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Abstract: This work presents a strategy to upgrade models for power amplifier (PA) behavioral
modeling and digital predistortion (DPD). These incomplete structures are the consequence of
nonlinear order and memory depth model truncation with the purpose of reducing the demand
of the limited computational resources available in standard processors. On the other hand, the
alternative use of model structures pruned a priori does not guarantee that every significant term
is included. To improve the limited performance of an incomplete model, a general procedure to
augment its structure by incorporating significant terms is demonstrated. The sparse nature of the
problem allows a successive search incorporating additional terms with higher nonlinear order and
memory depth. This approach is investigated in the modeling and linearization of a commercial class
AB PA operating at a compression point of about 6 dB, and a class J PA operating near saturation.
Results highlight the capabilities of this upgrading procedure in the improvement of linearization
capabilities of DPDs.

Keywords: behavioral modeling; digital predistortion; nonlinear model identification; power ampli-
fier linearization; Volterra series

1. Introduction

The deployment of modern wireless communication systems, based on spectrally
efficient modulation schemes such as the orthogonal frequency division multiplexing
(OFDM), is perhaps the main agent that has pushed the dawn of new ultra-linear and
highly efficient power amplifiers (PAs) [1]. Advanced techniques in the discrete-time do-
main have been employed to quantitatively mitigate the nonlinear impairments generated
by the PA and the IQ modulator, mainly through digital predistorters (DPD) in transmit-
ters linearization [2–5], and also by applying post-compensation in the communications
receiver [6,7].

The success of baseband signal processing techniques comes on a base of two as-
pects. First, the implementation of improved black-box models allowing superior accuracy
and a better representation of the transmitter and receiver nonlinearities. Both neural
networks and Volterra nonlinear filters have been advanced for the associated signal pro-
cessing [8–10], but perhaps the most widely used approach in PAs linearization is the
baseband Volterra model [11], whose discrete-time version, truncated in nonlinear order
and memory length, is denoted as the full Volterra (FV) model. Regrettably, the size of its re-
gressor set can be unsuitably large, and ad hoc models with a reduced set of regressors were
proposed. For example, the memory polynomial (MP) model and its modifications [12,13],
together with the generalized memory polynomial (GMP) [2] model, have demonstrated
satisfactory performance in the design of a DPD. Another approach based on available
information at the circuit level has also made possible the deduction of a reduced-order
structure that contains the GMP lagging envelope terms with even-order envelope powers
as a particular regressor type [14].
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On the other hand, the adoption of compressed sensing (CS) techniques for the search
of active regressors is a way to reduce the order in sparse systems [9,15–18] and has
been particularized to PA Volterra models [19]. Likewise, the complete structure of the
popular GMP model can be sparse, so that pruning methods have been applied to discard
unimportant terms and reduce the regressor set [20–22]. The selection of the nonlinear
orders and memory depths is performed by combining a greedy algorithm, the orthogonal
matching pursuit (OMP) in [19] or the doubly orthogonal matching pursuit (DOMP)
in [21], and a Bayesian information criterion (BIC) for determining the optimum number
of coefficients. The proposal in [22] is based on a hill-climbing (HC) algorithm, which
provides the best trade-off between modeling accuracy and model complexity by searching
in the GMP structure.

Notwithstanding the notable performance of these approaches, a general concern
exists on techniques to upgrade and optimize a given model. This interest has motivated
recent publications which compare model pruning or model growing techniques [23,24].
In [24], the model growth is made taking into account only the initial set of the GMP
regressors, but it could be necessary the upgrade with regressors not included in the
complete GMP model. Unfortunately, no results have been published for an HC algorithm
applied to a general FV model because the regressor set size is unsuitably large. Its massive
number of regressors can also limit the use of matching pursuits [19,21] and the selection
of a manageable model with reduced nonlinear order and memory depth may lead to a
selected subset with a lack of significant terms.

The cited works evidence the need for a procedure to upgrade sub-optimal models in
multiple scenarios. In the first one, which can be denoted as intra-model scenario, the search
of new active regressors is circumscribed to the same model, e.g., the GMP in [22–24]. In a
second inter-model scenario, the search is extended to a new model with a richer set of
regressors so that the optimal model will benefit from a boost provided by the regressors
of the second model. Several situations can be foreseen in this inter-model scenario: a
memoryless (ML) model enhanced with memory regressors, a GMP model enhanced with
FV regressors, or even an FV model enhanced with image signal regressors of the complex-
valued Volterra series (CVS) model [25] when modulator impairments are significant,
to mention only a few examples.

This communication formulates the proposal of an algorithm to upgrade a sub-optimal
PA baseband model following a regressors pursuit procedure based on compressed sensing
and the BIC rule. This approach is valid in both scenarios and is first illustrated with
a sub-optimal pruned model resulting from a standard search applied to an FV model
with a manageable, though incomplete, raw set of regressors. The smaller size of this
pruned subset allows its enrichment with regressors that extend the nonlinear order or the
memory depth, and a second search is performed. The result is a model with a small subset
of significant regressors, including those with high nonlinear orders and large memory,
that avoids computational constraints. In a second example, a ML sub-optimal model is
improved with memory regressors. In Section 2, the perspective of enhancing a sub-optimal
model is theoretically established, and modeling results for practical PAs are presented.
Section 3 is devoted to the design of DPDs following the proposed upgrading procedure
and its performance improvement is demonstrated. Finally, some concluding remarks are
presented in Section 4.

2. A Strategy to Upgrade PA Models

The complex envelope at the output of a PA can be described with a discrete-time
version of the baseband Volterra model advanced in [11]. In that case, the amplifier output
is described by a linear combination of basis functions given by monomials resulting from
the multiplication of delayed samples of the input complex envelope x(k) and its conjugate
x∗(k). If the series of these Volterra regressors is truncated to a maximum nonlinear order,
the resulting structure is denoted as the FV model.
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A severe drawback of the FV model is that its regressors stock is too large, involving
a high computational cost in its regression and output signal generation. Thus, the iden-
tification of a pruned set of regressors is the main objective of model-order reduction
techniques. The structures in [2,14] are examples of pruned models with reduced sets of
regressors. Alternatively, it is possible to search within the whole FV-regressors set those
active regressors that guarantee the FV performance.

Gathering Ns samples of the PA input signal to arrange the column vector x, and defin-
ing similarly the Volterra regressor vectors ξi arranged in an ordered fashion, the FV model
can be expressed in matrix form as

y =
NR

∑
i=1

hiξi = Xh, (1)

where y is the column vector containing PA output samples, NR is the number of regressors,
hi are the regression coefficients, X = [ξ1 ξ2 · · · ξNR

] is the regressors matrix and h is a
column vector with the coefficients hi. It is convenient to normalize the regressors in power,
so the columns of X are taken to be unit-norm. As for a given nonlinear order and memory
length, X contains the complete set of regressors of the FV model (1), here and below we
refer to X as the whole FV-regressors matrix. The coefficients vector of (1) can be estimated
with the standard least-squares (LS) algorithm

ĥ =
(

XHX
)−1

XHy. (2)

In a realistic scenario, it is possible to exploit the sparsity of the system to reduce the
whole FV-regressors set by identifying only a small portion of active regressors. A suitable
pruning procedure is [19,21]

• the application of a greedy pursuit for the search of the most significant regressors
among the whole set of the FV model, and

• a criterion, such as the BIC, to stop the algorithm execution and avoid overfitting.

However, if the number of regressors is so large that the search step exceeds the
computational resources, it is necessary to select a lower nonlinear order or memory
to reduce the number of regressors in (1). After determining the best-reduced model,
the regressors matrix of the sparse model Xa = [ξ1 ξ2 · · · ξS] is assembled from the matrix
of an FV model with a shortfall in the regressors stock, with all but the S selected regressors
set to zero (S � NR). On the other hand, if the procedure is applied to the GMP, or any
other a priori pruned model, we cannot affirm that the identified set is complete because
the richness of the initial set of regressors may be insufficient and there is no guarantee that
the selected set of active regressors achieves the best performance. Therefore, a method to
complete the model structure and improve its performance would also be beneficial.

The present upgrading procedure is applied to a model with a deficit of active regres-
sors. Assuming that the matrix Xa of this incomplete model is known, the output signal
predicted with the estimated parameters is

ŷa = Xaĥa, (3)

and the residual vector is
r(S) = y− Xaĥa. (4)

The procedure proposed in this paper is to upgrade the incomplete model starting
with the attachment of new stock of FV normalized regressors with higher nonlinear
order and/or memory depth. The matrix of the additional model Xb = [ξS+1 ξS+2 · · · ]
is constructed with new regressors and is attached to Xa, thus forming the extended
matrix X = [Xa Xb]. By way of illustration, if the pruned matrix Xa was determined
from a (2p + 1)th-order FV model, a possible extension is Xb constituted only by higher-
order regressors.
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The search of the supplementary active regressors starts with the definition of the first
auxiliary basis function φ

(1)
1 = ξ1. Following a procedure based on the Gram-Schmidt

algorithm [20,21], the other Volterra regressors ξi, i = 2, 3, . . . are orthogonally projected
onto the line φ

(1)
1 spans, and the projections are subtracted to the original basis yielding

the basis functions orthogonal to ξ1,

φ
(1)
i = ξi −

ξH
1 ξi

|ξ1|
2 ξ1. (5)

Repeating the procedure for the remaining ξ j (j = 2, . . . , S), the FV regressors of the

additional model Xb are transformed to a new set of basis functions Zb = [φ
(S)
S+1, φ

(S)
S+2 · · · ]

orthogonal to the FV regressors ξi of the incomplete model Xa. The extended auxiliary
matrix is

Z(S) = [Za Zb] = [φ
(S)
1 · · ·φ(S)

S φ
(S)
S+1 φ

(S)
S+2 · · · ]. (6)

The matrix Za can be considered the result for the search of the first S active regressors
at iteration t = S, and the residual vector can be calculated with (4). Continuing the search,
at iteration t = S + 1, r(S) is expressed as a linear combination of the new set of regressors.
Then, the algorithm chooses the regressor of the additional Zb that better predicts the
residual at iteration t, obtained by maximizing the absolute value of the projection of the
regressors with the residual of the previous iteration

i(t) = arg max
i/∈S(t−1)

∣∣∣∣∣∣
Z(t)H
{i} r(t−1)

‖Z(t)H
{i} ‖2

∣∣∣∣∣∣. (7)

The chosen index is incorporated into the support set of the active coefficients and a
new estimation of the coefficients vector is used to update the signal estimation and the
residual, ŷ(t) and r(t). The iteration computes the matrix P(t) with the projections of the
remaining regressors onto the selected one, and the updated matrix of orthogonal basis
Z(t). The procedure is summarized in the Algorithm 1. Regressors are incorporated until
the minimum of the BIC criterion is reached. The stopping indicator was defined by the
minimum of the BIC written in terms of the normalized mean square error (NMSE) and a
penalty term, as in [26],

BIC(na) = NMSE(na) + α na, (8)

where na is the number of regressors and NMSE(na) is the NMSE corresponding to this
number of regressors.

Three cases of study are analyzed to motivate the upgrading procedure.

2.1. Case 1: A Weakly Nonlinear PA

The first case of study is a class AB PA based on Cree’s board for the evaluation of
the power GaN HEMT CGH40010, operated at a carrier frequency of 3.6 GHz. Using
experimental data acquired for this PA, the procedure of the previous Section is directly
applied. The test bench, described in detail in Section 2.3, is here integrated only by the
signal generator and the vector signal analyzer. The probing signal was designed with
an OFDM format and 15 MHz bandwidth, according to the Long-Term Evolution (LTE)
downlink standard. The average power of the input signal was 6 dBm, for which the PA
delivers an output average level of 19 dBm. This case with a moderate output level is
presented only to illustrate the proposed upgrading procedure in a first approximation.
Anyway, the 11 dB of peak-to-average power ratio (PAPR) level produces a peak PA output
power of about 30 dBm.
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Algorithm 1: Upgrading an incomplete model

Require: Xa, ĥa, Xb
1: Initialization: X← [Xa Xb], X̃← X, Z(1) ← X
2: for t = 1 to S do
3: X̃{t} ← 0

4: P(t) ←
Z(t)H
{t}∥∥∥Z(t)
{t}

∥∥∥2

2

X̃⊗ Z(t)
{t}

5: Z(t+1) ← Z(t) − P(t)

6: end for
7: r(S) ← y− Xaĥa, S (S) ← {1, 2, · · · , S}
8: XS (S) ← Xa
9: for t = S + 1 until stopping criterion is met do

10: i(t) ← arg maxi/∈S (t−1)

∣∣∣∣∣Z(t)H
{i} r(t−1)

‖Z(t)H
{i} ‖2

∣∣∣∣∣
11: S (t) ← S (t−1) ∪

{
i(t)
}

12: ĥ(t) ← X+
S (t) y

13: ŷ(t) ← XS (t) ĥ
(t)

14: r(t) ← y− ŷ(t)

15: X̃{i(t)} ← 0

16: P(t) ←
Z(t)H

{i(t)}∥∥∥∥Z(t)

{i(t)}

∥∥∥∥2

2

X̃⊗ Z(t)
{i(t)}

17: Z(t+1) ← Z(t) − P(t)

18: end for

For practical reasons, memory is considered only for FV regressors with nonlinear
order below 7. Even in this case, to predict the PA output with an FV model of 13th
nonlinear order and a memory of 10 samples, it would be necessary to handle 19,617
regressors, a quantity that exceeds the average computer capabilities. Therefore, we initially
considered a model with only three samples of memory length and, therefore, with a
shortfall in the regressors stock. The model FV(13,3) contains a raw stock of 248 regressors.
The evolution of the NMSE and the BIC as the greedy search includes more active regressors
(coefficients) is shown in Figure 1, indicating a model reduced to eight active regressors,
denoted as s-FV(13,3), with an NMSE of −55.4 dB. The normalized magnitude of the
corresponding estimated coefficients, labeled with the associated regressors, are displayed
in the upper plot of Figure 2. Observe that the resulting sparse model is not optimum
because of the limited richness of the initial stock of regressors.

As the incomplete set of the s-FV(13,3) model does not embrace regressors with
memory larger than three samples, it was updated by incorporating the 737 new regressors
of the third nonlinear order FV model with a memory of 10 samples, FV(3,10), and the
aforementioned upgrading procedure was applied. The resulting model, denoted as
upgraded FV, is also displayed in Figure 1 demonstrating an improved NMSE of −58.3 dB
with 14 active regressors. The lower plot of Figure 2 shows the normalized magnitude of
the new estimated coefficients, and Figure 3 reveals the comparison of the error spectra
for the s-FV(13,3) model and the upgraded FV model (blue traces). The spectrum of the
error between x(k) and y(k) is also plotted to have a reference of the distortion generated
by the PA. Once the normalized parameters were computed at an input level of 6 dBm,
they were straightforwardly scaled to adapt the coefficients to other power levels and the
corresponding NMSE were evaluated [26]. In the case of the reduced regressors set derived
from the FV(13,3) set (a model with a shortfall in the regressors stock), there are eight active
regressors. This pruned model delivers NMSE values below −55 dB in a dynamic range of
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16 dB, as it is shown in Figure 4. The pruned model after upgrading contains 14 regressors
and the NMSE improves to values of about −58 dB in the complete range. The stable
NMSE over 16 dB of dynamic range at the input is an indication of the procedure reliability
to select the active regressors successfully.
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Figure 1. NMSE and BIC vs. number of coefficients for the incomplete s-FV(13,3) and the up-
graded models.
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Figure 4. NMSE modeling performance over a 16 dB dynamic range. Coefficients estimated at an
average output level of 19 dBm.

2.2. Case 2: A PA Near Saturation

Nonlinear distortion and memory effects are significantly noticeable in the case of PAs
with output levels near saturation, where the efficiency is markedly high. The polynomic
behavior of the truncated Volterra series makes the solution diverge near saturation. Hence,
an upgrading model approach to overcome this drawback is proposed here.
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Taking into account that the Volterra series is linear with respect to the kernels, the nth-
order Volterra operator

H̄n[x(k)] =
Qn

∑
qn=0

hn(q)

n+1
2

∏
r=1

x(k− qr)
n

∏
r= n+3

2

x∗(k− qr) (9)

can be split into two components

H̄n[x(k)] = H̄(a)
n [x(k)] + H̄(b)

n [x(k)], (10)

and the PA output can be expressed as the sum of two Volterra series

y0(k) =
∞

∑
n=1

′H̄(a)
n [x(k)] +

∞

∑
n=1

′H̄(b)
n [x(k)], (11)

where the prima indicates that only odd-order terms are included in the sum. As the only
assumption is the linearity of the Volterra operators, this result allows the adoption of
additional criteria to select each one of the two Volterra series.

Based on the fact that the nonlinear order has not been truncated yet and the Volterra
series can be seen as a generalization of the Taylor series, in this subsection, the first part
of (11) is chosen as a memoryless function expanded with the Taylor series

φ(k) =
∞

∑
n=1

′H̄(a)
n [x(k)] =

∞

∑
n=1

′cn|x(k)|n−1x(k). (12)

Observe that the option of a truncated Taylor series would introduce convergence
issues. The replacement of the infinite Taylor series by the memoryless function φ(k)
overcomes this computational instability. Substituting in (11) and truncating the second
Volterra series, a similar expression to (1) can be obtained. To make the model (11) unique,
it is necessary to adopt a criterion to select the function φ(k). Here, a function that maxi-
mizes its correlation with y(k) is selected. After collecting the samples of (12) to form the
normalized column vector φ, the output can be written again as a linear regression

y0 = aφ +
M

∑
i=1

hiξi, (13)

where φ is a new basis added to the conventional set of Volterra series regressors ξi. Let
us remark that φ does not have a definite nonlinear order and may not be denoted as a
conventional Volterra series regressor, but it has been derived following a Volterra series
approach. As this new memoryless basis is derived from the infinite Taylor series (12), it
overcomes the inherent instability of a truncated polynomial in the compression region
near saturation.

The first step of the proposed procedure is the search for a function presenting the
best correlation with the acquired output signal. Once the regressor φ is given, it can be
considered as the incomplete set of a model lacking active regressors with memory. Then,
the supplementary matrix Xb is constructed departing from the stock of regressors of a new
FV model. Therefore, the updated matrix is

X = [φ Xb] (14)

and the model can be upgraded following the proposed procedure. The analysis is completed
experimentally in Section 3 by applying this technique to linearize a PA near saturation.
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2.3. Case 3: A Generic PA

The model performance was also tested with the class AB PA based on the evalu-
ation board of the Cree’s GaN CGH40010 operated now in a range of output average
levels with a maximum of 33.8 dBm and a gain compression of 6 dB. The experimental
acquisition was carried out over the test bench whose picture is shown in Figure 5. It was
formed of a SMU200A vector signal generator (VSG) from Rohde & Schwarz (Munich, Ger-
many), which was followed by two cascaded Mini-Circuits TVA-4W-422A+ preamplifiers.
The output signals were acquired using a PXA- N9030A vector signal analyzer (VSA) from
Keysight Technologies (Santa Rosa, CA, USA).

Figure 5. Photograph of the experimental setup.

The probe signal was set following a Fifth-generation New Radio (5G-NR) format
characterized by a total bandwidth of 30 MHz with 30 kHz subcarrier spacing, 16-QAM
symbols over all the subcarriers, a PAPR of 10.5 dB, and a total length of 368,640 samples.
A custom Matlab script controlled the settings to modulate the carrier with the 5G-NR
waveform in the VSG and acquire samples of the complex envelope of the output signal
in the VSA with an oversampling factor of 6, i.e., a sampling frequency of 92.16 MSa/s.
Both the DAC converter included in the VSG and the ADC converter included in the VSA
presented a resolution of 16 bits. In the VSA, the dynamic range of the measurement was
optimized through the equipment settings and by averaging 300 acquisitions of the output
signal, thus significantly reducing the noise floor.

The operation point to obtain the model structure was set to generate an output power
level of 27.6 dBm (Pi = −33 dBm at the input of the two cascaded preamplifiers). To predict
the PA output at this level, the model demonstrated in [14] with a ninth nonlinear order
and 10 samples of memory length was selected, giving a raw stock of 365 regressors.
After a search with the algorithm in [21], the stopping indicator was the minimum of (8)
with α = 0.14 in the penalty term. The identification procedure, which was performed
over 1% of the measured samples, produced an optimum subset composed of only the
na = 15 active regressors listed in Table 1. The normalized coefficients, estimated with
the LS algorithm, are shown in Figure 6 labeled with the corresponding regressors. When
validating with the complete length of the signal, this pruned model provides a satisfactory
NMSE of−49.2 dB. The two regressors marked with a dagger (†) do not belong to the GMP
set of regressors.
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Table 1. Identified regressors. Input signal: 30 MHz 5G-NR and Pout = 27.6 dBm.

Regressor Normalized Coefficients
(dB)

x(k) 0

x(k− 1) −10.29

x(k− 2) −7.60

x(k− 3) −10.45

x(k− 4) −19.82

x(k− 7) −45.17

x(k− 10) −53.97

|x(k)|2x(k) −16.43

|x(k− 1)|2x(k) −43.71

|x(k− 1)|2x(k− 1) −41.39

|x(k)|4x(k) −17.05

|x(k− 2)|2|x(k)|2x(k)† −56.83

|x(k− 2)|2|x(k− 1)|2x(k− 1)† −51.40

|x(k)|6x(k) −20.39

|x(k)|8x(k) −30.31

Figure 6. Normalized coefficients. Input signal: 30 MHz 5G-NR. Average output level: 27.4 dBm.

To detect if any active regressor is missed, a second search with an FV model was
desirable. Given that the search is impractical if the pursuit starts directly with the 19,615
regressors of a ninth nonlinear order FV model with a memory of 10 samples, the up-
grading procedure was adopted. First, the search proceeded with the 737 regressors of an
insufficient model limited to a nonlinear order of 3 and a memory of 10 samples, FV(3,10),
yielding nine identified active regressors. Next, this incomplete model is enhanced with
the 246 regressors of a second 9th-order extended model, FV(9,3), and the search procedure
was repeated with a result of a pruned model with a total of 14 regressors. Remarkably,
12 of the most significant regressors are the same for both pruned models. The identified
structure of 14 active regressors was re-utilized to estimate the model coefficients for output
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average powers ranging from 21 to 34 dBm. The computed NMSE of the upgraded FV(9,10)
model is shown in Figure 7 for the whole dynamic range. The proposed technique for
model upgrading was also implemented to obtain the results published in [27].
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identified at +27.6 dBm

14 coefficients

Figure 7. NMSE comparison of the upgraded FV(9,10) model in a dynamic range from 21 to 34 dBm.

3. Linearization Procedures
3.1. Linearization of a Generic PA

The validation of the linearization approach for the generic class AB PA of Section 2.3
was carried out over the aforementioned test bench (Figure 5). As in the previous section,
the probe signal was set following a 5G-NR format characterized by a total bandwidth of
30 MHz and a PAPR of 10.5 dB, and the operating point to obtain the model structure was
set to an output power level of 27.6 dBm. The attained structure was used for the validation
in a signal generator power sweep from−34 to−17 dBm with 1 dB of step size. The output
was acquired with a sampling rate of 92.16 MHz, which implies an oversampling factor
of 3. This sweep corresponds to an output power range from 21 to 34 dBm and a gain
compression varying from 0.6 to 6.0 dB.

A standard indirect learning architecture was used for the DPD, as shown in Figure 8,
exploiting that the post-distorter function shall be the same as the predistorter [28]. There-
fore, the basis functions were chosen to reduce the error between x(k), as the desired output,
and the signal y(k)/Gc, as the post-distorter input, with Gc representing the target gain of
the linearized PA. Then, the identified post-inverse model coefficients were copied in the
DPD and the predistorted signal z(k) was applied to the input of the PA, thus obtaining a
linearized output.

Forward path

Observation path

DPD
z = Xh

PA

1

Gc

Post-inverse
identification
h = Y†x

x(k) z(k) y(k)

Figure 8. Block diagram of the employed indirect learning architecture DPD.
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The upgrading procedure allowed us to evaluate a model with thirteenth nonlinear
order and a memory of 10. After pruning the model, the structure exhibited 40 coefficients.
Aiming to emphasize the robustness of the results, the active regressors of the structure were
identified for the output power of 27.6 dBm taken as a reference. Afterward, the coefficients
of a DPD based on that structure were estimated for each power in the sweep. The NMSE
of the PA output signal, with and without DPD, is shown in Figure 9 versus the average
output power. The NMSE values of the predistorted signal are kept below −45 dB for all
the power levels, with an improvement with respect to the nonlinear output of about 15 dB
for output levels over 26 dBm. The error vector magnitude (EVM) of the original signal and
the linearized one is also provided in Figure 10 versus the input power levels at the VSG. It
is worth mentioning that, as the compressed gain Gc is considered for the observation path,
the designed DPD produces some additional gain reduction with respect to small-signal
value [29]. Notice that the target value of EVM with 16-QAM modulation is 12.5%, being
the requirement for the in-band nonlinear distortion less demanding. The reduction of the
in-band distortion produced by the DPD can also be observed through the constellations
for two different input power levels provided in Figure 11. The normalized power spectral
density (PSD) of the original signal and for the designed DPD are shown in Figure 12 for
an average output power of 30 dBm, where the spectra of the error signals have been also
included in dotted lines. The performance of the DPD is clearly illustrated by the reduction
produced in the spectral regrowth and the fact that the in-band content in the spectrum of
the error signal with DPD is about −48 dB.
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Figure 9. NMSE versus the output power level, without and with the DPD, with a model structure
identified at Po = 27.6 dBm and then reused for all the power levels.
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Figure 10. EVM versus the input power level at the VSG, without and with the DPD, with a model
structure identified at Po = 27.6 dBm and then reused for all the power levels.
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(a) (b)

Figure 11. Constellations of the output signal, without (blue) and with DPD (cyan). (a) Average
output level: 30 dBm, corresponding to an input level of −21 dBm at the VSG (EVM = 4.6% without
DPD, and 0.6% with DPD). (b) Average output level: 30.7 dBm, corresponding to an average input
level of −17 dBm at the VSG (EVM = 10.3% without DPD, and 0.6% with DPD).
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Figure 12. Output spectra without and with DPD. Average output level: 30 dBm.

One of the main advantages of applying a linearization technique to a PA consists
in being able to employ it with efficiency values that are unfeasible due to the nonlinear
effects constraints. This fact is illustrated in Figure 13, where the power added efficiency
(PAE) of the PA is depicted versus its adjacent channel power ratio (ACPR) for both cases,
with and without DPD. Note that ACPR values for the measured spectra are calculated as

ACPR±m[dBc] = 10 log
Pside channel

Pband
= 10 log

∫ fc±mC−B/2
fc±mC−B/2 So( f )d f∫ fc+B/2

fc−B/2 So( f )d f
, (15)

where So( f ) is the power spectral density of the output signal, B is the integration band-
width that is equal to the occupied bandwidth of the modulated signal, C is the channeliza-
tion of the wireless standard, and m ∈ Z represents the considered adjacent channel, being
m = +1 for the upper channel and m = −1 for the lower channel.
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As expected, the PAE of the PA increases as the output power increases. However,
the nonlinear effects of the PAE also produce an increasing ACPR with the output power
level. Linearity requirements for mobile communication signals usually demand ACPR
values lower than −45 dB to avoid interference in the adjacent channels. For the PA under
test, it can be observed that the PAE values are limited below 5% to fulfill this requirement.
In contrast, the reduction in the ACPR achieved when a DPD is applied allows us to reach
PAE values of up to 20% since all the measured power levels satisfy the ACPR requirement.
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Figure 13. Relationship between PAE and ACPR, without and with DPD.

3.2. Linearization of a PA Near Saturation

The proposed approach was also applied to the linearization of the class J PA operated
near saturation. The amplifier under test was designed at 850 MHz over the CGH35015F
device, a packaged 15 W GaN HEMT from Cree Inc. The probing signal followed an OFDM
format according to the 5G-NR standard, with 20 MHz bandwidth, 30 kHz subcarrier
spacing, with 16-QAM symbols over all the subcarriers, 10.2 dB PAPR, and 92.16 MHz
sampling frequency. The PA provided an average output power of 33.4 dBm, exhibiting
not only gain compression but also gain expansion for the lower levels.

Linearization is focused on cases 2 and 3 since in case 1 the PA was operated in a
weakly nonlinear mode. Again, the indirect learning approach was used for the DPD. Fol-
lowing the procedure for case 2 of Section 2, the first step is the search for a static function
that maximizes the correlation between the scaled signal y(k)/Gc and x(k). To represent
the nonlinear behavior of the inverse system, a complex-valued piecewise polynomial
was defined as the static function in this paper, splitting the AM/AM and AM/PM char-
acteristics into five segments and employing a fifth-order polynomial for each of them.
The function φ(k) allowed assembling a column vector φ that was added to the set of
Volterra regressors. Then, the identification procedure was employed to find the active set
of Volterra regressors departing from an FV model with fifth-order and memory depth
of 3. The complete set of Volterra regressors under the FV configuration was 244, while
the application of the advanced technique provided a reduced-order model with only
18 coefficients plus the static function.

Figure 14 shows the RF dynamic gain and the AM/PM characteristics of the class J
PA operated near saturation, without and with DPD. Table 2 summarizes the performance
of the proposed DPD in terms of the ACPR for the lower and upper channel, the NMSE,
and the error vector magnitude (EVM). The present approach provides an improvement
over 21 dB of ACPR with respect to the nonlinear output at the same average output
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level. Figure 15 shows the output power spectra without DPD and when the suggested
linearization technique is applied, demonstrating the reduction of the out-of-band emission.
The PSD of the error signal between the output of the PA and the scaled input signal
illustrates that the in-band error is reduced 40 dB. In-band distortion mitigation can also be
assessed in terms of the reduction in EVM from 10.5% to 1.0%, as it is revealed in Table 2.
The linearization improvement is also confirmed by the gain attained in the NMSE, which
is over 20 dB.

(a)

(b)

Figure 14. RF dynamic (a) gain and (b) AM/PM characteristics of the class J PA operated near satura-
tion.
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Figure 15. Comparison of the output spectra (solid line) and spectra of the error signals (dotted
line) for the class J PA, without and with DPD. Input signal: 20 MHz 5G-NR. Average output level:
33.4 dBm.

Table 2. Linearization performance of the proposed DPD technique for the PA near saturation.
Pout = +33.4 dBm, 5G-NR 20 MHz.

Case ACPR (dBc) NMSE (dB) EVM (%)Lower Channel Upper Channel

Without DPD −26.8 −26.6 −17.9 10.5

Proposed DPD −47.7 −48.8 −39.1 1.0

4. Conclusions

In this work, a method to upgrade PA models is proposed. The set of active regressors
identified for some conventional models (MP, GMP, etc.) can be insufficient to produce an
optimal sparse model. On the other hand, sometimes, it is almost impossible to cope with
the massive set of FV regressors. An approach to overcome this difficulty by applying an
upgrading procedure to deal with the unmanageable set of FV regressors is demonstrated.
Focusing on a ninth nonlinear order FV model with a memory of 10 samples, the 19,615
regressors are reduced to 14 active regressors for a generic class AB PA under test after
the application of compressed sensing techniques, exhibiting an NMSE of approximately
−50 dB. Once the active set of regressors was identified, the corresponding coefficients
were estimated in a range of output power levels from 21 to 34 dBm and the model
predicts satisfactorily the PA output within a dynamic range of 14 dB. The method was
applied to the linearization of the PA by identifying first the DPD structure, i.e., the active
DPD regressors, and then the coefficients were estimated for the different power levels.
The results indicate a satisfactory NMSE of −45 dB and an ACPR below −50 dB in both
adjacent channels at all levels of the dynamic range.

It has been demonstrated that a memoryless static function can be used as a legitimate
regressor in a non-truncated Volterra model, and this regressor can be also upgraded
following the exposed procedure. This approach was applied to the linearization of a class J
PA operating in conditions near saturation. The proposed method has been experimentally
validated with the amplifier driven by a 20-MHz 5G-NR signal. After linearization with
the proposed DPD, the results show more than 21 dB of ACPR and NMSE improvement
with a reduction of the EVM from 10.5% to 1.0%.
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