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Abstract

Background: Gene co-expression, in the form of a correlation coefficient, has been valuable in the analysis,
classification and prediction of protein-protein interactions. However, it is susceptible to bias from a few samples
having a large effect on the correlation coefficient. Gene co-expression stability is a means of quantifying this bias,
with high stability indicating robust, unbiased co-expression correlation coefficients. We assess the utility of gene
co-expression stability as an additional measure to support the co-expression correlation in the analysis of protein-
protein interaction networks.

Results: We studied the patterns of co-expression correlation and stability in interacting proteins with respect to their
interaction promiscuity, levels of intrinsic disorder, and essentiality or disease-relatedness. Co-expression stability, along
with co-expression correlation, acts as a better classifier of hub proteins in interaction networks, than co-expression
correlation alone, enabling the identification of a class of hubs that are functionally distinct from the widely accepted
transient (date) and obligate (party) hubs. Proteins with high levels of intrinsic disorder have low co-expression
correlation and high stability with their interaction partners suggesting their involvement in transient interactions,
except for a small group that have high co-expression correlation and are typically subunits of stable complexes. Similar
behavior was seen for disease-related and essential genes. Interacting proteins that are both disordered have higher co-
expression stability than ordered protein pairs. Using co-expression correlation and stability, we found that transient
interactions are more likely to occur between an ordered and a disordered protein while obligate interactions primarily
occur between proteins that are either both ordered, or disordered.

Conclusions: We observe that co-expression stability shows distinct patterns in structurally and functionally
different groups of proteins and interactions. We conclude that it is a useful and important measure to be used in
concert with gene co-expression correlation for further insights into the characteristics of proteins in the context of
their interaction network.

Background
mRNA expression information is often used in combi-
nation with protein-protein interaction networks in
order to provide a better perspective on proteins and
their inter-relationships in the cell. mRNA co-expression

of genes across various conditions is quantified in the
form of a correlation coefficient of their expression
levels across multiple samples. Co-expression correlation
has been used in the prediction of protein-protein inter-
actions [1], though with limited success [2]. Other stu-
dies have used the combination of protein-protein
interaction information and gene co-expression correla-
tion to identify functional modules of proteins that are
active in a particular disease state [3,4], the rate of
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evolution of proteins [5], and the levels of disorder in
co-regulated proteins [6]. It has also been used as the
primary means of classifying hub proteins in protein-
protein interaction (PPI) networks into date hubs and
party hubs [7], or inter-modular and intra-modular hubs
[8], independently and in combination with gene expres-
sion stability [9,10]. In spite of being widely studied, this
classification has not been replicated [11,12] and gene
co-expression correlation as a sole means of classifying
hubs has been shown to be unreliable [13], stressing the
need for the use of additional information.
Undoubtedly, gene co-expression correlation is an

important characteristic when used in the context of
protein-protein interaction networks. However, it is
often biased due to disproportionately large contribu-
tions of a few samples [14]. For instance, genes that are
expressed in the same tissue often show a misleadingly
high correlation coefficient in spite of the lack of a func-
tional relationship. Gene co-expression stability quanti-
fies the bias in the correlation coefficient by indicating
the change in co-expression of a pair of genes on the
removal of samples contributing most to the correlation
coefficient. It has been shown that genes with high sta-
bility are functionally related in spite of low correlation
coefficients. On the other hand, those with low stability
have fragile co-expression which implies limited, or no
functional relation [14]. Thus, the co-expression stability
may be viewed as a reliability measure of the co-expres-
sion correlation coefficient. The combination of correla-
tion and stability represents the co-expression of genes
across multiple samples along with the amount of bias
there-in.
In this study, we investigate the usefulness of the gene

co-expression stability in concert with co-expression
correlation in the analysis of various characteristics of
gene pairs in the context of the human protein-protein
interaction network. Specifically, we study the relation-
ship of gene co-expression correlation and stability with
the interaction promiscuity of proteins, their levels of
intrinsic disorder and their tendency towards essentiality
and disease-relatedness. We demonstrate that the gene
co-expression stability is a useful means of distinguish-
ing different kinds of proteins in the protein-protein
interaction network and can be used with the co-expres-
sion correlation coefficient for more effective analysis.

Results
In order to evaluate the utility of gene co-expression
stability in combination with co-expression correlation
coefficient, we used a high confidence human protein-
protein interaction network from the database, HitPre-
dict [15]. Gene co-expression correlation coefficients
were calculated for interacting protein pairs over 18800
samples from the Gene Expression Omnibus [16] and

normalized using the MAS5 algorithm. Stability was cal-
culated as shown in Kinoshita and Obayashi [14] and
briefly described in the Methods (Equation 1). Genes
pairs with co-expression correlation coefficient less than
0.2 were ignored since the stability measure was not
found to be sufficiently informative below this threshold.
This gave a dataset of 8182 interactions among 3715
proteins. We looked at various properties of the proteins
and the interactions in relation to their gene co-expres-
sion correlation and stability.

Co-expression correlation and stability in the protein-
protein interaction network
We studied the relationship between co-expression cor-
relation and stability in pairs of interacting proteins
(Figure 1a). Correlation coefficient and stability are, in
general, not highly correlated (Spearman’s rank correla-
tion = 0.197, p < 0.0001) and thus provide independent
sources of information about interacting proteins. Most
interacting proteins pairs have a low co-expression cor-
relation coefficient, making it a poor predictor of physi-
cal interactions among proteins, as has been previously
observed [2]. It is notable that most interacting proteins
with large co-expression correlation coefficients (0.5 or
greater) also have large stability values, with almost
none having stability values below 0.5. These primarily
represent interactions between members of stable pro-
tein complexes like the subunits of the proteasome
degradation complex, or subunits of the replication heli-
case MCM complex. We study these outliers with spe-
cial interest in the later analyses. Most interactions with
co-expression correlation less than 0.5 show varying
levels of stability. Low stability values in these interac-
tions are indicative of high levels of bias and fragile co-
expression correlation coefficients, which must be used
with caution.
The average co-expression correlation coefficient and

stability for each protein were calculated as shown in
Equations 2 and 3, respectively (See Methods). Proteins
show a distribution that is similar to interactions in the
correlation coefficient and stability landscape (Figure
1b). Co-expression correlation and stability show no
correlation (Spearman’s rank correlation=0.013, p=0.22).
There are, however, a few outliers with larger values of
correlation and stability. Average co-expression correla-
tion coefficients for proteins with low stability must be
used with caution due to the large amount of bias.

Hubs and hub types in the protein-protein interaction
network
Figure 2 shows the prevalence of hubs (proteins with 5
or more interactions) as a fraction of proteins within a
specified range of average co-expression correlation and
stability. Most hubs lie in areas of low co-expression
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correlation with their interaction partners and relatively
high stability (Figure S1a,b in Additional File 1). These
hubs appear to participate primarily in transient interac-
tions. A small number of hubs with high average co-
expression correlation and high stability are

constitutively expressed with their interaction partners.
The phenomenon of fragile co-expression is very rare in
the interaction network as evidenced by the small num-
ber of hubs with high co-expression correlation and low
stability.
The classification of hubs is a widley studied problem.

Hubs have primarily been classified into transient (date,
inter-modular) and obligate (party, intra-modular) hubs
using co-expression correlation alone [7,8]. However,
these results are disputed [11-13]. They have also been
classified using protein structure [17] and gene expres-
sion stability [9]. In spite of the various methods used,
there is no consensus in the classification of hubs. We
tested whether the previous classification of hubs is
robust and if the stability measure can be used with the
co-expression correlation coefficient to classify hubs
into functionally independent groups. To perform this
analysis, we divided hubs into 4 categories based on
their correlation and stability values, and studied the dif-
ferences in their network characteristics and functional
annotations. Hubs were identified as proteins with at
least 5 interactions within a particular category (Refer
Table 1). We ignored hubs in category 4 (correlation >
0.5 and stability < = 0.5) in our analysis since it con-
tained only 4 hubs. We looked at the network character-
istics of the hubs in the 3 categories in the form of the
clustering coefficient and the betweenness centrality.
The clustering coefficient indicates the level of connec-
tivity between the partners of a protein, with high values
corresponding to intra-modular proteins [18]. On the
other hand betweenness centrality is a measure of the

0.2 0.4 0.6 0.8 1.00

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
rr

el
at

io
n 

Co
effi

ci
en

t

Stability
Fraction
of hubs

0
20

40
60

80
10

0

Category 1Category 4

Category 3 Category 2

Figure 2 Prevalence and classification of hub proteins using
co-expression correlation and stability. Frequency of hubs in
proteins with varying levels of co-expression correlation and stability
with their interaction partners. Gray regions indicate the absence of
proteins for that window of correlation and stability values. Hub
proteins are divided into 4 categories as shown. Category 1 –
correlation > 0.5, stability > 0.5; Category 2 – correlation <= 0.5,
stability > 0.5; Category 3 – correlation <= 0.5, stability <= 0.5;
Category 4 – correlation > 0.5, stability <= 0.5. Refer Figure S1c in
Additional File 1 for standard error values.
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number of shortest paths that go through the protein
with higher values indicating inter-modular proteins
[19]. Average values of clustering coefficients and
betweenness centrality were calculated using Equations
4 and 5 (See Methods).
Hubs in Category 1 have a high clustering coefficient

and low betweenness centrality (Table 1, See also Figure
S2 in Additional File 1). These hubs have a high co-
expression correlation and a high stability with their
interaction partners. Taken together, this implies that
hubs in Category 1 correspond to obligate hubs or
intra-modular hubs that are parts of complexes and
constitutively expressed with their interaction partners.
A Gene Ontology (GO) term enrichment analysis con-
firms this result with significantly enriched terms like
DNA replication initiation, DNA replication checkpoint,
proteasome core complex, MCM complex, etc (Tables
S2-S4 in Additional File 1). Examples of category 1 hubs
include proteasome complex subunits and ORC subu-
nits among others.
On the other hand, Category 2 hubs, which have a low

co-expression correlation and high stability, have low a
clustering coefficient and high betweenness centrality
indicating their inter-modular nature. The low co-
expression correlation of these hubs denotes the ability
to participate in transient interactions. The high stability
values show low levels of bias in the correlation coeffi-
cients. These hubs are significantly enriched for GO
terms like Ras protein signal transduction, ATP binding
and transcription factor complex among others (Tables
S2-S4 in Additional file 1), signifying roles in signal
transduction and transcription regulation. BRCA2, p53
and NF kappa B are some of the hubs in category 2.
Categories 1 and 2 correspond to the party and date
hubs respectively, as proposed by Han et al. [7]. This
distinction is further supported by the fact that hubs in
both these categories show high co-expression stability
indicating that their co-expression correlation coeffi-
cients are not fragile.
Hubs in category 3 have low co-expression correlation

and low stability with their interaction partners. The
low co-expression correlation and stability indicates
high variation in co-expression and fragile correlation
coefficients. These hubs have network characteristics

that are intermediate to those of category 1 and 2 hubs,
with low clustering coefficient but also low betweenness
centrality. This indicates that the hubs in category 3 are
neither inter-modular, nor intra-modular, but belong to
an entirely different class. GO term analysis confirms
this result by showing significantly enriched terms like
nuclear mRNA splicing via spliceosome, mRNA trans-
port and RNA binding, spliceosome (Tables S2-S4 in
Additional file 1). This class includes several small
nuclear ribonucleoproteins. In spite of their inherent
functional differences, the hubs in categories 2 and 3 are
often combined into a single class of transient (date,
inter-modular) hubs in classification systems using aver-
age co-expression correlation coefficient alone. The use
of stability helps separate these hubs further into two
functionally distinct groups.
This result demonstrates the ability of the stability

measure as an information source that is independent of
the co-expression correlation coefficient. More impor-
tantly, this analysis shows that the currently accepted
classification of hubs into just two types -transient and
obligate - using co-expression correlation coefficient
alone, is insufficient to separate the many functionally
distinct groups that exist in the PPI network. Using dif-
ferent measures along with the co-expression correlation
coefficient will improve the identification of these
groups.

Intrinsic disorder in interacting proteins
Intrinsic disorder has been extensively studied in pro-
tein-protein interaction networks [20-23]. Its relation-
ship with gene expression was studied by Edwards et al.
who found that high levels of disorder are associated
with low levels of gene expression, expect for a few
highly disordered proteins [6]. Here, we investigated if
co-expression stability information provides new insights
in the co-expression patterns of disordered proteins. We
studied the average levels of intrinsic disorder in pro-
teins for various values of co-expression correlation and
stability (Figure 3). Figure 3a shows an inverse relation-
ship between intrinsic disorder and co-expression corre-
lation in proteins (Spearman’s rank correlation=-0.109, p
< 0.0001). Proteins with high levels of intrinsic disorder
have low average co-expression correlation with their

Table 1 Network characteristics of hub proteins in 3 categories.

Type Average clustering coefficient Average betweenness centrality (10-4)

Category 1 (41 hubs) 0.231 ±0.017* 5.56 ±0.53

Category 2 (264 hubs) 0.099 ±0.016 36.32 ±2.41

Category 3 (315 hubs) 0.154 ±0.004 10.91 ±2.79

Average clustering coefficient and betweenness centrality for 3 categories of hubs based on co-expression correlation and stability. Category 1 – correlation >
0.5, stability > 0.5; Category 2 – correlation <= 0.5, stability > 0.5; Category 3 – correlation <= 0.5, stability <= 0.5. Differences in the distributions of Hub
categories 1, 2 and 2, 3 are statistically significant at p << 0.001.

* 95% confidence intervals for average clustering coefficient and betweenness centrality for hubs in each category.
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interaction partners (Figure S3b in Additional File 1).
These proteins also show, on average, higher stability
than ordered proteins (Figure 3b, p < 0.0001. Refer Fig-
ure S3b in Additional File 1). Thus, these proteins parti-
cipate in transient interactions with robust co-
expression correlation coefficients. They include the
hubs in Category 2. The amounts of proteins with high
levels of intrinsic disorder are known to be tightly regu-
lated in the cell through the regulation of their tran-
script levels [24,25], which suggests their participation
in transient interactions. The importance of the role
played by intrinsic disorder in transient protein-protein
interactions has been extensively studied [26]. The heat
map in Figure 3c provides further insights. It shows that
the levels of intrinsic disorder are also high in a few

proteins having high co-expression correlation and sta-
bility with their interaction partners. These proteins par-
ticipate in obligate interactions as members of
complexes and include hubs in category 1. Though the
number of such proteins is small, their characteristics
appear to be very distinct. These results are also in
agreement with an earlier study by Higurashi et al. who
found high levels of intrinsic disorder in stable, com-
plex-forming hubs [17]. Thus, our results support the
previously suggested hypothesis that proteins with high
levels of disorder are either tightly regulated and partici-
pate in transient interactions, or are constitutively
expressed and exist as subunits of stable complexes [25].
Finally, when combined with the previously described

categories in hubs, this result shows that not all hubs
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have high levels of intrinsic disorder. Specifically, hubs
in categories 1 and 2 show high levels of intrinsic disor-
der. On the other hand, hubs in category 3, which have
fragile co-expression correlation, show low levels of dis-
order. It is possible that the fragile patterns of co-
expression are not conducive to the presence of large
disordered regions in these proteins. Thus, with the help
of co-expression stability and correlation information,
we can conclude that the amount of intrinsic disorder
affects the expression patterns of hubs, and proteins, in
general.

Interactions between ordered and disordered proteins
Given the differences in the levels of co-expression pat-
terns of proteins with high levels of intrinsic disorder,
we examined these patterns for interactions between
proteins with high or low levels of disorder. We specifi-
cally looked at distributions of co-expression correlation
and stability for interactions where both interacting pro-
teins have high levels of intrinsic disorder (intrinsic dis-
order >= 30%), one protein has high levels of intrinsic
disorder, and both proteins are ordered (intrinsic disor-
der < 30%).
Figure 4 shows the distinct patterns of co-expression

correlation and stability made by each of the three types
of interactions. The co-expression patterns of two lar-
gely disordered interacting proteins and two largely
ordered ones shows the greatest difference. Disordered
protein pairs show lower co-expression correlation and
higher stability as compared to ordered protein pairs
(Figure S5 in Additional File 1, p<0.001). An example is
the interaction between two largely disordered proteins,
the nuclear receptor coactivator NCOA6, and the his-
tone acetyl transferase CREB-binding protein (CREBBP),
which is thought to result in transcriptional activation.
The low co-expression and high stability suggest transi-
ent interactions which in turn may be the effect of tigh-
ter regulation of disordered proteins. The heat map in
Figure 4C also shows a small population of interacting
disordered proteins with high co-expression correlation
and stability indicative of obligate interactions like that
between the Jun and Fos proteins, or Jun and AP1 both
of which function in transcription regulation. Interac-
tions between ordered and disordered proteins also
show low co-expression correlation but with low average
stability. These properties are primarily associated with
transient interactions with fragile co-expression correla-
tion coefficients.
These results show that interacting protein pairs with

varying levels of intrinsic disorder show distinct patterns
of not only co-expression correlation, but also stability,
being either constitutively or transiently expressed with
their partner proteins.

Essential and disease genes
The co-expression patterns of disease and essential
genes in the human PPI network have been extensively
studied [3,4]. We identified disease and essential genes
in the PPI network as in Goh et al. [3] (See Methods).
Figure 5 (Figure S6 in Additional File 1) shows the aver-
age co-expression correlation and stability of disease
and essential genes with their interaction partners in the
PPI network. Disease genes have a lower average co-
expression correlation and a higher average stability
than non-disease genes (p < 0.0001). Essential and non-
essential genes also show a similar pattern (p < 0.0001).
Essential disease genes show the lowest co-expression
correlation and highest stability, while non-essential
non-disease genes show the lowest stability and highest
co-expression correlation (p < 0.0001). The pattern of
low co-expression correlation and high stability in dis-
ease and essential genes is indicative of transient inter-
actions with correlation coefficients that are not biased
or fragile. Thus, different types of genes not only have
distinct patterns of co-expression but also of stability.
Finally, non-essential disease genes have high co-expres-
sion correlation and stability with their interaction part-
ners suggesting their participation in obligate
interactions.
For a more detailed analysis of the correlation and sta-

bility patterns of genes in various types of diseases, we
divided the disease genes into distinct classes as given
by Goh. et al. [3]. We found that though the average
correlation coefficient of these genes with their interac-
tion partners is similar (average 0.3), the co-expression
stability shows relatively greater variation (Figure 6 and
Figure S7 in Additional File 1). For example, the genes
implicated in neurological diseases have a low average
co-expression stability as compared to those implicated
in hematological diseases (Figure S8 in Additional File
1) demonstrating that the genes responsible for neurolo-
gical diseases show fragile co-expression patterns with
their interaction partners, as compared to those impli-
cated in hematological diseases.
Thus, co-expression stability provides additional infor-

mation about genes and their functions when used with
gene co-expression correlation.

Discussion
Gene co-expression stability has been used to identify
the functional relationship between pairs of co-
expressed genes in Arabidopsis thaliana[14]. However,
functional relation is a foregone conclusion in the con-
text of two interacting proteins. Hence, we tried to
assess the utility of co-expression stability of interacting
proteins in order to elucidate the relationships between
proteins and the nature of their interactions. This is an
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important aspect of the study of PPI networks, since the
current static data of protein interactions does not
necessarily reflect the spatial and temporal relationships
between the interacting proteins under physiological
conditions. Our primary goal throughout this study has
been to look for specific patterns of stability in distinct
groups of proteins and interactions, which are separate
from their patterns of co-expression correlation. We
were able to find such differences in several groups of
proteins and interactions, allowing us to conclude that
stability is an informative measure, which when used in
combination with co-expression correlation, provides
information that is otherwise inaccessible.

A case in point is the identification of a class of hubs
having characteristics that are distinct from the cur-
rently accepted transient and obligate hubs. Not only
does this result highlight the usefulness of the stability
measure, but it also shows the insufficiency of using the
co-expression correlation alone as a means of classifying
hubs. Different measures like stability are needed to
broaden this classification. Gene expression stability has
been proposed as one such measure [9], as is simple
GO term based classification [13].
The distinct patterns of co-expression correlation and

stability for proteins with different levels of intrinsic dis-
order, and different disease annotations, further confirm
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the utility of using the combination of correlation and
stability. This also leads to new insights about the pro-
teins and their properties. For instance, we find that
proteins with low co-expression stability have low levels
of intrinsic disorder. In another example it is observed
that non-essential disease genes primarily participate in
obligate interactions as indicated by their high correla-
tion and stability. Such inter-relationships are easily

elucidated through the combined usage of correlation
coefficients and stability.
Other measures that have been similarly used in com-

bination with the co-expression correlation include the
gene expression variability and the rank of co-expression
correlation. The gene expression variability, in the form
of standard deviation, has been successfully used to clas-
sify hubs [9] and identify selective gene expression
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patterns [27]. Rank of co-expression correlation between
genes has also been used to address the issue of bias in
co-expression correlation. The absolute values of corre-
lation often change with the samples used for calcula-
tion making it difficult to introduce a single threshold
value to determine significantly correlated gene pairs.
The rank of correlation provides a solution for this pro-
blematic bias. It works as a better indicator of function-
ally related genes than the correlation coefficient [28].
Since rank of correlation is a general approach, multidi-
mensional correlation – that have been used to calculate
the stability - can be converted into multidimensional
rank by considering the rank of correlation in each
dimension. We have not checked the efficiency of the
multidimensional rank, but it will be interesting to com-
pare the results obtained using the stability measure
with rank measures as well.
It is also conceivable to use the stability measure as a

parameter in prediction studies along with the co-
expression correlation, either in the prediction of differ-
ent classes of proteins, like disordered or ordered, or
those that are active in different diseases or functional
modules. The gene co-expression stability is an extensi-
ble and easily accessible measure. Values for gene co-
expression stability can be obtained for several species,
including human, from COXPRESdb [29], and for Ara-
bidopsis thaliana from ATTEDII [30]. In this study, we
have limited ourselves to assessing the utility of this
measure. However, each of the findings needs to be
explored independently in greater detail.

Conclusions
We assessed the utility of the gene co-expression stabi-
lity as a measure for further understanding the proper-
ties of proteins and their inter-relationships within the
human protein-protein interaction network, in combina-
tion with gene co-expression correlation. We demon-
strate that different types of proteins and interactions
not only show distinct patterns of co-expression correla-
tion but also of co-expression stability. We show the
inadequacy of co-expression correlation as a means of
classifying hubs and find that stability improves its per-
formance. Specifically, we identify transient and obligate
hubs along with a previously unknown type that is func-
tionally distinct. Other patterns that we elucidated
include low co-expression correlation and high stability
of protein with high levels of intrinsic disorder. This
combination of parameters also gives distinct co-expres-
sion patterns for pairs of interacting proteins that are
highly ordered or disordered. We also show that disease
and essential genes have very high co-expression stabi-
lity and thus stable co-expression patterns with their
interaction partners, independent of their co-expression
correlation. Finally, we show that genes in different

classes of diseases have distinct co-expression stability
providing a possible means of distinguishing them based
on co-expression and interaction patterns. Thus, we
show that gene co-expression stability is a useful mea-
sure to be used in concert with co-expression correla-
tion and provides additional information leading to a
better understanding of proteins in PPI networks. Future
prospects include studying each of the results obtained
here in greater detail, comparing our results with other
measures of gene co-expression stability, as well as
implementing a predictor using this combination in the
prediction of membership of proteins to distinct classes.

Methods
High confidence human protein-protein interactions
were taken from the HitPredict [15] database. Hubs
within the entire network were denoted as proteins with
5 or more interactions. This definition of hubs has pre-
viously been shown to be robust [31]. Hubs in each
category based on gene expression correlation and stabi-
lity, were denoted as proteins having 5 or more interact-
ing partners with whom they show specific levels of co-
expression correlation and stability as required by the
category cutoffs.
Gene expression correlation coefficients and gene

expression stability values were calculated as described
in Kinoshita and Obayashi [14]. Gene expression cor-
relation coefficients were calculated for interacting
protein pairs over 18800 human samples obtained
from the Gene Expression Omnibus [16]. These were
normalized using the MAS5 algorithm in R. Principal
Component Analysis (PCA) was performed in sample
space and the resulting PCs were obtained. The corre-
lation coefficient (cor0) was calculated in PC space, as
the Pearson’s Correlation Coefficient (PCC), using the
top 3894 PCs which corresponded to 80% of the varia-
tion in gene expression. This cutoff was chosen based
on data from the previous study which showed that
only 23.8% of the PCs represent 80% of the variation
in gene expression followed by a rapid decline in the
contribution of the PCs [14]. Subsequently, 10 correla-
tion coefficients (cor1, cor2, cor3 ..., cor 10) were cal-
culated on the removal of the 1st, 2nd, 3rd, ... 10th PC.
The top 10 PCs were chosen since they approximately
correspond to the number of “informative experi-
ments” as previously suggested [32]. These correlation
coefficients were then used to calculate the co-expres-
sion stability using the formula obtained from [14], as
shown below in equation 1.

S
cor

N cor

i
i

N

=
+ ×

=∑ (max{ , })

( )

0

1
0

max

(1)
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where cori is the correlation without the first i PCs,
cormax is the maximum value from cor0 to cor10, i = 0..
N, and N = 10.
Pairs of genes with cor0 less than 0.2 were ignored

since the stability measure for these was not found to
be sufficiently informative. Using protein pairs in the
interaction network with co-expression correlation and
stability values, resulted in 8182 interactions among
3715 proteins.
Average co-expression correlation coefficient for a

protein is calculated as follows:

r
n

ra ai
i

n
=

=∑1
1

(2)

where n = number of interactions of the protein,
rai = co-expression correlation coefficient in PC space

(cor0 in equation (1)) for genes of protein a and it’s ith

interaction partner
Average stability for a protein was similarly calculated

as:

S
n

Sa ai
i

n
=

=∑1
1

(3)

where n = number of interactions of the protein,
Sai = co-expression stability for genes of protein a and

it’s ith interaction partner as calculated by equation (1)
Clustering coefficient and betweenness centrality for

each protein in the PPI network were calculated using
the Netanalyzer plugin [33] in Cytoscape [34].
Average clustering coefficient for hubs in a category i,

i = 1..3, was calculated as:

CC
N

CCi j
j

N
=

=∑1
1

(4)

where N = number of hubs in category i,
CCj = clustering coefficient of hub j in category i
Similarly average betweenness centrality for hubs in a

category i, i = 1..3, was calculated as:

BC
N

BCi j
j

N
=

=∑1
1

(5)

where N = number of hubs in category i,
BCj = clustering coefficient of hub j in category i
Significantly enriched Gene Ontology (GO) terms [35]

for Biological Process, Molecular Function and Cellular
Component in each category of hubs were determined
separately using the hypergeometric distribution at a sig-
nificance level of p < 0.01.
Intrinsic disorder was predicted in all proteins using the

program metaPrDOS [36] at a false positive rate of 5%.
Regions with 30 consecutive residues predicted as

disordered were considered as disordered regions. Interac-
tion types were assigned based on the intrinsic disorder
content in the interacting proteins. Table S5 in Additional
File 1 gives the number of interactions in each type.
Disease and essential genes were obtained as in Goh

et al. [3] Disease annotations for proteins in the PPI net-
work were obtained from the Online Mendelian Inheri-
tance in Man (OMIM) [37]. Essential genes were
identified as orthologs of mouse genes whose disruption
was lethal in the embryonic or postnatal stages, as
obtained from Mouse Genome Informatics (MGI) [38].
Disease classes, as given by Goh et al. [3], were assigned
to disease genes. The number of disease and essential
genes found in the dataset are shown in Table S6 in
Additional File 1.

Additional material

Additional File 1: Supplementary materials Supplementary figures and
tables.
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PPI: Protein-protein interaction; GO: Gene Ontology; PCA: Principal
component analysis; PC: Principal component; PCC: Pearson’s correlation
coefficient.
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