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ABSTRACT
Perovskite solar cells (PSC) are promising next generation photovoltaic technologies, and there is
considerable interest in the role of possible polarization of organic-inorganic halide perovskites (OIHPs) in
photovoltaic conversion.The polarity of OIHPs is still hotly debated, however. In this review, we examine
recent literature on the polarity of OIHPs from both theoretical and experimental points of view, and argue
that they can be both polar and nonpolar, depending on composition, processing and environment.
Implications of OIHP polarity to photovoltaic conversion are also discussed, and new insights gained
through research efforts. In the future, integration of a local scanning probe with global macroscopic
measurements in situwill provide invaluable microscopic insight into the intriguing macroscopic
phenomena, while synchrotron diffractions and scanning transmission electron microscopy on more stable
samples may ultimately settle the debate.

Keywords: perovskite solar cells, polarity, ferroelectricity, first-principles calculations, scanning probe,
photovoltaic implication

INTRODUCTION
Ever since the spectacular rise of perovskite so-
lar cells (PSCs), there have been suggestions on
possible roles of ferroelectric polarization in their
photovoltaic conversion. Perovskite materials, par-
ticularly oxides, are often ferroelectric, and early the-
oretical calculations indicated that polarization in
organic-inorganic halide perovskites (OIHPs) may
help charge separation and facilitate carrier transport
[1]. However, the ferroelectricity of OIHPs has not
been firmly established experimentally, and the pos-
sible polarity of OIHPs is still hotly debated [2,3].
There is considerable theoretical and experimental
evidence to support either point of view [4]. Both
nonpolar I4/mcm(Fig. 1a) andpolar I4cm(Fig. 1b)
space groups are possible forCH3NH3PbI3 (MAPI)
[5–7], and the structural difference is very subtle,
making it difficult to differentiate these by conven-
tional structural characterization techniques such as
diffraction. Indeed, the structure details of MAPI
have not been fully resolved, and the poor stabil-

ity of the materials exacerbates the problem. In this
review, we examine recent literature on the polar-
ity of OIHPs, and argue that they can be both polar
and nonpolar, depending on composition, process-
ing and environment. Implications to photovoltaic
conversion, especially hysteresis, are also discussed.

THEORETICAL CONSIDERATIONS
Differing from traditional perovskite, the compo-
nent at the A site in OIHP is positioned by a
molecule-type ion, which may have an intrinsic
dipole and induce the deformation of the octahe-
dron framework caused by the interatomic hydro-
gen bond. Therefore, the apparent polarization of
OIHP is the collective polarization of each unit im-
pacted by the orientation of the A-site molecule.
In the case of MAPI, the major structural differ-
ence between the polar I4cm and nonpolar I4/mcm
phases is the orientation of MA cations, which have
an intrinsic dipole of ∼2.3 D [1]. In the polar
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Figure 1. Schematic lattice of nonpolar I4/mcm (a) and polar I4cm (b) space groups for
MAPI from side and top views. The hydrogen atoms are hidden for simplicity.

phase, theC−Ndipole shows a ‘head-tail’ alignment
along the c axis and displays a large polarization of
several μC/cm2 [8–11], whereas in the nonpolar
counterpart, because of space group symmetry, each
MA cation is usually described with partial occupan-
cieswith four identical positions and thus exhibits no
net polarization [12]. Nevertheless, the orientation
of an MA cation can distort the neighboring iodides
from their centrosymmetric positions, leading to fer-
roelectricity [13].

The optimal orientation of MA in MAPbI3 bulk
has not yet been determined through theoretical
models andmethods. Brivio et al. calculated the total
energy of MA arrays along <100>, <110> and
<111> directions in the cubic phase and found that
<100> is the most stable orientation with energy
difference less than 15 meV per atom [14]. Bechtel
et al. calculated the full energy landscape for rigid-
body rotations and translations of MA in the cubic
phase and reached the same conclusion. They re-
vealed that the preferential orientation is attributed
to the strong N-H. . . I interactions between MA and
the Pb-I framework along the <100> direction
[15]. However, others reached different conclu-
sions. Shimamura et al. used a cubic symmetry-
assisted analysis and found that the promi-
nent orientation of MA is in crystalline <110>
directions, rather than the <100> and <111> di-

rections [16]. Xu et al. studiedMAorientation using
the swarm intelligence-based structure prediction
method combined with DFT calculations, but they
found that the <012> orientation was most stable
rather than the aforementioned directions [17].

Despite the puzzling optimal orientation,
there is agreement that the orientation of MA
tunes the strength and direction of the hydrogen
bond between MA+ and I−, which is rather weak
(∼0.09 eV/cation) [18]; there is only slight energy
difference (< 0.1 eV/unit) between the two phases
and the phase transition barrier is also quite small
(about 0.2 eV/unit) [9]. Such a tiny difference
makes for an easy transition between the polar
and nonpolar phases at room temperature [19,20].
Furthermore, the subtlety between the two phases
also makes the debate regarding polar and nonpolar
nature of OIHPs notably dependent on method,
model, size and time-scale in ab initio calculations
[9,21].We should not only focus on the origin of the
polarity in its primitive cell, but also the long-range
dynamics of the MA cations in a wider vision. The
ab initio molecular simulation is a versatile method
that can consider more operational conditions
(such as temperature, long-range dynamics, etc.)
with accuracy. The random order of MA and the
phase transition between the two phases have
been tracked, usually indicating an antiferroelectric
nature of tetragonal OIHPs [19,20,22].

As mentioned, the phase transition causes
reorientation of the MA cation and changes the
hydrogen bond, which is very weak and has little
contribution to the valence bandmaximum (VBM),
conduction band minimum (CBM) or even band
gap (∼0.1 eV fluctuation) [23,24] (Fig. 2c).
However, the influence of the collective behavior
of MA dynamics on the band structure cannot be
neglected, as this will influence the photoelectric
performance. Geng et al. designed several MA
orientations in a supercell and tracked the band
gap of MAPI. Their theoretical results showed that
the band gap is tunable, ranging from 1.3 to 1.6 eV
[25]. Mosconi et al. performed ab initio molecular
dynamics simulations and also found a variation
of ±0.1 to 0.2 eV of the electronic properties with
the ion dynamics [22], which is consistent with
Mladenović’s works [26]. Besides the value of the
band gap, the orientation of MA can also cause
transition from direct band gap to indirect band
gap. Motta et al. performed van derWaals-corrected
DFTcalculations and revealed that the band gapwill
become indirect if MA orients along a <011>-like
direction, causing dynamic change of the band
structure which might be the origin of the slow
carrier recombination of MAPI [27]. Later
they found a similar direct–indirect transition

Page 2 of 12



Natl Sci Rev, 2021, Vol. 8, nwab094

a b

c

3.17

3.19

3.17

3.16

3.16

3.20 3.20

3.20

40

20

0
-4 -2 0 2 4

PD
OS

 (1
/eV

)

CH3NH3
I
Pb

(001)
(111)

M ΓR

En
er

gy
 (e

V)
 

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0
M MΓ ΓΓ R RZ Z ZA AX X

En
er

gy
  (

eV
)

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0
M MΓ ΓΓ R RZ Z ZA AX X

Centrosymmetric structure → Dynamics → Rashba splitting

a

c

b

En
er

gy

k

(a) (b) (d)(c)

(f)

(e)

c
3.19

3.17

3.17

3.20

3.21

3.20

3.16

3.16

a b

a

b

a

b

Figure 2. Theoretical studies on photovoltaic properties of polar and nonpolar MAPI in bulk phase. The top and side views of
(a) polar and (b) nonpolar phases of MAPI relying on the orientation of MA cation. The Pb, I, C, N, H atoms are colored in light
blue, pink, blue, green and white. (c) Projected density of states of MAPI. The Pb and I instead of MA group mainly contribute
to the CBM and VBM. (d) Band structure of MAPbBr3 (MAPB) with MA along different directions. A direct to indirect band
transition is present when the orientation of MA changes from <111> to <001> direction. (e) The Rashba/Dresselhaus
effect in the polar phases. Band splitting is present near the CBM and VBM in the polar phase, while in the nonpolar phase,
the Rashba/Dresselhaus effect does not exist. (f) The dynamic Rashba effect in MAPI caused by random rotation of MA.
Adapted with permission from Refs [9,24,28,31].

in MAPbBr3 (MAPB). Their DFT calculations
demonstrated that MAPB is a direct band gap
semiconductor when MA is oriented along the
<111> direction but turns indirect along the
<100> direction (Fig. 2d) [28].

TheRashba/Dresselhaus effect is a phenomenon
in solid-state physics in which spin-orbit interaction
causes energy bands to split, especially in a crys-
tal system lacking inversion symmetry. The polar
OIHP is a typical case in which to present such ef-
fect. In the I4cm polar phase (shown in Fig. 2a), the
Rashba effect can be detected by ab initio calcula-
tions, resulting in splitting of frontier orbitals near
Fermi level along the M-�-Z direction and creation
of an indirect band gap (Fig. 2e) [9,29], while in
the I4/mcm nonpolar phase (Fig. 2b), the Rashba
effectdoesnot exist (Fig. 2e) [12].Niesner et al.used
angle-resolved photoelectron spectroscopy and de-

tected the Rashba/Dresselhaus effect in MAPB
[30], which is consistent with theoretical predic-
tion. Furthermore, a ‘dynamic Rashba effect’ was
proposed by Etienne et al. through the rotation of
MA or the deformation of the framework when
the thermal movement of MA was tracked by van
der Waals-corrected ab initio simulations (Fig. 2f)
[31]. Such an effect might lead to reduced recom-
bination rate caused by a spin-forbidden transition
[32]. Niesner et al. resonantly excited photocurrents
in single-crystalline tetragonal MAPI with circularly
polarized light to clarify the existence of such effect.
Further studies showed that the energy splitting be-
tween the spin-polarized transition and the direct
optical transition, as well as the amplitude of the
circular photogalvanic effect, increased with tem-
perature [33]. Wu et al. used a broad range of
temperature-dependent and time-resolved optical
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Figure 3. Density of states (DOS) of the valence and con-
duction bands for the surface constructed from (a) polar and
(b) nonpolar phases along [110] and [001] directions.
Adapted with permission from Ref. [9].

spectroscopies, correlated with density functional
theory (DFT) andmolecular dynamics (MD) calcu-
lations and electrical characterizations, and proved
the existence of indirect tail states below the di-
rect transition edge in MAPB arising from a dy-
namical Rashba splitting effect [34]. Recalling the
general features of Rashba/Dresselhaus splitting,
Kepenekian et al. used symmetry analysis and DFT

calculations and discussed the possibility of de-
signing spintronic devices. They found even in the
centrosymmetric system, the Rashba effect can be
present under the external electric field [35]. The
polarization can also impact electronic properties of
the surface structure apart from the bulk.The orien-
tation of MA cations can give rise to strong bend-
ing in the valence and conduction bands of polar
phases, as exhibited by a gradient in density of states
(DOS) along the [001] direction (Fig. 3a). Such
band bending may reduce the carrier recombina-
tion and assist charge separation [9]. For the non-
polar phase (Fig. 3b), on the other hand, DOS along
both [110] and [001] directions are nearly constant.
In the mesoscopic or macroscopic system, the do-
main wall can be formed in OIHP and display dif-
ferent electronic properties compared with the bulk.
Chen et al. studied the formation and band gap vs
the domain width. As shown in Fig. 4a, they re-
ported that the domain is stable with rather low for-
mation energy and that increasing the domain width
can decrease the electronic band gap from ∼1.4 eV
to 0 [36]. The MA orientation can tune the charge
aggregation near CBM and VBM [37] (shown in
Fig. 4c), which might act as the ‘ferroelectric high-
way’ and profit the carrier separation [1]. The po-
larization in ferroelectric domains can suppress the
nonradiative electron-hole recombination based on
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Figure 4. Theoretical studies on the properties of the domain wall in MAPI. (a) Domain wall energy and electronic band gap as a function of domain
width in MAPI. (b) The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) charge densities in pristine MAPI,
mixed and ferro systems. (c) The charge density of the CBM and VBM states in the MAPI supercell with MA randomly oriented. Both the CBM and
VBM charge densities are strongly localized. (d) The charged (top) and uncharged (bottom) domain walls formed by the orientation of MA cation.
Head-to-head and tail-to-tail charge domain walls attract electron and hole, respectively, facilitating charge separation. Adapted with permission from
Refs [36–39].
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Figure 5. Second harmonic generation (SHG) response. (a) Emission spectra of MAPI
under excitation at 1.03 eV. (b) Spectra of second harmonic generated at 900 nm, with
incident 1800 nm laser pulse measured on urea (in black) at 1.75 mW incident power,
quartz (in red) at 14.9 mW, andMAPI (in blue) at 14.9 mW after subtracting the detector
background, which is shown in green. (c) A polar plot of the SHG signal (right) from the
marked point in the middle SHGmapping, the area of which is approximately marked by
the red box in the bright-field transmission image (left) of a crystal fragment. Adapted
with permission from Refs [62,67,76].

the time-domain ab initio study (Fig. 4b) [38].Here,
the pristine system is pure I4cm polar phase with
aligned C−N bonds, the mixed system refers to a
mixtureof alignedandanti-alignedC−Nbondpairs,
presenting nonpolar characteristics, while the ferro-
system contains two domains with opposite C−N
polar bonds. Charge separation is clearly observed
inmixed and ferro-systems with opposite polar axes,
beneficial for recombination suppression. Further-
more, when the domain wall is charged, the band
gap can be reduced by 20–40%, and there is a strong
potential step that facilitates electron-hole separa-
tion (Fig. 4d), providing segregated channels for
photoexcited charge carriers [39], which are desir-
able for high conversion efficiency [1]. Summarizing
these theoretical studies, there is general agreement
that polarization may be beneficial for photovoltaic
conversion.

EXPERIMENTAL EVIDENCE
Given the uncertainty associated with two possible
tetragonal lattices for MAPI (Fig. 1), it was natural
to carry out detailed structure analysis via X-ray
and neutron diffraction techniques [40–45]. How-
ever, the subtle structural difference has proven
difficult to resolve, and the data can be fit by either
polar [20,38,46–58] or nonpolar [8,19,59–68]

space groups. Attempts have also been made
using transmission electron microscopy (TEM)
[69–71], although the materials are prone to
degradation [72] and it is virtually impossible to get
an atomically resolved image with one exception,
wherein an HRTEM image acquired from more
stable MAPbBr3 (MAPB) showed polar domains
[73]. As a result, much effort has been devoted to
functional probing, as the properties of polar and
nonpolar groups are drastically different. Macro-
scopic ferroelectric, pyroelectric and dielec-
tric measurements have also been carried out
[48,50,59,60,64,66,74–76], although leakage
current and ionic migration often make the data
interpretation ambiguous. While polar structure,
with the breaking of inversion symmetry, is expected
to be active in optical second harmonic generation
(SHG) [12], the experimental data are inconclusive
because of the strong background from other
nonlinearities [62,77]. Absence of macroscopic
SHG was first reported by Yamada et al. (Fig. 5a)
[67,77], who did not observe any SHG signal under
excitation at 1.03 eV (1204 nm) after application of
a poling electric field around 1 kV/cm to the sample,
while third harmonic generation and PL signals
were clear because of two-photon absorption. To
exclude the possibility that the second harmonic
generated at wavelengths <800 nm would be
strongly absorbed byMAPI in view of its small band
gap, Govinda et al. adopted 1800 nm to perform
SHG experiments, but the absence of a SHG
response at 900 nm was still evident (Fig. 5b) [62].
It remains possible that ferroelectric domain size is
below laser wavelength. Indeed, spatially resolved
SHG mapping (Fig. 5c) provided strong evidence
on polar domains in MAPI [76], and local polarity
can be averaged out at macroscopic scale, which
highlights the importance of spatially resolved local
probing. Piezoresponse force microscopy (PFM)
is a powerful tool to probe local electromechanical
coupling at the nanoscale [78,79], and it has been
widely applied to study OIHPs. Not surprisingly,
PFM data reported largely fall into two categories,
supporting either polar [46,47,49–54,56–58] or
nonpolar [8,61,63,65,68,80] structure. In fact, even
with quite similar experimental observations, for
example characteristic lamellar domain patterns
reported by different groups [53,81], the interpre-
tations can be completely opposite. This is because
electromechanical responses as probed by PFM
can arise from complex microscopic mechanisms
[82], especially ionic activities, making PFM data
analysis for OIHPs nontrivial.This is best illustrated
by the recent debates in Nature Materials [2,3]
on the chemical nature of ferroelastic domains in
MAPI reported by Liu et al. [68], and there is no
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Figure 6. Alternating polar and nonpolar domains in MAPI. (a) Ferroic domain patterns
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(d) AFM topographymappings under a sequence of temperature across phase transition
showing appearance and reemergence of ferroic domains. Adapted with permission
from Ref. [4].

agreement on whether it is ferroelectric or not. The
latest publication from Liu et al., however, raised an
alternative interpretation, that chemical and strain
gradients induce flexoelectric polarization in MAPI
[83]. This latest study seems to suggest symmetry

breaking inMAPImore alignedwith polar structure,
although its microscopic origin is different.

In 2018, we reported an in-depth PFM study [4]
on single crystalline MAPI [84], with the goal to re-
solve themicroscopicmechanisms of piezoresponse
probed. We acquired the most compelling domain
patterns (Fig. 6a), and established distinct mecha-
nisms underlying the piezoresponse in adjacent do-
mains (Fig. 6b) suggesting the coexistence of alter-
nating polar and nonpolar structures. In particular,
polar domains exhibit predominantly first harmonic
linear response that arises from piezoelectricity,
while nonpolar domains possess predominantly sec-
ond harmonic quadratic response arising from ionic
motion induced electrochemical dipoles [85]. This
interpretation is supported by the drastically differ-
ent thermal variation of piezoresponses in polar and
nonpolar domains, one increasingwith temperature,
the other decreasing with temperature (Fig. 6c),
which converge above cubic-tetragonal transition
temperature. When the temperature is reduced, the
original domain configuration is recovered (Fig. 6d),
demonstrating a strong memory effect. In our view,
this set of data unambiguously establishes alternat-
ing polar and nonpolar domains in our crystal, and
this observation can reconcile all the inconsistent
experimental data and theoretical analysis reported
in the literature. Other PFM studies rarely examine
the linear versus quadratic piezoresponses, and thus
it is difficult to identify the dominant mechanisms
critical for the differentiation. Theoretical calcula-
tion suggested that the energetic difference between
polar and nonpolar lattice is tiny, <100 meV [9],
and thus depending on composition, processing
and environment, the balance can be easily tipped,
making both structures possible in experiments.
As summarized in Table 1, OIHPs with various
compositions are reported to be either polar or
nonpolar [5,6,12,19,39,41,42,44,45,47–60,62–
68,73,76,83,86–101]. In addition, the processing
methods may also affect the polarity of MAPI.
A comparison of the representative preparation
methods for MAPI reported to be polar [52–54,57]
and nonpolar [60,68,102] presents that treating
MAPI with dimethylformamide (DMF) vapor on
a hotplate after general synthesis procedure and
inclusion of methylammonium chloride (MACl)
or PbCl2, in which chlorine was shown to be ben-
eficial for obtaining MAPI with large grains [103],
together with methylammonium iodide (MAI)
during synthesis might be favorable for forming
polar MAPI. In a sense, we all are both wrong and
right that OIHPs can be both polar and nonpolar.

If MAPI is polar, can its polarity be switched?
Macroscopically this is difficult to resolve, as the
data are often smeared by leakage current, ionic
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Table 1. Literature survey on the polarity of OIHPs with various compositions.

Composition Non-polar Polar

MAPbCl3 Refs [66,86] Ref. [39]
MAPbBr3 Refs [19,66,87–89] Refs [39,73,90]
MAPbI3 Refs [5,12,19,42,44,45,59,60,62,68,91] Refs [6,41,47–58,76,83,92]
FAPbBr3 Ref. [94]
FAPbI3 Ref. [95] Ref. [93]
CsPbCl3 Refs [96–98]
CsPbBr3 Ref. [99] Refs [100,101]
CsFAMAPbIxBr3−x Ref. [63]

migration as well as spatial averaging. Neverthe-
less, a number of recent reports indicate that
electric field can indeed manipulate the domain
structures [47,54,104], pointing toward a ferroelec-
tric nature of the domain.The unambiguous switch-
ing of MAPI domains, however, requires further
studies. We also note that ferroelectricity has been
reported in MAPB [90], CsPbBr3 [101] and mixed
perovskites [93,105,106].

PHOTOVOLTAIC IMPLICATIONS
It is also important to examine the implications of
OIHPs’ polarity, or lack of it, to photovoltaic con-
version, otherwise the problem remains largely aca-
demic. We have indeed observed photo-induced
domain switching in MAPI via PFM [58], and
a similar phenomenon has been observed un-
der photo-excited scanning tunneling microscopy
(STM) [107]. The light-domain interactions have
been studied by Liu et al. [91,108], and poling has
been shown to shift diode characteristic of MAPI
[54]. Furthermore, piezoelectric modulations of
photocurrent have also been observed [109,110].
All these studies suggest that polar structure may
influence the photovoltaic conversion process, and
to the very least, band bending induced by spon-
taneous polarization can either promote or hin-
der carrier transport, depending on its direction.
Our study in 2018 indeed revealed that a polar do-
main possesses smaller photocurrent compared to a
nonpolar one [4] (Fig. 7a), and upon heating and
cooling across phase transition, a memory effect in
photocurrent analogue to ferroic domains is also
observed (Fig. 7b), confirming modulation of pho-
tocurrent by domains.

Nevertheless, there remains controversy about
the effect of polarization on photovoltaic hystere-
sis. Unfavorable hysteresis is usually observed in
the current-voltage (I−V) curve at various scanning
rates or directions [111], casting doubts on the va-
lidity of the performance of solar cells and making it

hard to compare stability data among them. Despite
booming research and significant progress on the ef-
ficiency of perovskite solar cells, fundamental un-
derstanding of frequently observed hysteresis is still
inadequate.

Among various interpretations of hysteresis, fer-
roelectricity was suggested as one plausible origin at
the very beginning. For example,Wei et al. attributed
the hysteresis to the ferroelectric effect and built a
ferroelectric diodemodel to explain the dependence
of hysteresis on the scan range as well as the veloc-
ity [112]. They pointed out that special attention
should be paid to optimization of power conversion
efficiency. Recently, Ma et al. investigated correla-
tions between the interfacial ferroelectricity and the
hysteresis of specific heterojunctions by simulations
[113].They found that ferroelectricity is suppressed
at the FAPbI3/TiO2 and MAPbI3/phenyl-C61-
butyric-acid-methyl-ester (PCBM) interfaces. The
substitution of strong polar MA (dipole moment:
2.29D)byweakpolar FA ions (dipolemoment: 0.29
D) and interface passivation could eliminate the in-
terfacial electric field between perovskite and TiO2,
leading to consistent interfacial electronic dynamics
and the absence of hysteresis [113]. Although it is
now generally accepted that ions play amore impor-
tant role in hysteresis [60,114,115], the separation
of ionic effect and polar order is not trivial. For ex-
ample, it has been reported that a dipolar Frenkel
pair can be induced by ionic migration [116].
Meloni et al. claimed that hysteresis results from po-
larization of halide ion (vacancy) migration in the
perovskite layer under the influence of the built-in
and applied potential.Themobility of the other pos-
sible ionic species (MA+ and Pb2+) is much lower
and not expected to give any significant contribu-
tion to polarization of devices [114]. We also found
that while illumination may enhance polar response
inCs0.05FA0.81MA0.14PbI2.55Br0.45 (CsFAMA), only
small photovoltaic hysteresis is observed at both the
nano- and macroscale, demonstrating that the pres-
ence of strong polarization plays a negligible role
in photovoltaic hysteresis. Based onmulti-harmonic
measurements, our study supports the concept that
the primarymechanism responsible for photovoltaic
hysteresis is ionic migration rather than polarization
for this material [117].

CONCLUSION AND OUTLOOK
Theoretical calculation is a versatile tool to re-
veal the interaction of MA with the Pb-I frame-
work, and study the influence of MA orientation
on optoelectronic properties at the nanoscale. Ad-
equate achievements have been reported and some
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in Fig. 6a with negatively shifted potential in polar domains. (b) Photocurrent distribu-
tion in a separate domain pattern at different temperatures across phase transition,
showing the disappearing domain pattern at 70◦C upon heating and its reemergence
at 35◦C after cooling. Adapted with permission from Ref. [4].

common views have been reached: (i) the orien-
tation of MA is determined by the hydrogen bond
and usually faces towards the low-index direction;
(ii) the orientation of MA can cause deformation
of the Pb-I framework because of the H. . . I hy-
drogen bond, which can break the symmetry of
the system and cause polarization; (iii) just tun-
ing the orientation of MA, namely, polarization or
not has little influence on the value of band gap,
can cause direct-indirect band transition, as well
as the Rashba/Dresselhaus effect or even dynamic
Rashba/Dresselhaus effect, which may reduce the
recombinationof carrier, increase the carrier lifetime
and enhance the optoelectronic performance.

Experimental observations on the ferroic proper-
ties of perovskite solar cells were systematically re-
viewed, along with photovoltaic implications: (i) a
subtle difference between polar and nonpolar struc-
ture cannot be resolved by diffraction techniques,
TEM, conventionalmacroscopicmeasurements and
SHG in a conclusive way because of sample damage
or an averaging effect; (ii) a powerful scanningprobe
can capture spatially resolved functional response
from different structures, although caution must be
exercised to distinguish complexmicroscopicmech-
anisms among polarity, ionic motion and defect;
(iii) modulation of photocurrent by polar and non-
polar domains is confirmed, while ions may play a
more important role inhysteresis,which is crucial for
the performance of solar cells.

We may find that polarization, whatever its ex-
act origins, plays only marginal roles in PSCs, but
the endeavor often brings in unexpected twists. As
shown in Fig. 8, giant electrostriction has been re-
ported [116], which was attributed to defect dipoles
of Frenkel pairs induced by ionic migration. Here, it
seems impossible to distinctly separate ionic migra-
tion, defect and polarity, all of whichwill be reflected
in the experimental observations.

Although the beam-induced damage of syn-
chrotron diffraction and scanning transmission elec-
tronmicroscopy on perovskite samples is inevitable,
with continuous improvement in characterization
as well as material stability [118–121], it is hoped
that these techniques will ultimately settle the de-
bate as shown in Table 2, by resolving the struc-
ture details of OIHPs. For example, Breternitz
et al. recently presented crystallographic evidence
that the symmetry breaking on MAPI comes from
interaction of polar cationMAwith the anion frame-
work via synchrotron diffraction [13]. Besides, ten-
tative efforts have been made to mitigate the dam-
age for acquiring atomically resolved imaging [118],
including but not limited to using cryo-conditions
for higher dose tolerance of sample [122], in-
creasing acceleration voltage to decrease radioly-
sis [123], and taking advantage of facet-dependent
electron beam sensitivity [119]. Although further
investigation is required to examine their validity,
these methods have provided promising directions
for future characterizations. In addition, macro-
scopic techniques, such as impedance spectroscopy
[124,125], in combination with modeling and sim-
ulation, may provide valuable supporting data on
the microscopic mechanisms. In this regard, inte-
grating a local scanning probe with global macro-
scopic measurements in situ will provide invaluable
microscopic insight into the macroscopic phenom-
ena, which we are trying to develop, and it is par-
ticularly important to examine different and often
competing dynamical processes from local relax-
ation studies [126]. From a theoretical perspec-
tive, as the energy difference between the polar
and nonpolar phases is tiny and might varies with
different functionals or methods, calculations with
higher accuracy should be performed. In parallel, a
study on the polarization should proceed not only
microscopically but also mesoscopically consider-
ing the long-range interaction of the ferroelectric
domains. Therefore, ab initio calculations of the
larger-scale system are also needed. To mimic the
real experimental conditions, other factors including
temperature, strain and light should also be taken
into account to investigate the dynamics of OIHP.
Combined with the machine learning and artificial
intelligence algorithm [127], the classical molecular
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Table 2. Literature survey on the polarity of OIHPs.

Technique Nonpolar I4/mcm Polar I4cm Noncommittal

X-ray and neutron diffractions Refs [5,42–45] Refs [6,41] Ref. [40]
Optic SHG Refs [12,19,62,67] Refs [76,93]
Macroscopic measurements Refs [59,60,64] Refs [48,50,76,90,101] Ref. [75]
Microscopic PFM Refs [8,63,65,68,91] Refs [46,47,49–58,83] Refs [61,80,81,104]
TEM Ref. [73] Ref. [70]
DFT andMD simulations Refs [12,19,66] Ref. [92] Refs [8,21]

dynamic simulation with accurate potential energy
surface also needs to be improved. So areOIHPs po-
lar or nonpolar?That might not be the question, but
efforts made to answer it continue to deliver new in-
sights.
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