing for robust coverage 

of the IMN CTV while constraining cardiac dose. Therefore, we evaluated IMN CTV 

coverage and heart doses on the EPD (RBE 1.1) plans as well as the MCPD (RBE 1.1) and 

MCBD models for all 51 patients (Table 4). There were no significant differences in IMN 

coverage or doses to organs at risk between the EPD (RBE 1.1) and MCPD (RBE 1.1) plans 

(all P > .05, not shown). Therefore, the primary emphasis of the analysis was the comparison 

between the MCPD (RBE 1.1) and MCBD plans. As expected, owing to biologic range 

extension, the median IMN CTV D95% and heart Dmax were significantly greater for the 

MCBD than for the MCPD (RBE 1.1) plans, although mean heart dose did not reach 

statistical significance (Table 4). The skin, defined as a 3-mm rind from the body surface, 

had a D1 cm3 value that was also significantly greater in the MCBD plans, but there was no 

significant difference in the ipsilateral lung V20 Gy (Table 4).

Figure 3 displays EPD (RBE 1.1) and MCBD plans for a typical patient with immediate 

breast reconstruction treated with postmastectomy radiation therapy. On the EPD (RBE 1.1) 

plan, the CTV is covered by at least 90% of prescription (not shown). However, small areas 

near the chest wall and IMNs are permitted to receive less than prescription dose to spare the 

heart, lungs, and chest wall (Fig 2A) with the understanding that the biologically effective 

dose is higher in those locations (Fig 2B). Figure 4A demonstrates an area of high biologic 

dose identified during MCBD plan review near the right coronary artery for a different 

patient undergoing postmastectomy radiation therapy. After reoptimizing, the biologic dose 

to the heart could be reduced while still maintaining clinically acceptable target coverage 

(Fig 4B). Setup uncertainty analyses for the CTV, BP, and selected organs at risk are also 

presented in Table E1 (available online at https://doi.org/10.1016/j.prro.2019.08.011).
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Discussion

We present our initial experience of breast cancer proton treatment plan evaluation using 

both biologic and physical dose. The magnitude of the proton RBE at the end of proton 

range and its impact on tumor control and late tissue effects is uncertain. However, there is 

compelling evidence that the RBE rises to greater than 1.1 toward the end of proton tracks.
16–18,36,37 These uncertainties may prove clinically meaningful, such as during elective 

treatment of the supraclavicular fossa as RBE may be increased within critical structures like 

the BP. Therefore, when evaluating the quality of proton treatment plans of all patients 

treated at our institution, physicians and physicists not only assess EPD (RBE 1.1) and 

MCPD (RBE 1.1) plans, which assume a constant proton RBE of 1.1 relative to high-energy 

photons, but also assess a GPU-based MCBD model that assumes a linear relationship 

between dose-averaged LET and biologic dose.

In our photon breast cancer radiation therapy practice, we do not constrain the BP for 

standard adjuvant prescriptions, such as 50 Gy in 25 fractions, as the tolerance of the BP is 

generally felt to exceed the hot spots observed on these plans. By the same rationale, we did 

not initially require the BP to be contoured as an organ at risk when we began treating 

patients in our breast cancer pencil beam scanning proton therapy program as the physical 

dose heterogeneity of breast cancer proton plans was comparable, if not improved, relative 

to that observed with 3-dimensional conformal photon radiation therapy. However, when 

assessing the MCBD modelled dose to the BP in an initial cohort of patients treated with 

IMPT, we grew concerned at the possibility that our treatments could be placing patients at 

higher risk of brachial plexopathy than anticipated based on the BP dosimetry visualized on 

the EPD (and MCPD) plans. For example, in the first 13 patients treated with proton post-

mastectomy radiation therapy at our institution (cohort A), the Dmax to the BP on the 

MCBD plans ranged as high as 130% of a 50-Gy prescription. Assuming an α/β ratio of 2 

for late effects, this BP MCBD Dmax is 75 Gy in 2 Gy fractions, far higher than we would 

consider clinically acceptable in photon therapy planning for an elective treatment.38,39 Our 

concern was further heightened as we were embarking on a randomized trial of conventional 

versus hypofractionated pencil beam scanning proton therapy, and larger doses per fraction 

have previously been associated with risk of brachial plexopathy.22,40 Therefore, we 

implemented physical and biologic dose constraints for the BP for patients undergoing 

proton regional nodal irradiation. Here, we show that application of these BP constraints has 

only a small, and likely clinically negligible, impact on CTV coverage. We further highlight 

areas of high LET in postmastectomy radiation therapy planning, namely the heart and the 

IMN CTV. For example, the maximum heart dose was approximately 30% higher for the 

MCBD relative to the EPD (RBE 1.1) and MCPD (RBE 1.1) plans, and the IMN CTV was 

routinely an area of high LET and RBE. Further investigation is needed to determine the 

acute and late functional impact of small volumes of the heart being exposed to high-LET 

proton therapy. Nevertheless, the importance of IMN coverage may vary from case to case 

based upon patient and disease characteristics.10,11 We therefore submit that consideration 

of LET and RBE heterogeneity can be of value to physicians in breast cancer planning as 

they make clinical judgments balancing normal tissue sparing and target coverage in an 

attempt to optimize the therapeutic ratio.

Mutter et al. Page 7

Pract Radiat Oncol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We recognize there are numerous RBE uncertainties and that the MCBD model used in our 

practice provides only an estimate of RBE and is not validated by clinical data, a potential 

limitation of the study.31 For example, our model does not take into consideration potential 

RBE variations with dose or different endpoints of interest such as tumor control or normal 

tissue complication probability.41 However, our MCDB model approximates previously 

published models derived from fits to in vitro cell survival data (Fig 1).31

Increasing evidence suggests that biologic range extension can have important clinical 

consequences.14,42 Treatment planning to mitigate areas of high LET and RBE on the brain 

stem to reduce brain stem necrosis risk has been an area of focus due to the potentially 

devastating morbidity caused by each event.43–45 In breast cancer, Underwood et al recently 

found that proton therapy patients had more late-phase pulmonary radiographic changes per 

Gy (RBE 1.1) than patients treated with photon therapy.20

At present, commercial treatment planning systems are not available to model variations in 

proton RBE. Still, our findings suggest that limiting hot spots and areas of high LET on the 

brachial plexus and in the vicinity of the heart at a minimum may be prudent strategies to 

consider as proton therapy technologies and practices evolve. We also attempt to limit hot 

spots on the ribs and chest wall without significantly compromising target coverage of the 

posterior chest wall CTV given the characteristic high LET in that region as protons come to 

a stop before reaching the lungs (Fig 3B). Notably, we allow BP constraints to be exceeded 

at physician discretion on a case-by-case basis, such as scenarios where a nodal boost is 

indicated in the vicinity of the BP.

We are prospectively collecting data on patient-reported arm symptoms. A limitation of the 

study is the relatively short follow-up as brachial plexopathy can occur years out from 

treatment. Collection and analysis of long-term treatment outcomes of large numbers of 

patients across multiple institutions and additional in vitro and in vivo preclinical studies 

will ultimately be needed to help optimize the use of variable RBE values in proton therapy 

treatment planning.

Conclusions

In conclusion, physical and biologic dose constraints can be implemented without 

significantly affecting target coverage of patients undergoing postmastectomy and regional 

nodal IMPT for breast cancer. The BP should be considered an organ at risk, and RBE 

heterogeneity should be an important consideration in breast cancer proton treatment 

planning.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research was supported in part by K12 HD065987 (Robert W. Mutter).

Sources of support: This work had no specific funding.

Mutter et al. Page 8

Pract Radiat Oncol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Mutter RW, Remmes NB, Kahila MM, et al. Initial clinical experience of postmastectomy intensity 
modulated proton therapy in patients with breast expanders with metallic ports. Pract Radiat Oncol. 
2017;7:e243–e252. [PubMed: 28341315] 

2. Macdonald SM, Patel SA, Hickey S, et al. Proton therapy for breast cancer after mastectomy: early 
outcomes of a prospective clinical trial. Int J Radiat Oncol Biol Phys. 2013;86:484–490. [PubMed: 
23523326] 

3. Luo L, Cuaron J, Braunstein L, et al. Early outcomes of breast cancer patients treated with post-
mastectomy uniform scanning proton therapy. Radiother Oncol. 2019;132:250–256. [PubMed: 
30414757] 

4. Bradley JA, Dagan R, Ho MW, et al. Initial report of a prospective dosimetric and clinical feasibility 
trial demonstrates the potential of protons to increase the therapeutic ratio in breast cancer compared 
with photons. Int J Radiat Oncol Biol Phys. 2016;95:411–421. [PubMed: 26611875] 

5. Corbin KS, Mutter RW. Proton therapy for breast cancer: progress & pitfalls. Breast Cancer 
Management. 2018;7.

6. Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy 
for breast cancer. N Engl J Med. 2013;368:987–998. [PubMed: 23484825] 

7. Taylor C, Correa C, Duane FK, et al. Estimating the risks of breast cancer radiotherapy: Evidence 
from modern radiation doses to the lungs and heart and from previous randomized trials. J Clin 
Oncol. 2017;35:1641–1649. [PubMed: 28319436] 

8. Gokula K, Earnest A, Wong LC. Meta-analysis of incidence of early lung toxicity in 3-dimensional 
conformal irradiation of breast carcinomas. Radiat Oncol. 2013;8:268. [PubMed: 24229418] 

9. Grantzau T, Thomsen MS, Vath M, Overgaard J. Risk of second primary lung cancer in women after 
radiotherapy for breast cancer. Radiother Oncol. 2014;111:366–373. [PubMed: 24909095] 

10. Thorsen LB, Offersen BV, Danø H, et al. DBCG-IMN: A population-based cohort study on the 
effect of internal mammary node irradiation in early node-positive breast cancer. J Clin Oncol. 
2016;34:314–320. [PubMed: 26598752] 

11. Thorsen LB, Thomsen MS, Berg M, et al. CT-planned internal mammary node radiotherapy in the 
DBCG-IMN study: Benefit versus potentially harmful effects. Acta Oncol. 2014;53:1027–1034. 
[PubMed: 24957557] 

12. Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: The 
potential effects of interfraction and inter-field motions. Phys Med Biol. 2008;53: 1043–1056. 
[PubMed: 18263957] 

13. Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1: The 
potential effects of calculational uncertainties. Phys Med Biol. 2008;53:1027–1042. [PubMed: 
18263956] 

14. Underwood T, Paganetti H. Variable proton relative biological effectiveness: How do we move 
forward? Int J Radiat Oncol Biol Phys. 2016;95:56–58. [PubMed: 27084627] 

15. Paganetti H, Niemierko A, Ancukiewicz M, et al. Relative biological effectiveness (RBE) values 
for proton beam therapy. Int J Radiat Oncol Biol Phys. 2002;53:407–421. [PubMed: 12023146] 

16. Cuaron JJ, Chang C, Lovelock M, et al. Exponential increase in relative biological effectiveness 
along distal edge of a proton bragg peak as measured by deoxyribonucleic acid double-strand 
breaks. Int J Radiat Oncol Biol Phys. 2016;95:62–69. [PubMed: 27084629] 

17. Howard ME, Beltran C, Anderson S, Tseung WC, Sarkaria JN, Herman MG. Investigating 
dependencies of relative biological effectiveness for proton therapy in cancer cells. Int J Part Ther. 
2018;4:12–22. [PubMed: 30159358] 

18. Paganetti H, Blakely E, Carabe-Fernandez A, et al. Report of the AAPM TG-256 on the relative 
biological effectiveness of proton beams in radiation therapy. Med Phys. 2019;46:e53–e78. 
[PubMed: 30661238] 

19. Woodward WA, Amos RA. Proton radiation biology considerations for radiation oncologists. Int J 
Radiat Oncol Biol Phys. 2016;95: 59–61. [PubMed: 27084628] 

Mutter et al. Page 9

Pract Radiat Oncol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20. Underwood TSA, Grassberger C, Bass R, et al. Asymptomatic latephase radiographic changes 
among chest-wall patients are associated with a proton RBE exceeding 1.1. Int J Radiat Oncol Biol 
Phys. 2018;101:809–819. [PubMed: 29976493] 

21. Schierle C, Winograd JM. Radiation-induced brachial plexopathy: Review. Complication without a 
cure. J Reconstr Microsurg. 2004; 20:149–152. [PubMed: 15011123] 

22. Powell S, Cooke J, Parsons C. Radiation-induced brachial plexus injury: Follow-up of two different 
fractionation schedules. Radiother Oncol. 1990;18:213–220. [PubMed: 2217869] 

23. Whelan TJ, Olivotto IA, Levine MN. Regional nodal irradiation in early-stage breast cancer. N 
Engl J Med. 2015;373:1878–1879.

24. Vargo JA, Beriwal S. RTOG chest wall contouring guidelines for post-mastectomy radiation 
therapy: Is it evidence-based? Int J Radiat Oncol Biol Phys. 2015;93:266–267. [PubMed: 
26383675] 

25. Brown LC, Diehn FE, Boughey JC, et al. Delineation of supraclavicular target volumes in breast 
cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2015;92:642–649. [PubMed: 25936809] 

26. Jing H, Wang SL, Li J, et al. Mapping patterns of ipsilateral supraclavicular nodal metastases in 
breast cancer: Rethinking the clinical target volume for high-risk patients. Int J Radiat Oncol Biol 
Phys. 2015;93:268–276. [PubMed: 26383676] 

27. Jethwa KR, Kahila MM, Hunt KN, et al. Delineation of internal mammary nodal target volumes in 
breast cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2017;97:762–769. [PubMed: 
28244412] 

28. Smith NL, Jethwa KR, Viehman JK, et al. Post-mastectomy intensity modulated proton therapy 
after immediate breast reconstruction: Initial report of reconstruction outcomes and predictors of 
complications. Radiother Oncol. 2019;140:76–83. [PubMed: 31185327] 

29. Hall WH, Guiou M, Lee NY, et al. Development and validation of a standardized method for 
contouring the brachial plexus: Preliminary dosimetric analysis among patients treated with IMRT 
for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2008;72:1362–1367. [PubMed: 
18448267] 

30. Wan Chan Tseung H, Ma J, Beltran C. A fast GPU-based Monte Carlo simulation of proton 
transport with detailed modeling of nonelastic interactions. Med Phys. 2015;42:2967–2978. 
[PubMed: 26127050] 

31. Wan Chan Tseung HS, Ma J, Kreofsky CR, Ma DJ, Beltran C. Clinically applicable Monte Carlo-
based biological dose optimization for the treatment of head and neck cancers with spot-scanning 
proton therapy. Int J Radiat Oncol Biol Phys. 2016;95:1535–1543. [PubMed: 27325476] 

32. Carabe A, Moteabbed M, Depauw N, Schuemann J, Paganetti H. Range uncertainty in proton 
therapy due to variable biological effectiveness. Phys Med Biol. 2012;57:1159–1172. [PubMed: 
22330133] 

33. Wedenberg M, Lind BK, Hardemark B. A model for the relative biological effectiveness of 
protons: The tissue specific parameter alpha/beta of photons is a predictor for the sensitivity to 
LET changes. Acta Oncol. 2013;52:580–588. [PubMed: 22909391] 

34. McNamara AL, Schuemann J, Paganetti H. A phenomenological relative biological effectiveness 
(RBE) model for proton therapy based on all published in vitro cell survival data. Phys Med Biol. 
2015;60:8399–8416. [PubMed: 26459756] 

35. Locke DE, et al. Validation of single-item linear analog scale assessment of quality of life in neuro-
oncology patients. J Pain Symptom Manage. 2007;34(6):628–638. [PubMed: 17703910] 

36. Guan F, Bronk L, Titt U, et al. Spatial mapping of the biologic effectiveness of scanned particle 
beams: towards biologically optimized particle therapy. Sci Rep. 2015;5:9850. [PubMed: 
25984967] 

37. Paganetti H Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a 
function of biological endpoint, dose, and linear energy transfer. Phys Med Biol. 2014;59: R419–
R472. [PubMed: 25361443] 

38. Amini A, Yang J, Williamson R, et al. Dose constraints to prevent radiation-induced brachial 
plexopathy in patients treated for lung cancer. Int J Radiat Oncol Biol Phys. 2012;82:e391–e398. 
[PubMed: 22284035] 

Mutter et al. Page 10

Pract Radiat Oncol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



39. Mutter RW, Lok BH, Dutta PR, et al. Constraining the brachial plexus does not compromise 
regional control in oropharyngeal carcinoma. Radiat Oncol. 2013;8:173. [PubMed: 23835205] 

40. Svensson H, Westling P, Larsson LG. Radiation-induced lesions of the brachial plexus correlated to 
the dose-time-fraction schedule. Acta Radiol Ther Phys Biol. 1975;14:228–238. [PubMed: 
1163290] 

41. Paganetti H Proton relative biological effectiveness - Uncertainties and opportunities. Int J Part 
Ther. 2018;5:2–14. [PubMed: 30370315] 

42. Jones B, Wilson P, Nagano A, Fenwick J, McKenna G. Dilemmas concerning dose distribution and 
the influence of relative biological effect in proton beam therapy of medulloblastoma. Br J Radiol. 
2012;85:e912–e918. [PubMed: 22553304] 

43. Peeler CR, Mirkovic D, Titt U, et al. Clinical evidence of variable proton biological effectiveness 
in pediatric patients treated for ependymoma. Radiother Oncol. 2016;121:395–401. [PubMed: 
27863964] 

44. Indelicato DJ, Flampouri S, Rotondo RL, et al. Incidence and dosimetric parameters of pediatric 
brainstem toxicity following proton therapy. Acta Oncol. 2014;53:1298–1304. [PubMed: 
25279957] 

45. Giantsoudi D, Adams J, MacDonald SM, Paganetti H. Proton treatment techniques for posterior 
fossa tumors: Consequences for linear energy transfer and dose-volume parameters for the 
brainstem and organs at risk. Int J Radial Oncol Biol Phys. 2017;97:401–410.

Mutter et al. Page 11

Pract Radiat Oncol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
(A, D) Axial and (B, E) coronal color wash images demonstrating constraining of the BP on 

the (A, B) Eclipse physical dose (RBE 1.1) and the (D, E) in-house MCBD simulation for a 

patient undergoing postmastectomy radiation therapy for left-breast cancer. The MCBD 

assumes a linear relationship between RBE and linear energy transfer (product of RBE and 

Monte Carlo physical dose = biologic dose). (C, F) Dose-volume histogram demonstrating 

the BP dose achieved with the physical BP constraint and the biologic BP constraint for the 

(C) Eclipse physical dose and (F) MCBD plans. Abbreviations: BP = brachial plexus; 

MCBD = Monte Carlo biologic dose; RBE = relative biologic effectiveness.
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Figure 2. 
Axial color wash images demonstrating comparable biologic dose profiles for the (A) 

Beltran model30 used in this study to previously published models by (B) Carabe et al,32 (C) 

McNamara et al,34 and (D) Wedenberg et al.33 α/β = 2 Gy was used for a prescription of 50 

Gy in 25 fractions. Clinical target volume (red) and brachial plexus (green) are displayed. 

(E) The dose-averaged linear energy transfer, (F) the biologic dose line profile for (A-E), 

and (G) the brachial plexus dose-volume histogram for each model are also shown.
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Figure 3. 
Axial CT images displaying (A) Eclipse physical dose (relative biologic effectiveness 1.1) 

and (B) Monte Carlo biologic dose 95% to 120% dose color wash images for a patient with 

immediate breast reconstruction undergoing postmastectomy radiation therapy. (A) Areas of 

breakup of prescription dose are permitted near the chest wall and internal mammary nodes 

to reduce the dose to the heart, lungs, and chest wall. (B) The same areas display high 

biologic dose when linear energy transfer is taken into consideration in the Monte Carlo 

biologic dose plan.
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Figure 4. 
Axial computed tomography images displaying the Monte Carlo biologic dose simulation 

100% to 130% dose color wash. (A) On plan review, an area of high biologic dose was 

demonstrated on the heart in the vicinity of the right coronary artery. (B) Therefore, the plan 

was reoptimized, removing the area of high biologic dose from the heart while maintaining 

excellent target coverage of the chest wall and internal mammary nodes.
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Table 1

Patient characteristics

Variable Cohort A Cohort B P Value

No.

13 38

Age, y (IQR)

47 (38-59) 57 (48-65) .03

Laterality, no. (%)

 Left 11 (92) 21 (55)

 Right  1 (8) 17 (45)

Stage, no. (%)

 2  2(15) 20 (53) .02

 3 10 (7) 18 (47)

 Recurrent  1 (8)  0 (0)

Grade, no. (%)

 1  1 (8)  1 (3) .06

 2  4(31) 25 (66)

 3  8 (62) 12 (32)

ER+, no. (%)

 8 (62) 28 (74) .41

PR+, no. (%)

 8 (62) 30 (79) .21

HER-2+, no. (%)

 2(17)  8(21) .74

Abbreviations: ER = estrogen receptor; HER-2 = human epidermal growth factor receptor 2; IQR = interquartile range; PR = progesterone receptor.
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Table 3

Patient-reported arm symptoms at 3 mo compared with baseline

Lift items over 10 pounds with your affected arm

Cohort A Cohort B P value*

 No.
† 9 32

 Mean difference from baseline −1.22 −1.44 .82

Reach or extend your arm above shoulder level

Cohort A Cohort B P value*

 No.
† 7 32

 Mean difference from baseline −0.57 −0.72 .80

Bend and straighten your affected arm

Cohort A Cohort B P value*

 No.
† 11 32

 Mean difference from baseline −0.45 0.03 .39

Numbness or a tingling sensation in the arm on the side that was treated

Cohort A Cohort B P value*

 No.
† 9 32

 Mean difference from baseline 1.11 0.47 .65

*
Welch—Satterthwaite t test P value.

†
No. = Patients who answered both the baseline and 3 month post-treatment surveys.

Pract Radiat Oncol. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mutter et al. Page 19

Ta
b

le
 4

Su
m

m
ar

y 
of

 a
ch

ie
ve

d 
IM

N
 a

nd
 o

rg
an

s 
at

 r
is

k 
do

si
m

et
ri

c 
pa

ra
m

et
er

s 
fo

r 
th

e 
en

tir
e 

co
ho

rt
*

Ta
rg

et
 o

rg
an

D
V

H
 p

ar
am

et
er

E
P

D
 (

R
B

E
 1

.1
)

M
C

P
D

 (
R

B
E

 1
.1

)
M

C
B

D
M

C
P

D
 v

s 
M

C
B

D
 P

 v
al

ue
†

IM
N

D
95

%
, %

96
 (

93
-9

8)
94

 (
93

-9
7)

11
2 

(1
09

-1
14

)
<

.0
00

1

H
ea

rt
D

m
ax

, %
67

 (
44

-9
0)

66
 (

46
-9

3)
89

 (
59

-1
17

)
.0

02

H
ea

rt
M

ea
n,

 G
y 

(R
B

E
)

0.
5 

(0
.3

-0
.8

)
0.

5 
(0

.4
-1

.0
)

0.
7 

(0
.5

-1
.2

)
.1

6

Ip
si

la
te

ra
l l

un
g

V
20

, G
y 

(R
B

E
),

 %
11

 (
7-

15
)

11
 (

7-
15

)
10

 (
6-

14
)

.4
1

Sk
in

‡
D

1 
cm

3 ,
 %

10
3 

(1
00

-1
04

)
10

4 
(1

02
-1

06
)

11
1 

(1
07

-1
15

)
.0

2

A
bb

re
vi

at
io

ns
: D

1 
cm

3  
=

 1
 c

m
3  

of
 th

e 
vo

lu
m

e 
re

ce
iv

ed
 th

is
 d

os
e 

or
 m

or
e;

 D
95

%
 =

 9
5%

 o
f 

th
e 

vo
lu

m
e 

re
ce

iv
es

 th
is

 d
os

e 
or

 m
or

e;
 D

V
H

 =
 d

os
e-

vo
lu

m
e 

hi
st

og
ra

m
; E

PD
 =

 E
cl

ip
se

 p
hy

si
ca

l d
os

e;
 I

M
N

 =
 

in
te

rn
al

 m
am

m
ar

y 
no

de
; I

Q
R

 =
 in

te
rq

ua
rt

ile
 r

an
ge

; M
C

B
D

 =
 M

on
te

 C
ar

lo
 b

io
lo

gi
c 

do
se

; M
C

PD
 =

 M
on

te
 C

ar
lo

 p
hy

si
ca

l d
os

e;
 R

B
E

 =
 r

el
at

iv
e 

bi
ol

og
ic

 e
ff

ec
tiv

en
es

s;
 V

20
 G

y 
=

 th
e 

vo
lu

m
e 

re
ce

iv
in

g 
20

 G
y 

or
 m

or
e.

* R
ep

or
te

d 
as

 m
ed

ia
n 

pe
rc

en
ta

ge
 (

IQ
R

).

† P 
va

lu
es

 a
re

 f
or

 th
e 

co
m

pa
ri

so
n 

be
tw

ee
n 

th
e 

M
C

PD
 a

nd
 M

C
B

D
 p

la
ns

.

‡ Sk
in

 is
 d

ef
in

ed
 a

s 
th

e 
fi

rs
t 3

 m
m

 o
f 

tis
su

e 
un

de
r 

th
e 

bo
dy

 s
ur

fa
ce

.

Pract Radiat Oncol. Author manuscript; available in PMC 2021 March 01.


	Abstract
	Introduction
	Methods and Materials
	Patients
	Treatment planning
	Monte Carlo—based biologic dose calculation
	Outcomes

	Results
	BP doses, CTV coverage, and arm toxicity
	IMN coverage and cardiac sparing

	Discussion
	Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Table 3
	Table 4

