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Fuzzy inference systems (FIS) enable automated assessment and reasoning in a logically consistentmanner akin to the way in which
humans reason. However, since no conventional fuzzy set theory is in the Boolean frame, it is proposed that Boolean consistent
fuzzy logic should be used in the evaluation of rules. The main distinction of this approach is that it requires the execution of a
set of structural transformations before the actual values can be introduced, which can, in certain cases, lead to different results.
While a Boolean consistent FIS could be used for establishing the diagnostic criteria for any given disease, in this paper it is applied
for determining the likelihood of peritonitis, as the leading complication of peritoneal dialysis (PD). Given that patients could be
located far away from healthcare institutions (as peritoneal dialysis is a form of home dialysis) the proposed Boolean consistent
FIS would enable patients to easily estimate the likelihood of them having peritonitis (where a high likelihood would suggest that
prompt treatment is indicated), when medical experts are not close at hand.

1. Introduction

Fuzzy inference systems (FIS) allow decision makers to
easily incorporate their own valuable experience into the
decision-making process. More precisely, fuzzy logic is used
to formally express expert knowledge in order to enable
automated assessment and reasoning in a logically consistent
manner akin to the way in which humans reason. Based
on the premise that experience is better represented by
linguistic means, fuzzy logic is an extremely appropriate tool
for expressing domain knowledge without a need for a strong
mathematical background. Consequently, fuzzy systems are
nowadays being used more and more for modeling systems
in a broad range of domains (including health care) and have
repeatedly proven their efficiency.

However, no conventional fuzzy set theory (fuzzy logic,
theory of fuzzy relations) is in the Boolean frame [1].

It is, therefore, proposed that Boolean consistent fuzzy logic,
introduced in [2], should be used instead. The main dis-
tinction of the Boolean consistent approach (which is based
on the Interpolative realization of Boolean algebra) is that it
requires the execution of a set of structural transformations
before the actual values can be introduced.This key difference
between the conventional and Boolean consistent approaches
can, in certain cases, lead to different results and ultimately
to different decisions being made, as will be elaborated in
Section 3.3.

While conventional FIS are regularly used in the field
of medicine, this is the first time that a Boolean consistent
FIS will be used in this domain. The main advantage of
the proposed Boolean consistent FIS is that it preserves the
transparency and interpretability inherent to fuzzy inference
systems, while at the same time, introducing consistency in
to the approach. While the proposed solution could be used
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for establishing the diagnostic criteria for any given disease,
in this paper, for illustrative purposes, it will be applied for
diagnosing peritonitis, which does in no way imply that it is
only applicable to this problem.

Furthermore, this is the first time that either a conven-
tional FIS or a Boolean consistent FIS is proposed for diag-
nosing peritonitis, as the leading complication of peritoneal
dialysis (PD).

Peritoneal dialysis, as a form of home dialysis, is a specific
form of treatment which requires the prior education of the
patient to be able to self-administer this method. Patients
are also educated in the clinical recognition of peritonitis
(i.e., the inflammation of the peritonitis), as the most seri-
ous complication of peritoneal dialysis. If not recognized
in time, or if inadequately treated, peritonitis can lead to
serious complications and even death. Furthermore, severe
and prolonged peritonitis can lead to peritoneal membrane
failure; thus peritonitis is one of the main reasons for
patients discontinuing PD and switching to hemodialysis.
Consequently, it is very important to initiate treatment of PD-
associated peritonitis as soon as possible.

However, given that a significant number of gastrointesti-
nal diseases (including infectious and surgically related dis-
eases) have similar clinical manifestations, wherein adminis-
tration of antibiotic and analgesic therapy (particularly in the
case of acute surgical diseases) may mask the clinical picture,
it is necessary to have a clear differential diagnosis before
starting therapy.

Since proper diagnostics may not always be readily avail-
able, it would be beneficial to establish a diagnostic approach
that would enable patients to easily estimate the peritonitis
likelihood in order to promptly initiate the necessary therapy.
Therefore, an additional contribution of this paper is the
introduction of a FIS incorporating medical experience, in
the form of rules established by domain experts, which would
be of assistance to patients whenmedical experts are not close
at hand. Furthermore, because the rules are given in a natural
(i.e., linguistic) form they are easier to express, validate, and
modify by medical experts.

The conventional and Boolean consistent approaches will
be elaborated and compared in order to clarify why the
application of Boolean consistent fuzzy logic is preferred.

The paper is structured as follows: Section 2 provides an
overview of the peritonitis likelihood estimation problem.
The proposed approach is outlined in Section 3. Section 4 is
devoted to the experimental results and their analysis. Related
work is given in Section 5 and finally, Section 6 concludes the
paper and discusses future work.

2. Problem Description

Peritoneal dialysis is a renal replacement therapy method
complementary with hemodialysis and renal transplanta-
tion. According to [3], peritonitis (i.e., inflammation of the
peritoneum) remains a leading complication of peritoneal
dialysis (PD) as around 18% of the infection-relatedmortality
in PD patients is the result of peritonitis and even though
less than 4% of peritonitis episodes result in death, peritonitis

is a “contributing factor” to death in 16% of deaths on PD.
Moreover, a number of potentially serious consequences of
peritonitis (such as relapse, catheter removal, permanent
transfer to hemodialysis, and death) are likely to occur if
treatment is not initiated promptly. Consequently, peritonitis
treatment (aimed at rapidly reducing the inflammation)
should be initiated without delay.

Recommendations for the treatment of peritonitis, under
the auspices of the International Society for Peritoneal Dialy-
sis (ISPD), were first published in 1983 and are revised every
five years. In accordance with these recommendations [3]
peritoneal dialysis patients presenting with abdominal pain
and cloudy effluent should be presumed to have peritonitis
(this is confirmed by obtaining an effluent cell count, differ-
ential, and culture). While cloudy effluent usually indicates
infectious peritonitis (even in the absence of abdominal
pain), it can also be attributed to other causes. Hence,
the abdomen should be drained and the effluent carefully
inspected and sent for cell count with differential, Gram stain,
and culture. An effluent cell count with white blood cells
(WBC) more than 100/𝜇L (after a dwell time of at least 2
hours), with at least 50% polymorphonuclear neutrophilic
cells, indicates the presence of inflammation, with peritonitis
being the most likely cause.

On the other hand, it is also possible for peritonitis to
be present even if the effluent is clear, and thus peritonitis
should always be suspected in PD patients with abdominal
pain. Furthermore, in a certain percentage of peritonitis cases
it can be concluded, with considerable certainty, that the
patient has peritonitis if the patient has a positive culture
with a clear clinical manifestation or cloudy effluent, even if
the number of leukocytes is not within the specified range
(depending on the time of sampling). On the other hand, a
clear clinical manifestation accompanied by a cloudy effluent
or an increase in the number of leukocytes in the effluent,
but with no agent isolated, can indicate sterile peritonitis
(the sterile culture may be the result of improper sampling,
previously administered antibiotic therapy, or the infection
can be caused by specific agents which have a slow growth
rate on standard microbiological media or require special
cultivation).

3. Proposed Approach

Fuzzy logic, introduced by Zadeh [4], is envisaged to extend
binary values 0 and 1, representing strict presence or absence
of an entity, to any other real value in between, indicating
an entity’s relative presence or absence. These values, thus,
indicate the degree to which an entity fulfills the charac-
teristics of a given set. In addition, fuzzy logic is especially
useful for working with linguistic variables, that is, variables
whose values are words or sentences in a natural language [5].
The values of linguistic variables can be mapped to the [0, 1]
interval by the defining of suitablemembership functions.On
the other hand, domain experts can adequately express their
knowledge and experience (which can sometimes be only in
the form of vague and complex verbal statements), in a more
natural way, and fuzzy set theory enables the transformation
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of such descriptions or statements into mathematical expres-
sions.

As stated in [6] Zadeh proposed medical sciences as one
of the first fields of application for fuzzy sets, as early as
1969. Furthermore, the author quotes Zadeh’s thoughts on
this subject: “it may be convenient to characterize a fuzzy
set representing a disease [⋅ ⋅ ⋅ ] by its relation to various
symptoms which in themselves are fuzzy in nature.”

3.1. Membership Functions. As defined in [4] a fuzzy set 𝐴 in
a universal set 𝑋 is characterized by a membership function
𝜇
𝐴
(𝑥)which associates with each point in𝑋 a real number in

the interval [0, 1], with the value of 𝜇
𝐴
(𝑥) at 𝑥 representing

the “grade of membership” of 𝑥 in 𝐴:

𝜇
𝐴 (𝑥) : 𝑋 󳨀→ [0, 1] . (1)

The larger the value of 𝜇
𝐴
(𝑥), the higher the degree to which

entity 𝑥 fulfills the characteristics of 𝐴.
The shape of a membership function can be selected

either intuitively (based on previous knowledge) or on the
basis of the characteristics of the input-output data. Domain
experts play a key role in this process as they possess an in-
depth understanding of the domain, that is, the semantics of
the data.

Specifically, the following input variableswere used in this
paper:

F: fever,
L: number of leukocytes,
AP: abdominal pain,
CE: cloudiness of effluent,
MC: number of microorganisms.

It should be noted that “cloudiness of effluent” represents a
linguistic variable with the following values: clear and slightly,
considerably, or extremely cloudy.

The corresponding membership functions (defined on
the basis of a literature review and domain expertise) are
depicted in Figure 1.

3.2. Fuzzy Inference Systems. One of the main applications of
fuzzy logic today is found in fuzzy inference systems (FIS).
According to [7], these systems are also known as fuzzy-
rule-based systems, fuzzy models, fuzzy controllers, or fuzzy
associative memories.

Essentially fuzzy inference systems are knowledge-based
systems that use elements of fuzzy logic for modeling the
relationship between the input space and the output space,
that is, for inferring the outputs from the inputs.

According to [8], fuzzy logic is used to cast the verbal
knowledge into a conventional mathematical representation.
In other words, fuzzy logic is used to formally express expert
knowledge in the form of fuzzy rules, that is, human compre-
hensible linguistic statements that enable the automation of
the decision-making process.

Fuzzy rules are conditional statements of the form “if
𝑋 then 𝑌.” The if part of the rule (i.e., the premise) is

a composition of fuzzy variables (characterized by appropri-
ate membership functions) and fuzzy operators (correspond-
ing to the common logical operators: “and,” “or,” and “not”).
The then part (i.e., the consequence) is inferred from the
“truth value,” or rule strength, of the premise (calculated on
the basis of the values of the input variables).

Therefore, in addition to defining the membership func-
tions, it is also necessary to choose the appropriate functions
for the fuzzy conjunction (AND), fuzzy disjunction (OR),
and fuzzy complement (NOT) operators. The choice of an
operator depends on the problem to be solved, that is, the
level of interaction between the elements that are being
aggregated, as stated in [9].

In general the fuzzy inference process consists of three
phases:

(i) Fuzzification in which the crisp values of the input
variables are associated with membership degrees of
the corresponding linguistic variables.

(ii) Evaluation, that is, rule-based reasoning.
(iii) Defuzzification in which the fuzzy result is trans-

formed into a crisp output.

However, fuzzy inference systems differ mainly in the way
in which the consequence is formulated, that is, whether
the output variables are represented as fuzzy sets or not, as
demonstrated by the two main FIS types: the well-known
Mamdani [10] and Sugeno [11] models, respectively. In this
paper the fuzzy sets are used only in the premise, and the
output is defined as a crisp value indicating the likelihood that
a patient has peritonitis:

PL: peritonitis likelihood.
Specifically, in accordance with the discussion in

Section 2, in order to estimate the likelihood of peritonitis
for PD patients the following rule was established by a
domain expert:

if

(MC and (AP or F or CE))
or
(not MC and (AP and (CE or L)))

then PL

The rule can be interpreted as follows: a positive culture
accompanied by a clinical manifestation or cloudy effluent
OR a sterile culture but with abdominal pain and a cloudy
effluent or an increase in the number of leukocytes in the
effluent indicates a high probability of the patient having
peritonitis. A high likelihood of peritonitis implies that it is
necessary to promptly initiate treatment.

The specific fuzzy inference process, utilized in this paper,
is depicted in Figure 2.

3.3. Boolean Consistent Fuzzy Logic. The main premise of
this paper is that Boolean consistent fuzzy logic, introduced
in [2], should be used in the evaluation of rules since no
conventional fuzzy set theory (fuzzy logic, theory of fuzzy
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Figure 1: Membership functions of the input variables.

relation) is in the Boolean frame [1]. Furthermore, as stated in
[12], the structures embedded in fuzzy set theories are usually
less rich than the Boolean lattice of classical set theory.

To begin with, in order to justify why the new approach is
proposed, it will be shown that conventional fuzzy set theory
does not satisfy all Boolean axioms and theorems, foremost
the axioms of excluded middle and contradiction.

The excluded middle axiom states that

𝜇
𝐴 (𝑥) ∨ ¬𝜇𝐴 (𝑥) = 1, (2)

while the contradiction axiom states that

𝜇
𝐴 (𝑥) ∧ ¬𝜇𝐴 (𝑥) = 0. (3)

First, it should be noted that there is a variety of functions
defined for the fuzzy operators. Ordinarily, a 𝑡-norm gener-
alizes the AND operator, while the 𝑠-norm generalizes the
OR operator (the 𝑠-norm must correspond to the chosen 𝑡-
norm). Initially, the min and max functions were proposed
for the AND or OR operators, respectively [4]. However, in
this case, the result is only influenced by one of the elements

(i.e., the dominant one) and thus they indicate no interaction
[9]. In order to overcome this shortcoming and enable the
membership values of both fuzzy sets to contribute to the
result, other definitions of the operators were later proposed,
with the product (for the AND operator) and the algebraic
sum (for the OR operator) being the most commonly used.
Finally, the fuzzy complement implies that if an entity has a
property with a membership of 𝜇

𝐴
(𝑥) then the absence of the

property must have a membership of 1 − 𝜇
𝐴
(𝑥). Thus, if an

entity has a property with a membership of 0.2, then it could
be said that the absence of the property has a membership of
0.8:

𝜇
𝐴 (𝑥) = 0.2,

(1 − 𝜇
𝐴 (𝑥)) = 0.8.

(4)

Consequently, the following examples ((5)–(8)) prove that the
two previously stated axioms do not hold.
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Figure 2: Fuzzy inference process for estimating peritonitis likelihood.

The excluded middle axiom is as follows:

(i) with the algebraic sum selected as the 𝑠-norm:

𝜇
𝐴 (𝑥) ∨ ¬𝜇𝐴 (𝑥) = 𝜇𝐴 (𝑥) + (1 − 𝜇𝐴 (𝑥)) − 𝜇𝐴 (𝑥)

∗ (1 − 𝜇
𝐴 (𝑥)) = 0.2 + 0.8 − 0.16

= 0.84 ̸= 1,

(5)

(ii) or with the maximum selected as the 𝑠-norm:

𝜇
𝐴 (𝑥) ∨ ¬𝜇𝐴 (𝑥) = max (𝜇

𝐴 (𝑥) , (1 − 𝜇𝐴 (𝑥)))

= max (0.2, 0.8) = 0.8 ̸= 1.
(6)

The same can be shown for the contradiction axiom:

(i) with the product selected as the 𝑡-norm:

𝜇
𝐴 (𝑥) ∧ ¬𝜇𝐴 (𝑥) = 𝜇𝐴 (𝑥) ∗ (1 − 𝜇𝐴 (𝑥)) = 0.2 ∗ 0.8

= 0.16 ̸= 0,

(7)

(ii) or with the minimum selected as the 𝑡-norm:

𝜇
𝐴 (𝑥) ∧ ¬𝜇𝐴 (𝑥) = min (𝜇

𝐴 (𝑥) , (1 − 𝜇𝐴 (𝑥)))

= min (0.2, 0.8) = 0.2 ̸= 0.
(8)

In light of the previous assertions the use of the interpola-
tive realization of Boolean algebra (IBA) is proposed. As
stated in [2] IBA is an illustrative name for the real-valued
and/or [0, 1]-valued realization of Boolean algebra. It requires
that a set of structural transformations be executed before

the values can be introduced. In other words, only once
the transformations have been conducted and the final struc-
ture established will the values be introduced and computed.

Any logical function can be uniquely transformed into
a corresponding generalized Boolean polynomial (GBP)
using IBA. It should be emphasized that the GBP maps a
corresponding element of Boolean algebra into its value from
the real unit interval [0, 1] at the value level, so that, contrary
to othermany valued and/or fuzzy approaches, a partial order
on the value level is preserved [13].

The GBP is a polynomial whose variables are elements
of the Boolean algebra and the operators are standard +,
standard −, and generalized product ⊗. According to [14]
the generalized product can be any function which maps
[0, 1] × [0, 1] → [0, 1] and is a subclass of the conventional
fuzzy 𝑡-norm satisfying the nonnegativity axiom.

Furthermore, it is important to highlight that in this
approach the following property always holds:

𝜇
𝐴 (𝑥) ⊗ 𝜇𝐴 (𝑥) = 𝜇𝐴 (𝑥) . (9)

As a result, the excluded middle and contradiction axioms
will hold ((10) and (11), resp.).

The excluded middle axiom is as follows:
𝜇
𝐴 (𝑥) ∨ ¬𝜇𝐴 (𝑥) = 𝜇𝐴 (𝑥) + (1 − 𝜇𝐴 (𝑥)) − 𝜇𝐴 (𝑥)

⊗ (1 − 𝜇
𝐴 (𝑥))

= 𝜇
𝐴 (𝑥) + 1 − 𝜇𝐴 (𝑥) − 𝜇𝐴 (𝑥) ⊗ 1

+ 𝜇
𝐴 (𝑥) ⊗ 𝜇𝐴 (𝑥)

= 𝜇
𝐴 (𝑥) + 1 − 𝜇𝐴 (𝑥) − 𝜇𝐴 (𝑥)

+ 𝜇
𝐴 (𝑥) = 1.

(10)
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The contradiction axiom is as follows:

𝜇
𝐴 (𝑥) ∧ ¬𝜇𝐴 (𝑥) = 𝜇𝐴 (𝑥) ⊗ (1 − 𝜇𝐴 (𝑥))

= 𝜇
𝐴 (𝑥) ⊗ 1 − 𝜇𝐴 (𝑥) ⊗ 𝜇𝐴 (𝑥)

= 𝜇
𝐴 (𝑥) − 𝜇𝐴 (𝑥) = 0.

(11)

It can, thus, be concluded that this main difference between
the conventional and Boolean consistent approaches can,
in certain cases, lead to different results (as will be shown
in Section 4.3). Specifically, when the statement includes
negation, the application of conventional fuzzy logic may
lead to inadequate results due to the fact that it does not
satisfy the excludedmiddle and contradiction axioms. On the
other hand, in the Boolean consistent approach the atomic
values are introduced only after the final structure has been
established, thereby ensuring that all Boolean axioms are
satisfied.

The main benefit of the proposed Boolean consistent
FIS is that it preserves the transparency and interpretability
inherent to fuzzy inference systems, while, at the same time,
introducing consistency into the approach.

4. Experimental Results

In this section the proposed solution will be used for
estimating peritonitis probability. Both the conventional and
Boolean consistent FIS approaches will be presented and
compared.

4.1. Data. The data was obtained from the clinical records
of 156 patients who were in the PD program from 2001
to 2010 at the Military Medical Academy (located in Bel-
grade, Serbia). The Military Medical Academy is the largest
military hospital in Serbia and South-Eastern Europe and
one of the largest military hospitals in the world. It is a
medical, educational, and scientific-research institution with
an internationally acknowledged reputation in both civilian
and military healthcare.

Out of the 156 available patient records, 123 patients had
been diagnosed with peritonitis. The patients (74 males and
82 females) were between 18 and 85 years of age (mean age
59.7 ± 12.4 years).

As stated in their medical records, the diagnosis had been
confirmed based on

(1) clinical symptoms and signs of peritoneal inflamma-
tion (such as fever and abdominal pain),

(2) cloudiness of effluent and elevation in number of
leukocytes > 100 cells/𝜇L (over 50% PMN),

(3) microbiological identification (Gram or culture).
Dialysate specimens were obtained from all of the
patients and examined for culture and resistance.

The remaining 33 patients had had some clinical indications
(such as abdominal pain, fever, elevated number of leuko-
cytes, and cloudy effluent) but the other diagnostic criteria
had been absent.Thus, the symptoms could not be attributed
to peritonitis and the diagnosis had not been confirmed. The

Table 1: Clinical presentation of PD peritonitis.

Criterion Confirmed Not confirmed
# Percent # Percent

Fever (F) 48 (39.02%) 16 (48.48%)
Number of leukocytes (L) 123 (100%) 11 (33.33%)
Abdominal pain (AP) 108 (87.80%) 26 (78.79%)
Cloudiness of effluent (CE) 114 (92.68%) 14 (42.42%)
Microbiological culture (MC) 107 (86.99%) 0 (0%)

Table 2: Distribution of microbial agents.

Agent # Percent
Gram-positive
Coagulase-negative staphylococcus 50 (46.73%)
Staphylococcus aureus 9 (8.41%)
Streptococcus viridans 9 (8.41%)
Enterococcus 6 (5.61%)
Corynebacterium 5 (4.67%)

79 (73.83%)
Gram-negative
Escherichia Coli 7 (6.54%)
Acinetobacter 6 (5.61%)
Klebsiella 3 (2.80%)
Stenotrophomonas 2 (1.87%)
Pseudomonas 1 (0.93%)
Enterobacter 1 (0.93%)
Proteus mirabilis 1 (0.93%)
Morganella 1 (0.93%)

22 (20.56%)
Mixed 4 (3.74%)
Fungi (Candida) 2 (1.87%)

presence (number and percentage of cases) of the relevant
diagnostic criteria for the 123 and 33 patients, respectively, is
given in Table 1.

Out of the 123 patients with peritonitis, 16 patients had
sterile peritonitis; that is, they had culture-negative dialysates.
The remaining patients tested positive for a number of
different agents (Table 2).

The most severe episodes were caused by Staphylococ-
cus aureus, Enterococcus, fungi (Candida), mixed organisms
(Gram-positive and Gram-negative), and Gram-negative bac-
teria, while Coagulase-negative staphylococcus (CNS) leads to
the mildest clinical forms.

4.2. Methods. The established rule (Section 3.2) could be
mathematically expressed as

(MC ∧ (AP ∨ F ∨ CE)) ∨ (¬MC ∧ (AP ∧ (CE ∨ L))) . (12)

As explained in Section 3.3, in order to transform a Boolean
function into a generalized Boolean polynomial (GBP), the
first step is to assess its structure. A detailed description of
this transformation is given in [13]. In this particular case the
following transformation steps have been taken ((13)-(14)).
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In [15] a software, jFuzzyIBATranslator, is implemented
which can transform any logical expression into the corre-
sponding GBP. The software could be exploited to bypass
the need for conducting these transformations manually,
thereby rendering the proposed solution more approachable
and convenient for nontechnical users.

After the transformation has been accomplished (prefer-
ably automatically) focus is transferred to the value level, by
choosing the standard product as an adequate operator for
the generalized product and then inputting the membership
values:

((MC ∧ (AP ∨ F ∨ CE)) ∨ (¬MC ∧ (AP ∧ (CE ∨ L))))⊗

= (MC ∧ (AP ∨ F ∨ CE))⊗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(1)

+ (¬MC ∧ (AP ∧ (CE ∨ L)))⊗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(2)

− (MC ∧ (AP ∨ F ∨ CE))⊗ ⊗ (¬MC ∧ (AP ∧ (CE ∨ L)))⊗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(3)

,

(1) (MC ∧ (AP ∨ F ∨ CE))⊗ = MC ⊗ (AP ∨ F ∨ CE)⊗

= MC ⊗ (AP + F + CE − AP ⊗ F − AP ⊗ CE − F ⊗ CE

+ AP ⊗ F ⊗ CE) = MC ⊗ AP +MC ⊗ F +MC ⊗ CE

−MC ⊗ AP ⊗ F −MC ⊗ AP ⊗ CE −MC ⊗ F ⊗ CE +MC

⊗ AP ⊗ F ⊗ CE,

(2) (¬MC ∧ (AP ∧ (CE ∨ L)))⊗ = (1 −MC) ⊗ (AP

∧ (CE ∨ L))⊗ = (1 −MC) ⊗ (AP ⊗ (CE ∨ L)⊗) = (1

−MC) ⊗ (AP ⊗ (CE + L − CE ⊗ L)) = (1 −MC) ⊗ (AP

⊗ CE + AP ⊗ L − AP ⊗ CE ⊗ L) = AP ⊗ CE + AP ⊗ L

− AP ⊗ CE ⊗ L −MC ⊗ AP ⊗ CE −MC ⊗ AP ⊗ L +MC

⊗ AP ⊗ CE ⊗ L,

(3) (MC ∧ (AP ∨ F ∨ CE))⊗ ⊗ (¬MC ∧ (AP ∧ (CE ∨ L)))⊗

= (MC ⊗ AP +MC ⊗ F +MC ⊗ CE −MC ⊗ AP ⊗ F

−MC ⊗ AP ⊗ CE −MC ⊗ F ⊗ CE +MC ⊗ AP ⊗ F ⊗ CE)

⊗ (AP ⊗ CE + AP ⊗ L − AP ⊗ CE ⊗ L −MC ⊗ AP ⊗ CE

−MC ⊗ AP ⊗ L +MC ⊗ AP ⊗ CE ⊗ L) = MC ⊗ AP

⊗ CE +MC ⊗ AP ⊗ L −MC ⊗ AP ⊗ CE ⊗ L −MC ⊗ AP

⊗ CE −MC ⊗ AP ⊗ L +MC ⊗ AP ⊗ CE ⊗ L +MC ⊗ F

⊗ AP ⊗ CE +MC ⊗ F ⊗ AP ⊗ L −MC ⊗ F ⊗ AP ⊗ CE

⊗ L −MC ⊗ F ⊗ AP ⊗ CE −MC ⊗ F ⊗ AP ⊗ L +MC ⊗ F

⊗ AP ⊗ CE ⊗ L +MC ⊗ CE ⊗ AP +MC ⊗ CE ⊗ AP ⊗ L

−MC ⊗ CE ⊗ AP ⊗ L −MC ⊗ CE ⊗ AP −MC ⊗ CE

⊗ AP ⊗ L +MC ⊗ CE ⊗ AP ⊗ L −MC ⊗ AP ⊗ F ⊗ CE

−MC ⊗ AP ⊗ F ⊗ L +MC ⊗ AP ⊗ F ⊗ CE ⊗ L +MC

⊗ AP ⊗ F ⊗ CE +MC ⊗ AP ⊗ F ⊗ L −MC ⊗ AP ⊗ F

⊗ CE ⊗ L −MC ⊗ AP ⊗ CE −MC ⊗ AP ⊗ CE ⊗ L +MC

⊗ AP ⊗ CE ⊗ L +MC ⊗ AP ⊗ CE +MC ⊗ AP ⊗ CE ⊗ L

−MC ⊗ AP ⊗ CE ⊗ L −MC ⊗ F ⊗ CE ⊗ AP −MC ⊗ F

⊗ CE ⊗ AP ⊗ L +MC ⊗ F ⊗ CE ⊗ AP ⊗ L +MC ⊗ F

⊗ CE ⊗ AP +MC ⊗ F ⊗ CE ⊗ AP ⊗ L −MC ⊗ F ⊗ CE

⊗ AP ⊗ L +MC ⊗ AP ⊗ F ⊗ CE +MC ⊗ AP ⊗ F ⊗ CE

⊗ L −MC ⊗ AP ⊗ F ⊗ CE ⊗ L −MC ⊗ AP ⊗ F ⊗ CE

−MC ⊗ AP ⊗ F ⊗ CE ⊗ L +MC ⊗ AP ⊗ F ⊗ CE ⊗ L = 0.
(13)

Finally,

((MC ∧ (AP ∨ F ∨ CE))

∨ (¬MC ∧ (AP ∧ (CE ∨ L))))⊗ = MC ⊗ AP +MC

⊗ F +MC ⊗ CE −MC ⊗ AP ⊗ F −MC ⊗ AP ⊗ CE

−MC ⊗ F ⊗ CE +MC ⊗ AP ⊗ F ⊗ CE + AP ⊗ CE

+ AP ⊗ L − AP ⊗ CE ⊗ L −MC ⊗ AP ⊗ CE −MC

⊗ AP ⊗ L +MC ⊗ AP ⊗ CE ⊗ L − 0 = MC ⊗ AP

+MC ⊗ F +MC ⊗ CE + AP ⊗ CE + AP ⊗ L −MC

⊗ AP ⊗ F − 2 ∗MC ⊗ AP ⊗ CE −MC ⊗ F ⊗ CE

− AP ⊗ CE ⊗ L −MC ⊗ AP ⊗ L +MC ⊗ AP ⊗ F

⊗ CE +MC ⊗ AP ⊗ CE ⊗ L.

(14)

This rule can also be evaluated by applying the rules of
conventional fuzzy logic:

((MC ∧ (AP ∨ F ∨ CE))

∨ (¬MC ∧ (AP ∧ (CE ∨ L)))) = (MC

∧ (AP ∨ F ∨ CE)) + (¬MC ∧ (AP ∧ (CE ∨ L)))

− (MC ∧ (AP ∨ F ∨ CE)) ∗ (¬MC

∧ (AP ∧ (CE ∨ L))) = MC ∗ AP +MC ∗ F +MC

∗ CE −MC ∗ AP ∗ F −MC ∗ AP ∗ CE −MC ∗ F

∗ CE +MC ∗ AP ∗ F ∗ CE + AP ∗ CE + AP ∗ L

− AP ∗ CE ∗ L −MC ∗ AP ∗ CE −MC ∗ AP ∗ L

+MC ∗ AP ∗ CE ∗ L − (MC ∗ AP +MC ∗ F

+MC ∗ CE −MC ∗ AP ∗ F −MC ∗ AP ∗ CE

−MC ∗ F ∗ CE +MC ∗ AP ∗ F ∗ CE) ∗ (AP

∗ CE + AP ∗ L − AP ∗ CE ∗ L −MC ∗ AP ∗ CE

−MC ∗ AP ∗ L +MC ∗ AP ∗ CE ∗ L) .

(15)
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Table 3: Result comparison.

F L AP CE∗ MC
PL

Consistent
FIS

PL
Conventional

FIS
38.2 168 1 EC 6.1 ⋅ 104 100.00% 78.19%
38.9 186 1 EC 7 ⋅ 10

4 100.00% 78.19%
38.2 198 1 EC 1.4 ⋅ 105 100.00% 83.39%
37.7 164 1 EC 8.3 ⋅ 104 100.00% 78.19%
39.2 258 1 EC 2 ⋅ 10

4 100.00% 75.19%
39.1 187 1 EC 8 ⋅ 10

5 100.00% 88.66%
38.4 176 1 EC 3.3 ⋅ 105 100.00% 83.39%
38.1 163 1 EC 5.1 ⋅ 105 100.00% 88.66%
38.4 164 1 EC 3 ⋅ 10

5 100.00% 83.39%
38.1 157 1 EC 10

6 100.00% 92.82%
38.7 205 1 EC 6.5 ⋅ 105 100.00% 88.66%
39.3 298 1 EC 5.9 ⋅ 104 100.00% 78.19%
∗The EC value in the table stands for Extremely Cloudy.

4.3. Result Analysis. The validity of the proposed approaches
was assessed by comparing the actual diagnoses from the
156 available patient records with the results (i.e., peritonitis
likelihood: PL) obtained by inputting the relevant data (i.e.,
membership values) into (14) and (15), for the Boolean
consistent FIS and the conventional FIS, respectively.The test
data was divided into two sets: 123 patients with confirmed
peritonitis and 33 patients who had clinical indications, but
whose symptoms were found to be caused by other diseases.

Out of the 123 patients diagnosed with peritonitis, both
of the proposed approaches estimated the probability of
peritonitis to be more than 60% in 114 cases (92.68% of this
sample) with the probability being more than 75% in 106 of
these cases (86.18% of the sample).

For the remaining 33 patients, both approaches estimated
the probability to be less than 37.5%. Moreover, the estimated
probability could be considered insignificant (less than 4%)
for 25 patients (75.76% of this sample).

Both approaches estimated the same likelihood in 29/123,
that is, 33/33 cases. However, the Boolean consistent FIS
dominated the conventional FIS (i.e., it indicated a higher
peritonitis likelihood) in the remaining 94/123 cases (76.42%
of the sample) and with more than a 10% difference in
likelihood in 36 cases (29.27% of the sample).The results have
thus shown that these two approaches might not always lead
to the same conclusions. Moreover, the Boolean consistent
FIS constantly outperformed the conventional FIS as was
expected in light of the previous discussion (Section 3.3).

In addition, the most significant discrepancy between
these two approaches is depicted in Table 3. Based on
the severity of their symptoms (columns 1–5) it could be
asserted, with considerable certainty, that these 12 patients
have peritonitis and that medical treatment should be ini-
tiated immediately. The 100% value in column 6 of Table 3
shows that the Boolean consistent FIS correctly assessed the
severity (the diagnosis had also been confirmed in their
medical records). However, the results obtained by applying

the conventional FIS (column 7 of Table 3) underestimate the
likelihood by 21.25% on average.

For clarification purposes, the values in Table 3 (columns
6 and 7) for the last row were calculated, in accordance with
(14) and (15), respectively, with the following membership
values:

(i) F = 𝜇F(𝑥) = 0.99817,
(ii) L = 𝜇L(𝑥) = 1,
(iii) AP = 𝜇AP(𝑥) = 1,
(iv) CE = 𝜇CE(𝑥) = 1,
(v) MC = 𝜇MC(𝑥) = 0.67863.

5. Related Work

In the past couple of decades FIS have proven to be an
extremely efficient decision support system in a wide range
of different domains (from industrial engineering through
finance and health care).

Most of the papers dealing with peritonitis diagnosis
using computational and mathematical methods are focused
on the application of statistical methods [16–19].

The application of a Boolean consistent FIS is proposed
for the first time in the medical domain. In addition the con-
ventional FIS has not, thus far, been applied for diagnosing
peritonitis.

The justification for the introduction of the proposed
approach can be found in the numerous works proposing the
use of fuzzy logic and FIS for diagnosing various diseases (see
[5, 20–25] for a detailed survey).

Among the many approaches proposing FIS in medicine
the following diseases have been studied the most:

Heart Disease

(i) A fuzzy expert systemwhich determines the risk
of a patient developing a coronary heart disease
in the next ten years and recommends three
outputs (normal living, diet, or drug treatment)
is proposed in [26].

(ii) An automatically generated fuzzy rule-based
decision support system for diagnosis of coro-
nary artery disease is presented in [27]. The
system is automatically generated froman initial
annotated dataset.

(iii) The hypertension risk for different age and
gender groups is determined in [28].

Cancer

(i) The percentage of possibility of prostate cancer
risk is predicted in [29] in order to determine
whether a biopsy should be performed.

(ii) Fuzzy rules are used in [30] to obtain a breast
cancer risk prognosis.

(iii) The FIS proposed in [31] accepts symptoms as
its input and provides the confirmation of lung
cancer, and its stage, as the output.
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Respiratory Disorders

(i) The work presented in [32] is aimed at detecting
asthma in its early stages. The authors propose
two FIS modules for determining the degree
of possibility of asthma. The first uses only the
relevant symptoms as inputs and the second rep-
resents a linear combination of the symptom-
based FIS and a FIS that exploits laboratory
results pertaining to lung function.

(ii) An automated system for diagnosing the sever-
ity of asthma is introduced in [33].

In addition FIS has also been used for the diagnosis ofmalaria
[34, 35], migraine [36], back pain [37], impotence [38], and
liver disorders [39] and for detecting possible complications
during anesthesia [40, 41].

6. Conclusions

Fuzzy logic has been widely used to assist decision makers in
a number of different domains. It is used to formally express
expert knowledge (which can usually only be expressed
as vague and complex verbal statements) in the form of
fuzzy rules, thereby enabling the automation of the decision-
making process.

Fuzzy inference systems have, to date, proven to be
extremely useful and efficient in the field of medicine and
health care. This is the first time that FIS is proposed
for diagnosing peritonitis, as the leading complication of
peritoneal dialysis (PD).

If peritonitis is not recognized in time, or if it is inad-
equately treated, it can lead to serious complications and
even death. Since patients could be located far away from
healthcare institutions (as peritoneal dialysis is a form of
home dialysis) it would be beneficial to establish a diagnostic
approach that would enable patients to easily estimate the
likelihood of themhaving peritonitis in order to promptly ini-
tiate the necessary treatment. Given that medical expertise is
incorporated into the system, in the form of rules established
by domain experts, the proposed FIS could assist patients
whenmedical experts are not close at hand. A high likelihood
of peritonitis would, then, suggest that prompt treatment is
indicated.

However, since no conventional fuzzy set theory is in the
Boolean frame it is also proposed that Boolean consistent
fuzzy logic could be used in the evaluation of rules.Themain
distinction of this approach is that it requires the execution of
a set of structural transformations before the actual values can
be introduced. It has been demonstrated and clarified why
this key difference between the conventional and Boolean
consistent approaches can, in certain cases, lead to different
results.

By using a Boolean consistent FIS not only would nega-
tion be treated more adequately but, at the same time, all
Boolean logic axioms would hold.

This is the first time that Boolean consistent FIS is pro-
posed in the medical domain. While the proposed solution
could be used for establishing the diagnostic criteria for any

given disease, in this paper, for illustrative purposes, it was
applied for determining the likelihood of peritonitis.

The main advantage of an improved Boolean consistent
FIS is that it preserves the transparency and interpretability
inherent to fuzzy inference systems, while, at the same time,
introducing consistency into the approach.

The experimental results show that the Boolean consis-
tent FIS constantly outperformed the conventional FIS; that
is, it gave the same or even a better estimation for all test cases
(andwithmore than a 10% difference in peritonitis likelihood
in 23.08% of the entire sample).

Further work would be aimed at exploring the effects
of introducing more than one fuzzy set for describing the
variables.
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[1] D. G. Radojević, “Fuzzy set theory in boolean frame,” Interna-
tional Journal of Computers, Communications & Control, vol. 3,
no. 3, pp. 121–131, 2008.
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