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Abstract

Filopodia are long, thin protrusions formed when bundles of fibers grow outwardly from a cell surface while remaining
closed in a membrane tube. We study the subtle issue of the mechanical stability of such filopodia and how this depends on
the deformation of the membrane that arises when the fiber bundle adopts a helical configuration. We calculate the ground
state conformation of such filopodia, taking into account the steric interaction between the membrane and the enclosed
semiflexible fiber bundle. For typical filopodia we find that a minimum number of fibers is required for filopodium stability.
Our calculation elucidates how experimentally observed filopodia can obviate the classical Euler buckling condition and
remain stable up to several tens of mm. We briefly discuss how experimental observation of the results obtained in this work
for the helical-like deformations of enclosing membrane tubes in filopodia could possibly be observed in the acrosomal
reactions of the sea cucumber Thyone, and the horseshoe crab Limulus. Any realistic future theories for filopodium stability
are likely to rely on an accurate treatment of such steric effects, as analysed in this work.
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Introduction

Filopodia are formed by the growth of bundles of biological

fibers outwards from a biological cell surface that remain enclosed

in a membrane tube. They are implicated in many processes vital

to life, including sensing and motility [1] [2] [3]. There has

therefore been much interest recently in the formation and growth

of long, thin cellular protrusions due to the polymerization of

bundles of fibers, including actin [4]. Such structures appear on

cell membranes as familiar filopodia [1] [4], but can also appear

on neural growth cones [5], sickled red blood cells [6] [7], the

acrosomal reaction of the sea cucumber Thyone [8] [9], as well as

on vesicles observed in vitro [10].

In this work, we investigate the stability of filopodia, which

involves the subtle interplay between a fluid membrane tube, and

an enclosed semiflexible fiber bundle. The simplest physical

picture of filopodia is one in which the membrane tube produces a

longitudinal force and a transverse force on the enclosed fiber

bundle. The longitudinal membrane force acts to try and shorten

the end-to-end distance of the fiber bundle, while the transverse

force is required to maintain fiber bundle enclosure. The

energetics required to investigate the stability of filopodia thus

necessitates us to consider the elasticity of both the membrane tube

as well as the fiber bundle, subject to the constraint that the

polymer bundle must remain enclosed by the membrane tube.

The energetic ground state conformations of filopodia thus

necessitate a careful theoretical treatment of both elastic and

steric considerations. For example, one might ask if a filopodium

ever buckles, or perhaps more intriguingly does the region of

filopodium buckling exist in some small corner of a complicated

energetic phase diagram, well outside the range of physiologically

relevant parameters?

A naive Euler buckling type estimate for the stability of filopodia

[11] [12] suggests a limiting length of 1{2mm. Additionally, the

presence of cross-linking in the fiber bundle, and hence increased

stiffness, further suggest a limiting length of 10{20mm for stable

filopodia [11] [12]. However, filopodia many tens of mm have

been observed experimentally [8] [13].

In [11], a helical ansatz was employed for the conformation of

the polymer bundle. However, for analytical calculational

purposes this was assumed to reside inside an enclosing membrane

tube that remained perfectly cylindrical, despite simulation snapshot

evidence to the contrary [11]. Energetically stable ground state

configurations were calculated for filopodia within the range of

physiologically relevant parameters. However, due to the presence

of very soft modes [14] for membrane tube deformations, it is

unrealistic to analytically assume that the enclosing membrane

tube will remain perfectly cylindrical. It would cost the membrane

tube very little energy to deform in order to accommodate the

enclosed helical fiber bundle (see Fig. 1). In order to calculate

analytically the ground state configurations of realistic filopodia,

and their corresponding energetic stability, we find that it is

necessary to explicitly compute the conformation of the enclosing

membrane tube. This is achieved by minimising a rigorously

derived energy functional (defined below) that includes the elastic

response of both the membrane and the fiber bundle while

respecting the constraint that the helical polymer bundle must

remain enclosed by the membrane tube.

Results

Typical experimental parameter values for biological mem-

branes range from [2] [15] k&20{80kBT ,

s&0:0013{0:025kBT=nm2. In order to compare the results of

this work with that of [11], we take k~40kBT and
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s~0:0025kBT=nm2 throughout in what follows. These values

gives rise to a typical membrane tube radius of r0&89nm. In order

to estimate the radial size b of a filament bundle, we consider a

cross-section of N fibers each with a typical size d, which we

assume forms a hexagonally close packed structure [9]. A suitable

continuum approximation for the bundle radius b as a function of

the number of fibers N is then : b~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

4(N{1)

3

r
d, which

approximates to b(N)^2

ffiffiffiffiffi
N

3

r
d, for N&1. If we take d~3nm (for

actin filaments), and N*10{300, then typical biological fiber

bundles possess radii b*10{60nm. Thus we can see that the

finite radius filament bundle considerations contained in this work

become important for physiological filopodia.

The ground-state configuration of a filopodium is determined

by finding the minimum of the total energy per unit length
Etot

L
of

Eq. (12) as given below. The relevant two parameters we need to

minimise over are the z extension factor c, and the helical radius of

the enclosed fiber bundle rP, while keeping the number of fibers N

fixed.

Shown in Fig. 2 is the contour plot of the total energy per unit

contour length
Etot

L
from Eq.(12). for a single fiber N~1. The

energy is plotted as a function of the enclosed filament helical

radius rP, and the z extension factor c. It can be seen from Fig. 2

that, for the k and s values used, a single fiber does not give rise to

a local energy minimum, and is therefore unstable. We find that

the minimum number of fibers required for filopodium stability is

given by N~4, as shown in Fig. 3, which gives rise to a local

energy minimum at: rP~122nm and c~0:77, corresponding to

one helical winding per 2mm of contour length. From Fig. 4 we

can see that for N~20 we have a local energy minimum at:

rP~99nm and c~0:98, corresponding to one helical winding per

4mm of contour length. Moreover, form Fig. 5 we can see that as

the number of fibers N in a bundle increases, our filopodium

remains stable, with the c extension factor rapidly approaching the

maximum allowed value of 1. Furthermore, as N increases, we can

see from Fig. 6 that rP decreases, tending towards the limiting

value of r0{b, as the number of fibers becomes large.

Additionally, we can see from Fig. 7 that the amount of helical

winding required for stability reduces concomitantly also, as the

number of fibers in a bundle N increases.

Discussion

We have calculated theoretically the ground state configurations

of filopodia, and found ‘islands of stability’ for typical filopodia

within physiologically relevant parameters. Our calculation

elucidates how experimentally observed filopodia can obviate the

classical Euler buckling condition and remain stable up to several

tens of mm [1] [8] [13]. We find, as in [11] that the enclosing

membrane tube tends to stabilise filopodia, rather than de-stabilise

as a naive Euler buckling estimate might suggest.

The work presented here differs from that presented in [11] in

the following, important ways. Firstly, we correctly incorporate the

effects of a finite fiber bundle radial size b, in this work, which was

absent in [11]. Secondly, the total energy
Etot

L
given by Eq.(12) of

this work is calculated rigorously and analytically, taking into

proper account the steric constraint of membrane tube enclosure

of our semiflexible fiber bundle. The presence of soft modes for

membrane tube deformations, implies that the membrane tube

typically deforms in order to accommodate the enclosed helical

fiber bundle, and does not remain perfectly straight, as analytically

assumed in [11]. Thirdly, as we have found, there exists a delicate

interplay between a fluid membrane tube and an enclosed

semiflexible fiber bundle in filopodia. It is therefore imperative

that the most accurate and correct total energy function for

filopodia be calculated, as achieved in this work. Only then does it

become possible to realistically describe the rather subtle issue of

whether a given filopodium exists in a stable or a collapsed state.

For example, we find in this work that the minimum number of

fibers required for stability is given by N~4, whereas in [11] all

fibers with Nv6 are deemed unstable.

Experimental observation of the results obtained in this work for

the helical-like deformations of enclosing membrane tubes in

filopodia would presumably be difficult. However, such helical

membrane conformations are qualitatively supported by the

snapshot pictures of simulation work carried out in [11], and

could possibly be observed in the acrosomal reactions of the sea

cucumber Thyone [8], and the horseshoe crab Limulus [16].

We adopt a ground state approximation in which thermal

fluctuations are assumed to be small. Since the amplitude of these

fluctuations is small at the high tensions of interest to us here,

perhaps a few nm or less [17], this is a reasonable approximation.

Analogous steric constraints to those considered here are likely

to be of relevance in other similar and important biological

contexts, such as the packaging of semiflexible DNA in viral

capsids, for example [18] [19] [20]. The interesting issue of

mechanical stability in biological cellular tubes without an enclosed

stiff polymer has also recently been considered in [21].

Figure 1. Sketch of a helically deformed membrane enclosing a
helical fiber bundle. The membrane radius is given by rM , the helical
polymer radius is given by rP, and b is the radial size of the enclosed
polymer filament bundle.
doi:10.1371/journal.pone.0059010.g001
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Figure 3. Contour plot of the total energy per unit contour length
Etot

L
from Eq.(12). The energy is plotted as a function of the enclosed

filament helical radius rP, and the z extension factor c. The number of filaments in this case is given by N~4. These parameters give rise to a local
energy minimum at: rP~122nm and c~0:77, corresponding to one helical winding per 2mm of contour length. Both the contours near the top and
bottom of the plot have values around *12pN , while the closed contour near the middle has a value of *10pN .
doi:10.1371/journal.pone.0059010.g003

Figure 2. Contour plot of the total energy per unit contour length
Etot

L
from Eq.(12). The energy is plotted as a function of the enclosed

filament helical radius rP, and the z extension factor c. The membrane bending modulus is k~40kBT and the surface tension is s~0:0025kBT=nm2 .
The same values of k and s are used in all subsequent figures. The number of filaments in this case is given by N~1. These parameters do not give
rise to a local energy minimum. The contours near the top of the plot have values around *11pN , those contours near the middle *7pN , and the
nearest to bottom contours on the plot *2pN , (at room temperature).
doi:10.1371/journal.pone.0059010.g002
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Models

Polymer Energy
In order to describe the filament bundle, inside filopodia, we

study the semi-flexible polymer Hamiltonian Hp (where we chose

energy units such that kBT~1 throughout):

HP~
lp

2

ðL

0

ds(
Lt3(s)

Ls
)2 ð1Þ

with t3~
LRP(s)

Ls
. L is the contour length of the fiber bundle, and

we take the persistence length for un-crosslinked bundles of N

fibers to be lp~kpN [12], where kp is the bending modulus of a

single fiber (kp*15mm for actin [2]).

Any realistic deformation of the polymer must be able to pack a

given contour length L within a given radius and extension along

the z axis, as prescribed by the enclosing membrane tube. We

therefore assume the most plausible conformation for the polymer

as being that of a helix, as also outlined in [11].

RP(z)~rP( cos (Vz)
^

iz sin (Vz)
^

j)zz
^

k ð2Þ

Figure 5. Plot of the extension factor ª along the z axis versus the number of filaments N . The c values plotted correspond to the

energetic minima of the total energy per unit contour length
Etot

L
from Eq.(12), for a given number of filaments N .

doi:10.1371/journal.pone.0059010.g005

Figure 4. Contour plot of the total energy per unit contour length
Etot

L
from Eq.(12). The energy is plotted as a function of the enclosed

filament helical radius rP, and the z extension factor c. The number of filaments in this case is given by N~20. These parameters give rise to a local
energy minimum at: rP~99nm and c~0:98, corresponding to one helical winding per 4mm of contour length. The closed contour near the top of the
plot has a value of *11pN , while the contours close to the bottom of the plot have values *13pN .
doi:10.1371/journal.pone.0059010.g004
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We have chosen to parameterise the polymer in terms of the z

coordinate, as opposed to the arc-length s, in order to simplify

consideration of the required steric constraint between the

polymer and the membrane as outlined below. Inextensibility for

the polymer is maintained by requiring that:

c~
dz

ds
~

1

jLzRPj
~

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zV2r2

P

q ð3Þ

In this way we can easily translate between the arc-length s, and

z extension representations, by defining:
Lz

L
~c and v~cV, such

that: c2zv2r2
P~1.

The polymer part HP is thus straightforwardly calculated to be:

HP~L
lp

2

(1{c2)2

r2
P

ð4Þ

Membrane Energy
In order to describe deformations of our membrane tube, we

use:

HM~

ð
sz

k

2
c2

h i ffiffiffi
g
p

dswdz ð5Þ

where HM is the usual Hamiltonian for membrane elasticity [22]

[23], containing both surface tension (s) and rigidity (k) controlled

terms.

We parameterise our membrane given by RM (z,w) in the usual

way as:

RM (z,w)~rM (z,w)( cos (w)
^

iz sin (w)
^

j)zz
^

k ð6Þ

The membrane contribution HM is calculated as follows. We

proceed by writing perturbatively: rM (z,w)~r0zdrM (z,w), which

involves the radial length scale r0~

ffiffiffiffiffiffi
k

2s

r
. In this way we obtain:

Figure 7. Plot of the polymer helical winding length versus the number of filaments N. The winding length values plotted correspond to
the polymer contour length required for one complete helical turn in order to maintain stability of the filopodium.
doi:10.1371/journal.pone.0059010.g007

Figure 6. Plot of the polymer helical radius rP versus the number of filaments N . The rP values plotted correspond to the energetic minima

of the total energy per unit contour length
Etot

L
from Eq.(12), for a given number of filaments N . For comparison, note that r0&89nm.

doi:10.1371/journal.pone.0059010.g006
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HM~Lz
2pk

r0
z

k

2r3
0

ð
dwdzdrM (z,w)KM drM (z,w) ð7Þ

where the kernel KM is given by: KM~(1z2L2
wz(r2

0L
2
zzL2

w)2).

Steric Constraint
By inspection of Eqs. (2) and (6), we can see that the steric

condition we need to apply to the membrane in order to guarantee

polymer enclosure is given by:

rM (z,Vz)~rPzb ð8Þ

where b is the radial size of the polymer filament bundle. By

writing perturbatively: rM (z,w)~r0zdrM (z,w), the steric con-

straint of Eq. (8) now implies: drM (z,Vz)~rPzb{r0. We enforce

this steric constraint by introducing the following Hamiltonian

HC :

HC~

ð
dzl(z)(drM (z,Vz){(rPzb{r0)) ð9Þ

which includes a Lagrange multiplier l(z) that ensures membrane

tube enclosure of the confined polymer helix. While the steric

relationship is strictly an inequality, on physical grounds the

ground state polymer configuration always tends to contact the

membrane because the longer the polymer the smaller the

compressive load it can support before it buckles, becoming

helical. Thus a long polymer will always tend to adopt a helical

configuration, stabilised by the inward-pointing membrane force,

at the maximum radius allowed by the steric constraint.

Total Energy
In order to find the ground-state configuration of our

filopodium, we need to find the conformation which minimises

the total energy Etot given by: Etot~HPzHMzHC . By varying

HMzHC w.r.t. drM (z,w) and l(z), and by using the relevant

Green functions, we obtain:

drM (z,w)~(rPzb{r0)
X

m

am cos (m(w{Vz))=
X

m

am ð10Þ

along with l(z)~{
2pk

r3
0

(rPzb{r0)=
X

m
am, and where the

Fourier coefficients am are given by:

am~1=(1{2m2zm4(1zV2r2
0)2). Note that an ansatz loosely

similar to Eq. (10) was also used in [24] to minimise the energy for

a stack of n cylindrical membranes, in order to describe the helical

coiling behaviour of myelin tubes. Indeed, the filopodia described

in this work, consisting of a fiber bundle of radius b enclosed by a

membrane tube, can analogously be thought of as an ‘n~2’

cylindrical membrane stack. In terms of the Fourier coefficients

am, the membrane radius solution of Eq. (10) can additionally be

seen to automatically satisfy the steric constraint:

drM (z,Vz)~rPzb{r0.

Putting the result of Eq. (10) into HM we get (valid to quadratic

order in rPzb{r0):

HM~Lz

2pk

r0
(1z

(rPzb{r0)2

2r2
0

P
m am

) ð11Þ

By inspection of the Fourier coefficients am, it can be seen that

for small V winding the leading order contribution to HM comes

from the m~1 mode, and is proportional to ~VV2. This leads to a

relatively weak strength for the quadratic potential in rPzb{r0,

and is due to the fact that the m~1, V^0 mode is an extremely

soft mode for membrane tubes as shown in [14]. Indeed, the

m~1, V~0 mode corresponds precisely to a rigid translation of

the entire tube, and cannot therefore make any contribution to the

membrane energy HM . It can also be shown that the modes that

contribute to HM to next to leading order are the a0 mode

corresponding to a uniform dilation of the membrane tube, and

the a2 mode, which corresponds to a small deformation of the

cross-section of our tube from a circular shape to that of an ellipse.

Utilising the inextensibilty conditions outlined above, we can

easily re-write HM in terms of the contour length L, and the z
extension factor c. In particular we find for the winding rate

V~
1

rP

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

c2
{1

s
&

1

r0{b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

c2
{1

s
, to leading order. We thus

arrive at our final expression for the total energy per unit length

of a filopodium as (valid to quadratic order in rPzb{r0):

Etot

L
~

lp

2

(1{c2)2

r2
P

z
2pkc

r0

(1z
(rPzb{r0)2

2r2
0

P
m am

) ð12Þ

where the Fourier coefficients am are now functions of c. The

ground-state configuration of our filopodium can now be

determined by minimising the total energy per unit length
Etot

L
of Eq. (12), with respect to the two parameters c (the z extension

factor) and rP (the helical radius of the enclosed fiber bundle).
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