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Abstract

Although maps of intracellular interactions are increasingly well characterized, little is known about large-scale maps of
host-pathogen protein interactions. The investigation of host-pathogen interactions can reveal features of pathogenesis
and provide a foundation for the development of drugs and disease prevention strategies. A compilation of experimentally
verified interactions between HIV-1 and human proteins and a set of HIV-dependency factors (HDF) allowed insights into
the topology and intricate interplay between viral and host proteins on a large scale. We found that targeted and HDF
proteins appear predominantly in rich-clubs, groups of human proteins that are strongly intertwined among each other.
These assemblies of proteins may serve as an infection gateway, allowing the virus to take control of the human host by
reaching protein pathways and diversified cellular functions in a pronounced and focused way. Particular transcription
factors and protein kinases facilitate indirect interactions between HDFs and viral proteins. Discerning the entanglement of
directly targeted and indirectly interacting proteins may uncover molecular and functional sites that can provide novel
perspectives on the progression of HIV infection and highlight new avenues to fight this virus.
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Introduction

The determination of webs of protein interactions [1,2,3,4] and

protein complexes [5,6,7,8,9] in many different single and multi-

cellular organisms progresses at a fast pace, peaking in attempts to

determine the human interactome in various ways

[10,11,12,13,14]. Although such webs of intracellular interactions

are increasingly well characterized, little is known about large-

scale maps of protein interactions between cells. Therefore, the

investigation of host-pathogen interactions is a crucial step toward

a thorough understanding of an organism’s pathogenesis,

providing an essential foundation for the development of effective

therapeutic and prevention strategies to combat diseases. Uetz et

al. released the first small map of computationally inferred physical

protein interactions between the human host and the Kaposi-

Sarcoma associated Herpesvirus (KSHV) as well as the Varicella

Zoster-Virus (VZV) [15]. In a different approach, Calderwood

et al. [16] experimentally determined a map of physical protein

interactions between the Epstein-Barr-Virus and the human host.

Recently, Bandyopadhyay et al. [17], identified subnetworks of

virus-host proteins that are expressed at different stages of the

HIV-infection and Dyer et al. compared experimentally known

interactions of different viruses with the human host [18]. Brass et

al. utilized a comprehensive large scale-screen of siRNAs to

identify HIV dependency factor proteins (HDF). Although these

proteins do not directly interact with viral proteins, they play an

indirect, yet important role in the infection process of HIV [19].

Here, we pooled experimentally verified interactions between

HIV-1 and human proteins, along with a set of HIV-dependency

factor proteins (HDF), to investigate the topology of interactions

between viral and host proteins on a large scale. We found that

targeted and HDF proteins appeared predominantly in rich-clubs,

allowing the virus to take control of the human host by reaching

protein pathways and diversified cellular functions in a pro-

nounced and focused way. Although HIV-1 does not physically

interact with HDFs, we observed that prominent transcription

factors and protein kinases establish indirect links between such

host and viral proteins, suggesting molecular and functional sites

that can be used to systematically hamper the virus.

Results

Rich-clubs of proteins as viral targets
Here, we utilized a compilation of 702 experimentally verified

physical protein interactions between 17 HIV-1 and 519 human

proteins. In addition, we accounted for 290 HIV dependency

factor proteins (HDF) that play a role in the viral infection process

[19]. Considering a graphical depiction of the web of all host-viral

interactions in Fig. 1A, we observed a single connected

subnetwork. Randomizing the human interaction partners of viral

proteins, we found that the presence of one connected web is

statistically significant (P,1024). In Fig. 1A, we also observed that

Tat, Nef and Vpr – viral proteins that predominantly interfere

with regulatory host processes – appear to be viral hubs that

interfere with the human host interactome on a combinatorial

basis. As such, we will show topological features of the human

interactome that are potential direct and indirect targets of HIV-1.

In contrast to other protein interaction networks of eukaryotic

organisms, such as S. cerevisiae, C. elegans and D. melanogaster [20,21],

the human interactome is composed of an oligarchy of highly

interacting and intertwined nodes. Such a rich-club phenomenon

is quantified by the fraction of edges among nodes that have at
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least a certain number of neighbor’s k in the actual and

randomized networks. As such, the rich-club coefficient r kð Þ
points to the presence of a core of highly intertwined nodes with

degree of at least k if r(k)w1. In the absence of this phenomenon

(i.e. r(k)w1) networks are dominated by many well defined

functional communities which are sparsely connected by highly

interacting proteins [20]. Collecting pairwise protein interactions

in H. sapiens from public databases and accounting for phosphor-

ylation events between kinases and other proteins, we assembled a

network of 23,752 interactions between 4,075 human proteins that

are expressed in the human host cell. In this network, we found a

strong rich-club signal among proteins with increasing degree

(Fig. 1B). Assuming that such a proteomic feature might be an

exploitable target of the virus, we hypothesized that proteins in

rich clubs are preferably targeted by the pathogen. In Fig. 1C, we

found that there exists an enrichment of targeted proteins in rich

clubs. Although weaker, yet significantly different compared to

targeted proteins (Kolmogorov-Smirnov test, P,0.01), we ob-

served that HIV dependency factor (HDF) proteins are enriched in

rich clubs as well. These observations suggest that samples of

highly connected and intertwined proteins provide topological

features which the virus utilizes as a gateway to seize control of the

host cell in a direct and indirect way. As another parameter of

centrality, we calculated the mean length of shortest paths from

each protein. Focusing on directly targeted host proteins, we found

a bell shaped curve (Fig. 1D) at relatively short path lengths.

Focusing on HDFs we observed a significant shift toward longer

mean path lengths compared to targeted proteins (Student’s t-test,

P,0.02). If we account for all remaining human proteins, we

found this trend reinforced, a result that is significantly different in

comparison to targeted and HDF proteins, respectively (P,0.05).

Viral aspects of pathways
Protein pathways are another level of systems information in

which to recognize patterns that reveal how the virus exploits the

host cell. This approach relies on the strength of 913 manually

curated pathways from the Pathway Interaction Database [22].

Specifically, we tested whether pathways are significantly enriched

for genes that are expressed in the human host cell. Applying a

Fisher exact test, we found 851 enriched pathways (P,0.05, Table

S1). Utilizing this set of pathways, we observed that hubs appeared

in an increasing number of pathways (inset, Fig. 2A). This

observation emphasizes a role of protein hubs being involved in

numerous protein pathways and suggests that the pathogens have

Figure 1. Statistics of targeted and HDF proteins. (A) Constructing a bipartite network of interactions between HIV-1 and human proteins, we
find one connected subnetwork. Randomizing human proteins, we found that the presence of one connected network is statistically significant
(P,1024). (B) The mean rich-club coefficient r reflects the degree to which proteins with at least a certain number of interaction partners are
intertwined among each other. We observed that r significantly increased with higher degrees in the human protein interaction network, indicating
the presence of an oligarchy (i.e. rich clubs) of highly interacting and intertwined proteins. In (C) we determined the enrichment of targeted human
host proteins in such rich clubs. Specifically, highly connected proteins appeared to be increasingly targeted by the virus. Although weaker HIV
dependency factor proteins (HDF) were enriched in rich clubs as well, a difference that is statistically significant compared to the enrichment of
targeted proteins (Kolmogorov-Smirnov test, P,0.01). (D) Utilizing a network of interactions between proteins of the human host, we determined
the lengths of shortest paths for each pair of human proteins. Calculating the mean of the shortest path lengths, we found that proteins, which are
targeted by the virus, have lowest means (dotted lines). Focusing on HDFs we observed a shift toward longer mean path lengths, a difference that is
statistically significant compared to targeted proteins (Student’s t-test, P,0.02). This observation is reinforced if we account for all remaining human
proteins, results that are significantly different in comparison to targeted and HDF proteins, respectively (P,0.05).
doi:10.1371/journal.pone.0011796.g001
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taken advantage of the host network at the pathway level. Indeed,

we found that host proteins that are targeted by the virus appeared

in an increasing number of pathways with increasing degree

(Fig. 2A). Focusing on HDF proteins, we recovered a similar, yet

significantly different trend compared to targeted proteins

(Kolmogorov-Smirnov test, P,0.005).

A corollary of this result is that the comparably small number of

targeted proteins and HDFs would allow the virus to interact with

a larger number of pathways than would appear by chance. Out of

851 enriched pathways, all human proteins targeted by the virus

were part of 486 pathways, while HDFs touched 271 pathways.

Randomizing the sets of targeted and HDF proteins, we found

that such numbers are smaller than expected by chance alone

(P,1024).

We further hypothesized that the virus tendency to target host

pathway hubs effectively mediates the infection while ensuring

variety, such that the virus targets numerous distinct pathways

with a comparably low number of targeted proteins. As a measure

of diversity, we defined the pathway participation coefficient: if a

protein predominantly interacts with partners that are members of

the same pathway, this measure tends toward 1, while the opposite

holds if the interaction partners of the considered protein are

distributed among many different pathways. Accounting for all

human proteins that are neither targeted nor HDFs, we observed

that interactions of a single protein occur in a variety of pathways,

as indicated by the maximum around low values of the pathway

participation coefficient. In turn, relatively few interactions are

confined to a small number of pathways (Fig. 2B). Comparing to

the subsets of human proteins that are targeted by the virus, we

found a significant reinforcement of the initial diversity signal

(Kolmogorov-Smirnov test, P,0.01). Similarly, for HDFs we

found this signal significantly reinforced (P,0.01) as well,

confirming that the use of a small subset of host proteins effectively

secures a pathogen’s reach into a breadth of cellular activities

without inundating any particular one. However, we found no

significant differences between the corresponding distributions of

targeted and HDF proteins, indicating that the placement of

targeted and HDF proteins in the network is defined by a cohesive

pathway-dependent combination of targeted and HDF proteins.

Consequently, we searched for a correlation between the number

Figure 2. Pathway related characteristics of targeted and HDF proteins. The inset of (A) suggests that proteins in rich clubs tend to
participate in an elevated number of pathways. Considering proteins that are targeted by HIV, we calculated the total number of pathways such
proteins are involved in. In rich clubs, we found a trend toward strong enrichment of pathways that harbor targeted proteins in rich clubs of proteins.
Analogously, we observed a similar trend with HIV dependent factor proteins (HDF) that was significantly different from targeted proteins
(Kolmogorov-Smirnov test, P,0.005). (B) A low value of the pathway participation coefficient indicates that the interactions of a protein reach many
different pathways and vice versa. Considering all targeted proteins, we obtained a maximum around low values and recovered a similar result, when
we focused on all HDFs. While the difference of these distributions is insignificant (Kolmogorov-Smirnov test, P,0.3), the trend appears diminished if
we consider all other human host proteins. In comparison to targeted and HDF proteins, respectively, differences are significant (P,0.01), indicating
that the placement of targeted and HDF proteins buffers differences in the proteins abilities to reach into many pathways. (C) Counting the number
of pathways that have at least one protein that is targeted by the virus we found 486, while 271 pathways had at least one HDF. Indicating a
significant overlap, 257 pathways involved both targeted and HDF proteins (hypergeometric test, P,10245). (D) In these pathways, we determined
the corresponding numbers of HDFs and targeted proteins. We found a significant upwarding trend, indicating that pathways that are increasingly
targeted by the virus also harbor HDFs (Pearson’s r = 0.2, P,0.01).
doi:10.1371/journal.pone.0011796.g002
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of targeted and HDF proteins in pathways. Counting the number

of pathways that have at least one protein that is targeted by the

virus we found 486. In turn, we found 271 pathways that harbored

at least one HDF. In the Venn diagram in Fig. 2C, we observed a

significant overlap where 257 pathways involved both targeted and

HDF proteins (hypergeometric test, P,10245). In these pathways,

we found a significantly upwarding trend between the number of

targeted and HDF proteins (r = 0.2, P,0.01), confirming our

hypothesis that pathways which harbor targeted proteins also

significantly involve HDFs (Fig. 2D).

Direct and indirect host-virus interactions
Up to this point we considered direct interactions of human host

and viral proteins and regarded HIV dependency factors as

proteins that are influenced by the virus in some indirect, yet

unknown way. However, the integration of information about

interactions between proteins can potentially help us to uncover

ways viral proteins indirectly interact with HDFs through their

host targets. For example, we found protein interactions between

viral proteins Tat, Nef and gp120 and TP53 (Fig. 3A). In turn,

transcription factor TP53 controls the expression of the HDF

protein AKT1 by a protein DNA interaction. Since Tat, Nef and

gp120 are connected to AKT1 through TP53, we considered

AKT1 indirectly interacting with those three viral proteins. As a

consequence, the length of the shortest path of AKT1 to a directly

targeted host protein is 1. To determine shortest paths, we

considered phosphorylation events between kinases and other

proteins as directed in our host network of physical protein-protein

interactions. Furthermore, we added experimentally confirmed

directed protein-DNA interactions between transcription factors

and proteins. Determining shortest paths between each HIV

dependency factor protein to a protein that is directly targeted by

virus proteins, we found that the majority of HDFs directly

interacts with a targeted protein (Fig. 3B; Table S2). We counted

the number of viral proteins that target a single host protein and

found that the majority of human host proteins are targeted by a

single viral protein (1.460.7, Fig. 3C). We analogously counted

the number of viral proteins that HDF proteins indirectly interact

with. In comparison to directly targeted host proteins, the

corresponding mean value significantly shifted to higher numbers

of viral proteins that indirectly interact with HDF proteins

(4.663.0), a distribution that is significantly different (Student’s

t-test, P,10236).

Figure 3. Direct and indirect host pathogen interactions. (A) As an example for direct host-virus interactions, we show physical interactions
between viral proteins Tat, Nef and gp120 and TP53. In turn, transcription factor TP53 controls the expression of the HDF protein AKT1. Defining
indirect host-virus interactions, we considered AKT1 being indirectly linked to Tat, Nef and gp120. (B) Calculating shortest paths from each HIV
dependency factor (HDF) protein to a targeted protein, we found that the majority of HDFs are interacting with a protein that the virus attacks. (C)
Counting the number of interacting viral proteins, we found that the majority of directly targeted host proteins binds to one viral protein. The
distribution of indirect interactions as previously defined significantly shifted to higher numbers of interacting viral proteins (Student’s t-test,
P,1023). In (D) we connected human proteins if they significantly co-appeared in pathways and constructed a different network, where linked
proteins were significantly targeted by the same viral proteins. Comparing links in these networks, we observed a significant correlation between the
number of shared viral proteins and pathways where connected host proteins co-appear in (Pearson’s r = 0.47, P,0.01). Analogously, we constructed
a network, linking human proteins that significantly shared indirectly interacting viral proteins where we observed a weaker correlation (inset, r = 0.26,
P,0.1).
doi:10.1371/journal.pone.0011796.g003
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As for pathway specific aspects, we connected human host

proteins if they significantly co-appeared in pathways utilizing a

Fisher exact test (P,0.01). In a subsequent step, we constructed

another network, connecting human host proteins if they

significantly shared directly interacting viral proteins (P,0.01).

Comparing the number of viral proteins and pathways that are

shared by the underlying protein links we observed a strong and

significant correlation (Fig. 3D; Pearson’s r = 0.47, P,0.01). Such

a result suggests that indeed the combinatorial ways the virus

interacts with directly targeted proteins reflect the patterns of

involvement in certain pathways. Similarly, we connected HDF

proteins that significantly share indirectly interacting viral proteins

(P,0.01) and found a similar, yet weaker correlation between

pathway involvement and indirectly targeting viral proteins (inset,

Fig. 3D; r = 0.26, P,0.1).

According to our definition, indirect interactions with a HDF

are facilitated through interacting host proteins that are directly

targeted by a viral protein. In Fig. 4A and Table S3, we ranked

targeted proteins according to the corresponding number of

interactions with a HDF, allowing us to observe that transcription

factors and kinases such as TP53, RELA or SRC are enriched at

the top of the list. Such an observation suggests that the process of

seizing control of the host cell goes through well established

interaction paths. Utilizing all transcription factors and kinases

that facilitate an indirect interaction of viral proteins and HDFs,

we show a network of such indirect and direct interactions in

Fig. 4B. Specifically, we observed that Tat interacts with

prominent transcription factors, including TP53 and NFKB1, as

well as kinases, such as SRC and CDK2, which control important

HDF proteins such as EGFR and RELA. These observations

suggested that these important functional proteins are not only

direct targets of the virus but also might serve as a further gateway

to the control of downstream factors such as HDFs.

Discussion

HIV-1 invokes intricate processes with a remarkably low

number of proteins to take control of the human host cell.

Compensating for its low number of proteins, combinations of

pathogen proteins give the virus greater access to a broader set of

human proteins. In particular, the subtle structure of the human

interactome reveals sites that are not only topologically important,

but also are targeted by HIV-1 in both direct and indirect ways.

Specifically, rich clubs, protein assemblies that are strongly

intertwined among each other, provide proteomic sites that are

largely targeted by the virus. Although no direct interaction

Figure 4. Combinations of viral proteins and map of direct and indirect interactions. In (A) we ranked targeted proteins according to the
corresponding number of interactions with HIV dependency factor proteins (HDF). Showing the 50 most connected proteins we observed that
transcription factors and kinases are enriched at the top of the list. In (B), we show a network of transcription factors and kinases that are attacked by
viral proteins as well as their interactions with HDFs. Specifically, we observed that Tat largely interacts with prominent transcription factors, such as
TP53 and NFKB1 and kinases, such as SRC and CDK2 which control important HDFs such as EGFR and RELA.
doi:10.1371/journal.pone.0011796.g004
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targets, HIV dependent factor proteins also provide such a

proteomic characteristics that are indirectly exploited by the virus.

Since such proteins are at the intersection of numerous

pathways, a large degree of interaction allows the virus to reach

into many different functional processes. Subsets of viral proteins

reach into the host network to ensure the largest, but focused

diversity. Specifically, the use of direct and indirect targets in

pathways leads to a cohesive pathway-dependent combination of

targeted and HDF proteins. Since we found a strong correlation

between the number of shared targeting viral proteins and

pathways the underlying host proteins co-appear in, the virus

potentially tailored its surface to attack the host cell along well

established functional pathways. Recalling that targeted pathways

harbor HDF proteins as well, we found a similar yet weaker trend

for HDF proteins, suggesting that HDFs may act as downstream

mediators of molecular viral information in the underlying

pathways.

Utilizing HDFs in an indirect way the virus establishes its

control over the host cell, indicating the particular systemic role of

proteins that are not directly involved in physical host-pathogen

interactions. Such proteins at the interface between the virus and

the host are kinases and transcription factors. Such proteins are

important mediators of molecular information that allow the virus

to effectively utilize them as a gateway to interfere indirectly with a

variety of different protein to take control of the human host and

ensure the virus’ survival. Therefore, untangling the intricate web

of indirect and direct interactions is of utmost importance for a

thorough understanding of the virus pathogenesis. In the light of

these observations, transcription factors and kinases that provide

access to proteins in an indirect way seem to be the key players in

the subtle molecular strategies a virus employs in order to

intercalate a host cell.

Observations that HDF proteins are enriched in rich-clubs, co-

appear in many pathways and are largely linked to targeted

proteins such as kinases and transcription factors might help to

uncover virus dependent factors in systems where information

about the interaction interface between a pathogen and a host cell

is available. Assuming that the viral take-over of a host cell

generally follows similar patterns [18] our results might be tapped

to design computational approaches that allow us to predict virus

dependable factor proteins in other host pathogen systems.

Obviously, the computational prediction of viral dependent

proteins offers an efficient and economical way to produce testable

hypotheses that can be experimentally investigated further. In

addition, the analysis of the entanglement of directly targeted and

indirectly interacting proteins may uncover molecular and

functional Achilles heels that could be used to systematically

hamper viruses [23]. Consequently, defining the web of well

defined direct and indirect host-pathogen interactions offers the

opportunity to consider viral systems as naturally perturbed

biological systems that can be utilized to identify and disentangle

relevant pathways in different cellular contexts, ultimately allowing

us to eradicate other pathogen driven diseases that plague human

kind.

Materials and Methods

Human HIV Protein Interactions
We utilized a compilation of 702 experimentally obtained

protein interactions between the human host and HIV-1,

accounting for interactions that have been found in vital cells in

the human immune system such as helper T cells, macrophages

and dendritic cells [24].

Protein Interaction and Pathway Data
Collecting pairwise protein interactions in H. sapiens from public

databases [12,25,26] we obtained a network of 9,888 proteins

embedded in 69,194 physical interactions.

As a reliable source of experimentally confirmed protein-DNA

interactions, we used 6,669 interactions between 2,822 transcrip-

tion factors and structural genes from the TRED database [27]. As

for phosphorylation events between kinases and other proteins we

found 5,462 interactions between 1,707 human proteins utilizing

networKIN [28,29] and phosphoELM database [30]. As a source

of reliable human protein pathway information we utilized 913

annotated pathways from the Pathway Interaction Database [22].

Rich-Club Coefficient
The so-called rich-club phenomenon is quantitatively defined

by the rich-club coefficient W(k) [20]. Denoting by E§k the

number of edges among the nodes N§k which have at least k

interaction partners, the rich-club coefficient is expressed as

W(k)~
2E§k

N§k(N§k{1)
, where

N§k(N§k{1)

2
represents the

maximally possible number of edges among N§k nodes. An

appropriate choice for normalizing the rich-club coefficient is

provided by the ratio r(k)~W(k)=Wr(k), where Wr(k) is the rich-

club coefficient of a random network with the same degree

distribution P(k). In order to have a reasonably large ensemble, we

repeated the randomization process 10,000 times. Binning nodes

according to their degrees k we obtained a degree dependent mean

value of the rich-club coefficient by averaging over all r’s in each

bin. A ratio larger than one, r,1, is the actual evidence for the

presence of a rich-club phenomenon, an increase in the

interconnectivity of large degree nodes compared to the random

case. This process is well displayed by the presence of an oligarchy

of highly interacting nodes that are well connected among each

other. A ratio r,1 points to a lack of interconnectivity among

large degree nodes that are separated in distinguishable modules.

Enrichment
Each rich club where each protein has at least k interactions N$k

is represented as a subset of all proteins N in the underlying

network, N§k(N. In order to obtain an estimate if proteins with

a feature a are overrepresented in a rich-club, we calculated the

corresponding fraction fa,§k~Na,§k=N§k
in the underlying rich

club N$k. As a null hypothesis, we assumed that the feature a is

randomly distributed among human proteins. Determining the

randomized fraction of such proteins fr,a,§k, we defined

Ea,§k~fa,§k=fr,a,§k as the enrichment of proteins that have

feature a in a rich club. Averaging E over 10,000 randomizations

rich clubs are enriched with feature a if E.1 and vice versa.

Pathway Participation Coefficient
For each protein that is part of at least one pathway, we defined

the pathway participation coefficient of a protein i, as

Pi~
XN

s~1

ni,s

,XN

s~1

ni,s

 !2

where ni,s is the number of links

protein i has to proteins in pathway s out of all N pathways. If a

protein predominantly interacts with partners that are members of

the same pathway, P tends to 1 while the opposite holds if the

interaction partners are distributed among many different

pathways.

Significance of Attacked Pathways
Determining the significance of pathways that are enriched with

proteins expressed in a human T-cell, we formed a 2|2
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contingency table by determining a expressed proteins and the

remainder of b proteins in a given pathway. While c is the number

of expressed proteins and d is the number of remaining proteins in

all the other pathways we calculated the probability of obtaining

any such set of values randomly by p �~

azb
a

� �
czd

c

� �
N

azc

� � ,

where N~azbzczd. In order to investigate the two tails of the

underlying distribution we constructed all possible contingency

tables by keeping the sum of rows and columns constant. The

P-value to reject the null hypothesis being the independence of

rows and columns in the contingency table is the sum of

the probabilities pi, of all contingency tables i where

piƒp�,P~
P

piƒp�pi [31].

Significance of Links between Proteins
We applied a hypergeometric distribution to model the

probability of obtaining a number of shared features of proteins

v and w at or above the observed number by chance. Considering

a total of T proteins, we defined the significance that proteins v and

w share similar features as

P~
Xmin DC(v)D,DC(w)Dð Þ

i~DC(v)\C(w)D

DC(v)D
i

� �
T{DC(v)D
DC(w)D{i

� �
T

DC(w)D

� �

where G(x) represents the feature of protein x.

Kernel Density Function
A simple way to analyze a series of values x = x1, …, xn would be

a histogram. However, if the number of observations is low the

significance of a histogram is rather limited. Therefore, we defined

the kernel density approximation, a smoothing operation that

allows the estimation of a putative probability density function of

data points around a certain point x as f (x)~n{1
Xn

i~1

K
x{xi

h

� �
.

K(y) is the kernel function, satisfying
Ð?

{?
K yð Þdy~1, and h is a

smoothing parameter. In particular, we chose the Gaussian as

kernel function K(y)~
1ffiffiffiffiffiffi
2p
p e

{y2
=2.

Supporting Information

Table S1 List of 851 pathways that are enriched in the human

host cell (P,0.05).

Found at: doi:10.1371/journal.pone.0011796.s001 (0.49 MB

XLS)

Table S2 79 HIV dependant factor proteins (HDF), their

attacked proteins they are connected to and targeting viral

proteins.

Found at: doi:10.1371/journal.pone.0011796.s002 (0.03 MB

XLS)

Table S3 Shows targeted genes that appear in shortest paths to

HDFs (#: number of appearances in paths, TF: transcription

factors, kin: kinases).

Found at: doi:10.1371/journal.pone.0011796.s003 (0.03 MB

XLS)
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