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SUMMARY

Modern biology is increasingly reliant on optical technologies, including visualization and 

longitudinal monitoring of cellular processes. The major limitation here is the availability of 

animal models to track the molecules and cells in their natural environment in vivo. Owing to 

the integrity of the studied tissue and the high stability of transgene expression throughout life, 

transgenic mice encoding fluorescent proteins and biosensors represent unique tools for in vivo 
studies in norm and pathology. We review the strategies for targeting probe expression in specific 

tissues, cell subtypes, or cellular compartments. We describe the application of transgenic mice 

expressing fluorescent proteins for tracking protein expression patterns, apoptotic events, tissue 

differentiation and regeneration, neurogenesis, tumorigenesis, and cell fate mapping. We overview 

the possibilities of functional imaging of secondary messengers, neurotransmitters, and ion fluxes. 

Finally, we provide the rationale and perspectives for the use of transgenic imaging probes in 

translational research and drug discovery.

INTRODUCTION

Optical imaging, readout, and sensing have become integral approaches in modern 

biomedical research. Transgenic mice expressing fluorescent proteins (FPs) and optical 

biosensors have a range of advantages for application in basic and translational studies. 

Genetically encoded FPs and biosensors (Shcherbakova et al., 2012; Shcherbakova and 

Verkhusha, 2014; Leopold et al., 2019) provide a wide range of possibilities for the in 
vivo analysis of disease etiology and pathogenesis and enable relatively rapid large-scale 

screening of the drug efficiency and toxicity in preclinical studies.
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In vivo validation is now an essential step in the majority of studies of biological processes. 

In vitro experiments do not consider tissue heterogeneity and integrity with complex 

hormonal regulation and homeostatic response, accomplished in the whole organism. At 

the same time, all the above mentioned have a robust impact on tissue metabolism, 

differentiation, regenerative, and tumorigenic potential. For some organs, like a brain, 

any tissue disruption greatly simplifies the sort of experimental data obtained and still 

questions the implementation of obtained knowledge to intact processes (Gonzalez-Riano 

et al., 2021). It is not uncommon for in vitro data on neurotransmission to be opposite 

to what later emerged from studies on the intact brain. For some types of signaling, like 

the endocannabinoid system, tissue disruption itself rapidly activates or impairs endogenous 

cascades, affecting ligand production and making their actual parameters and fluctuation 

inaccessible (Kasatkina et al., 2021). Owing to these challenges, the development of 

genetically encoded probes has usually been followed by the generation of transgenic mice 

expressing imaging reporters and drives the evolution of imaging techniques with minimally 

invasive intervention and/or high spatiotemporal resolution.

Current approaches for in vivo visualization include positron emission tomography, 

magnetic resonance imaging (MRI), single-photon emission computed tomography, and 

optical fluorescence and bioluminescence imaging. By reviewing the opportunities provided 

by fluorescent reporters, we refer those readers interested in other imaging modalities to 

other specific reviews covering such topics. Here, we characterize available and prospective 

mouse models encoding imaging reporters of visible-light spectrum, including recently 

developed near-infrared (NIR) FPs and biosensors (Shcherbakova et al., 2018; Matlashov 

et al., 2020; Oliinyk et al., 2019; Hochbaum et al., 2014; Adam et al., 2019; Shemetov et 

al., 2021). While visible light has low tissue penetration and high scattering and interferes 

with body autofluorescence, NIR light overcomes these limitations. Thus, NIR imaging 

reporters provide an opportunity for non-invasive or minimally invasive applications to 

monitor cell dynamics and cellular metabolism in intact tissues at a greater depth compared 

with commonly used green fluorescent reporters. Mouse strains encoding NIR FPs and 

optogenetic tools acting in the NIR light spectrum are available for non-invasive imaging, 

transcription regulation, protein targeting, and enzymatic activity, among others (Tran et al., 

2014; Fukuda et al., 2019; Hock et al., 2017; Kulathunga et al., 2018; Kasatkina et al., 

2022).

Tissue heterogeneity still requires the development of genetic tools with narrow specificity 

for precise labeling, recording, or optogenetic manipulations of cellular populations. 

Simultaneous development of multiple Cre-driver strains expanded the potential for 

targeting imaging reporters and long-term in vivo studies of multiple cellular processes. 

Among them, mouse models of human diseases significantly facilitate the screening 

of new drug and vaccine candidates to evaluate the toxicity, pharmacokinetics, and 

pharmacodynamics in preclinical studies.

Conditional and inducible optical probe expression in organs, tissues, and cells in vivo 
conferred new opportunities for tracing individual cell populations during embryogenesis, 

tissue differentiation and regeneration, and malignant transformation. Multiplexing of 

fluorescent reporters in transgenic mice largely advanced morphological and functional 
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brain mapping. Precise targeting of a specific population of cells and even cellular 

compartments is now possible with localization signals, protein fusions, and the use of 

promoters with narrow specificity. In line with morphological tracing enabled by a wide 

range of cell-specific promoters, functional discrimination among highly heterogeneous cell 

populations can be achieved with activity-dependent promoters.

In this review, we analyzed the strategies for the spatiotemporal targeting of genomically 

encoded imaging reporters and discuss their advantages for application in biomedical 

studies. We describe strategies for the generation of new or the selection of available 

transgenic mouse models for the long-term tracking of organelles, cells, or tissues, which are 

essential tasks in basic research, including cell and developmental biology, stem cell biology, 

neuroscience, immunology, and translational studies, in particular oncology, regenerative 

biology, and neurodegeneration. We discuss choices of imaging reporters and their temporal 

and spatial targeting to locate, characterize, or manipulate intracellular targets or cellular 

populations. Specific focus is made on in vivo applications where animal models have 

paramount advantages.

SPATIOTEMPORAL TARGETING OF FLUORESCENT PROBES

Tissue-specific targeting and temporal probe expression rely on specific localization signals 

incorporated during probe design and consider an appropriate combination of the reporters 

(in case of spectral multiplexing) to enable sufficient resolution during the tracking of cell- 

or tissue-specific events (Figure 1). An optimized transgene construct is then introduced 

either using retroviral vector, pronuclear microinjection or transfected embryonic stem 

cells to obtain founder mice with stable germline transmission. For conditional transgene 

induction, both tissue-specific promoters and Cre/loxP or flippase/P1-flippase recognition 

target (FRT) recombination systems (Rodriguez et al., 2000) are used. The latter systems 

not only enable cell-specific expression of the reporter, but can simultaneously introduce the 

knockout of specific floxed endogenous genes in the targeted tissue. This approach allows 

studying specific gene functions in distinct cell populations and at the desired stage of 

development or disease progression.

Moreover, a large set of cellular populations remained non-targetable until the development 

of new platforms for transgenic animals like TIGRE (for tightly regulated), which increased 

reporter expression to the levels observed with adenovirus-associated (AAV)-mediated gene 

delivery (Daigle et al., 2018). This approach is now allowing scientists to express FPs at 

substantially higher levels than before and to trace individual neurons having thin spines 

and sending projections to a distant region of the brain (Reardon, 2017; Peng et al., 

2021) for the mapping higher cognitive functions. For the studies of the neuronal circuit 

involved in the specific behavior, spatial and associative memory reporters directed by 

the activity-dependent promoters of immediate-early genes are used, such as FOS, ARC, 

and EGR1. They have low basal expression and strong experience-based induction to map 

brain activity. Bellow, we discuss the general principles of transgene design for conditional 

reporter expression (Figure 2) and its targeting to subcellular compartments.
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Spatial control of reporter expression

A set of cell-type-specific promoters is used to restrict the reporter expression and 

enhance imaging contrast and resolution of optogenetic manipulation (Table S1). In line 

with this, separate groups of promoters permit targeting of highly heterogeneous cells, 

like neurons, discriminate between glutamatergic and GABAergic neurons, cell subtype, 

region-specific expression, and the ability to produce or respond to certain neuromediators 

and hormones. The type of vesicular neurotransmitter transporter allows discrimination 

between glutamatergic and GABAergic neurons. For this purpose, the promoters of 

vesicular glutamate transporters (Slc17a6/VGlut2 and Slc17a8/VGlut3) or vesicular GABA 

transporter (Slc32a1/VGAT) are used for targeting. Various promoters can be used for 

pan-excitatory neurons, such as CALB1, HTRLaa, NPR3, PLXND1, RASGRF2, and RORB 

(RAR-related orphan receptor β) promoters.

Cre recombinase encoded under specific promoters and delivered by AAV or Cre-driver 

mouse is an efficient tool for cell-specific expression of floxed imaging reporters. An 

array of mouse strains, in which excitatory and inhibitory interneurons were labeled using 

either VGlut2Cre or VGATCre and the expression was directed to the spinal cord dorsal 

horn and barrel cortex using RORβ promoter (Koch et al., 2017), demonstrated that the 

low-threshold mechanoreceptor recipient zone of the dorsal horn plays a principal role in 

the somatosensory processing and patterns the activity of ascending touch pathways that 

underlie tactile perception (Abraira et al., 2017). While selecting a Cre driver mouse (Figure 

1), one may note that in some strains Cre may be expressed in the germline or early embryo, 

which may be undesirable or intentionally used for global recombination. This phenomenon 

explains why recombination in progeny may occur independent of the inheritance of Cre.

Certain promoters can localize the expression of the reporter to a specific brain region. 

The promoter of FEZ family zinc finger 1 restricts the expression to the ventromedial 

hypothalamus, while the promoter of guanine nucleotide-binding protein subunit β-4 targets 

the expression to the claustrum.

Pro-opiomelanocortin-alpha (POMC)-expressing neurons in the arcuate nucleus of the 

hypothalamus, in the pituitary gland, and in the neurogenic niches of the dentate gyrus can 

be labeled with fluorescent reporters encoded under the POMC promoter/enhancer regions. 

Such POMC-EGFP mice may be useful in studying hypothalamic neuronal signaling 

pathways involved in the regulation of glucose homeostasis, leptin activity, feeding behavior, 

obesity, and depression. Studies using POMC-EGFP mice demonstrated that lactate plays a 

role of an intercellular messenger in astrocyte-neuron intercellular communication and the 

regulation of food intake (Ordenes et al., 2021).

Temporal control of reporter expression

In line with the ability to target certain cell populations, researchers can switch on 

an expression when needed for specific research tasks. Drug-inducible expression of a 

reporter and Cre/Flp can be achieved with either a drug-inducible promoter or by fusing 

a recombinase with the protein sensitive to external chemical signals (Figures 2C and 

2D). Moreover, reporters and recombinases can be light activated. These approaches allow 
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switching on the expression of optogenetic tools or imaging reporters at a distinct stage of 

development or disease and, in some cases, achieving reversible and quantitative control of 

expression.

In the Tet-On/Tet-Off system, a tetracycline transactivator (tTA) protein, which is a fusion of 

bacterial tetracycline repressor and the activation domain of herpes simplex virus VP16, 

binds to TetO sequence and induces expression of a downstream gene. Two types of 

this system exist with tTA binding operator only in the presence (Tet-On) or absence 

(Tet-Off) of tetracycline or one of its derivatives, such as doxycycline. Notably, the first 

mouse strain become available with a temporally controlled expression of Cas9 after 

doxycycline administration (Bowling et al., 2020). In the Tet-Off system, regulation relies on 

a tetracycline response element composed of several repeats of the TetO sequence and can 

be used to design tetracyclin-independent optogenetic tools for in vivo gene transcription 

regulation with Cre and short hairpin RNAs.

Several types of inducible Cre and mammalian-optimized Flp (Flpo) recombinases were 

generated and available in transgenic mice, providing additional opportunities to control 

reporter expression in vivo. They are encoded as fusions with mutant mouse estrogen 

receptor G525R, which does not bind its natural ligand 17β-estradiol at physiological 

concentrations, but is activated by synthetic ligands 4-hydroxytamoxifen and ICI 182780. 

This Cre-ERT fusion protein is sequestered in the cytoplasm and translocates to the nucleus 

only upon the binding of tamoxifen. Cre and Flp drivers with improved tamoxifen-inducible 

CreERT2 and FlpoERT2 fusions demonstrate better induction kinetics, which is one of the 

critical parameters (Figure 1) for studies of rapid developmental changes in early stage 

embryos.

Separate chemogenetic approaches are based on inducible recombinases encoded as fusions 

with a dihydrofolate reductase destabilizing domain (Sando et al., 2013) that mediates 

their proteasomal degradation, resulting in little or no recombinase activity (Figure 2D). 

The proteasomal degradation can be blocked by trimethoprim (TMP), which can be 

easily administered to mice for in vivo application. Several transgenic mice encoding TMP-

inducible Cre and Flpo were generated for labeling of neuronal subpopulations (Daigle et 

al., 2018; Tasic et al., 2016) and helped to avoid the interference of tamoxifen stimulation 

with the studied processes. However, the performance of these types of recombinases is 

rate limited by the proteasomal machinery, and some background activity may be observed 

(Sando et al., 2013).

Optogenetic manipulation is also used for spatiotemporal control of reporter expression. 

For example, temporal control of floxed reporter in vivo is possible with light-inducible 

(photoactivatable) Cre recombinase (Kawano et al., 2016), which uses magnets optogenetic 

system engineered from the Neurospora crassa vivid photoreceptor (Kawano et al., 

2016). This photoactivatable Cre is encoded as two separate split Cre segments, such as 

nMag-CreN59 and pMag-CreC60, and activated with blue light causing the nMag-pMag 

dimerization (Figure 2D). High efficiency of photoactivatable Cre was demonstrated in 

primary neural cells and embryonic fibroblasts, as well as in the mouse liver and AAV-

transduced mouse brain in vivo (Morikawa et al., 2020). A light-inducible Flp recombinase, 
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although yet not encoded in transgenic mice, can be delivered with AAV for genetic 

manipulation in mice with an FRT-flanked reporter.

Subcellular targeting

The necessity to localize imaging reporters in a certain compartment of the cell is frequently 

dictated by the process studied or is required for efficient signal readout. For this purpose, 

localization and export signals are introduced to sequester reporter expression in a certain 

compartment of the cell (Figure 3). Subcellular targeting enhances the spatial resolution of 

optogenetic manipulation, provides actual dynamics of second messengers (i.e., cytosolic, 

endoplasmic reticulum or nuclear Ca2+, and allows studying intracellular membrane 

trafficking. The examples include targeting calcium sensors to the endoplasmic reticulum, a 

fusion of Dendra2 green-to-red photoconvertible monomeric FP (Gurskaya et al., 2006) with 

the mitochondrial targeting signal to monitor mitochondrial fusion and transport, targeting 

fluorescent reporter to the plasma membrane for imaging of cell morphology and membrane 

dynamics (lipid-modified, glycosyl-phosphatidylinositol-tagged FPs), fusions with synaptic 

vesicle-associated proteins to restrict the reporter to presynaptic active zones.

The first reported nuclear localization signal (NLS) was a seven amino acid sequence 

PKKKRKV present in a large T-antigen of simian vacuolating virus 40 (SV40) 

(Kalderon et al., 1984; Lanford and Butel, 1984). The SV40 NLS, nucleoplasmin NLS 

(AVKRPAATKKAGQAKKKKLD) (Dingwall et al., 1988; Robbins et al., 1991) and, c-Myc 

NLS (PAAKRVKLD) (Dang and Lee, 1988) share one (monopartite) or two (bipartite) 

essential clusters of basic amino acids. NLS sequences derived from EGL-13 transcription 

factor (MSRRRKANPTKLSENAKKLAKEVEN) (Hanna-Rose and Han, 1999) and TUS-

protein (KLKIKRPVK) (Kaczmarczyk et al., 2010) are also used for nuclear targeting of 

reporters in transgenic mice. NLS can be located at either the N- or C-terminus of the 

reporter. These sequences are the most frequent NLSs used to localize imaging reporters to 

the nucleus in transgenic mice. However, likely the other NLS variants (Lu et al., 2021) can 

be also efficient for in vivo nucleus targeting. Fusions with histone H2B can be engineered 

for nuclear reporter targeting (Kanda et al., 1998).

For reporter sequestration in the cytoplasm, a nuclear export signal of cyclic AMP (cAMP)-

dependent protein kinase inhibitor α (NELALKLAGLDINKT) (Wen et al., 1995) fused 

to a reporter is sufficient for rapid nuclear export. Reporters targeted to the endoplasmic 

reticulum are generated using calreticulin targeting sequence (MLLPVLLLGLLGAAAD) 

(Fliegel et al., 1989) and retention signal sequence KDEL (Kendall et al., 1992). 

Mitochondrial targeting of reporters requires an N-terminal localization sequence of 

cytochrome c oxidase subunit VIII (MSVLTPLLLRGLTGSARRLPVPRAKIHSLGDP) 

(Rizzuto et al., 1989). Optical probes in transgenic mice can be targeted to autophagosomes 

by fusing with MAP1LC3A protein (Kabeya et al., 2003), which is a specific marker of 

these organelles.

Several trafficking motifs of the inwardly rectifying potassium channel Kir2.1 are used 

in optogenetic tools and imaging probes to enhance their targeting to the plasma 

membrane. C-terminal endoplasmic reticulum export signal (FCYENE) (Ma et al., 2001), N-

terminal (RSRFVKKDGHCNVQFINV) (Stockklausner and Klocker, 2003) and C-terminal 
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(KSRITSEGEYIPLDQIDINV) (Hofherr et al., 2005) signals of the Kir2.1 improve 

endoplasmic reticulum and Golgi exports of other plasma membrane proteins (Stockklausner 

and Klocker, 2003; Hofherr et al., 2005; Ma and Jan, 2002; Ma et al., 2002). Localization 

signals can be introduced at the N and C terminus of the reporter or between the reporters 

(Gradinaru et al., 2010). Trafficking signals can prevent aggregation of imaging probes in 

endoplasmic reticulum and improve their localization. The addition of the export signal 

FCYENE to the C terminus can rescue the trafficking of the reporter from the endoplasmic 

reticulum and increase its surface localization (Gradinaru et al., 2010). Targeting a reporter 

to the plasma membrane can be also achieved with an N-terminal anchoring signal 

(MGCCFSKT) of myristoylated alanine-rich protein kinase C substrate (Muzumdar et al., 

2007).

In neurons, a reporter can be targeted to dendrites with a C-terminal sequence of 5-HT2A 

receptor (Xia et al., 2003) or to cell soma and axons with a Kv2.1 channel C-terminal 

sequence (Jensen et al., 2017; Lim et al., 2000). Reporters can be targeted to synaptic 

vesicles when fused with specific protein markers of these compartments, including 

synaptotagmin 1, synaptophysin, and vesicle-associated membrane protein 2 (Pennuto et 

al., 2003).

TRANSGENIC MODELS ENCODING FLUORESCENT PROBES

Multicolor FPs

A range of fluorescent imaging reporters was evolved from FPs and are used either as 

untagged proteins or as protein fusions for volumetric cell and tissue imaging, functional 

labeling, and multiplexing (Shcherbakova et al., 2012, 2018; Shcherbakova and Verkhusha, 

2014). These reporters or their combinations are now widely used in transgenic mice. The 

most interesting examples of applications of mice with genomically encoded FPs are listed 

in Table S2.

A separate set of mice that are now drawing specific attention are strains expressing red 

FPs and NIR proteins, which operate in a tissue transparency window, and are, thus, 

preferable for minimally or non-invasive imaging. These animal models are used for 

enhanced resolution imaging of the first stages of development (Gu et al., 2018; McDole 

et al., 2018), tissue differentiation, regeneration, metastatic events, tissue tropisms exhibited 

by different viral serotypes, atherosclerotic plaque progression, phagosomes dynamics, and 

endogenous patterns of protein expression.

There is a long process of engineering the new FP, followed by its thorough characterization 

before a new transgenic mouse appears. Constitutive (Tran et al., 2014) and inducible 

(Hock et al., 2017) iRFP713 mouse models were generated based on the first bright 

fluorescent NIR FP, termed iRFP713, developed from bacterial phytochrome (Filonov 

et al., 2011). NIR FPs and optogenetic tools based on bacterial phytochromes require 

biliverdin IXa tetrapyrrole as a chromophore and fully rely on endogenous biliverdin in 

transgenic mice. Biliverdin is an intermediate in the enzymatic heme catabolism to bilirubin. 

As demonstrated with the iRFP713 mouse, the NIR FP expression does not affect body 

weight, organ weight, blood indices, or reproductive performance. Under healthy conditions, 
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biliverdin is rapidly metabolized to bilirubin by biliverdin reductase A. Biliverdin reductase 

A knockout mice exhibit increased endogenous oxidative stress owing to arrest of the 

biliverdin conversion (Chen et al., 2018). The availability of biliverdin is higher in tissues 

with intensive heme catabolism, especially in the reticuloendothelial system, such as the 

spleen and liver. For example, in iRFP713 mouse there is up to a three-fold variation in 

reporter fluorescence in different tissues (Tran et al., 2014), which may impose limitations 

for quantitative imaging or optogenetic manipulation with biliverdin-dependent probes.

Wide range of molecular biosensors

Intercellular communication and intracellular signaling are now accessible for long-term 

non-invasive monitoring with available transgenic mice expressing fluorescent biosensors. In 

a readout of the intrinsic ion fluxes or activation of signaling cascades, in vivo recordings 

with genomically integrated biosensors provides a stable signal, often with a higher 

amplitude and lower background, with the possibility for repeated measurements. In intact 

tissues, several cell types can contribute to the overall signaling cascade and metabolic 

pathway, and thus will fail to reproduce the same behavior in vitro. At the same time, certain 

requirements are posed on biosensors for application as a genomically integrated probe. 

These include high brightness, proper intracellular localization, sufficient dynamic range, 

and the on and off rate of the response.

Available transgenic mice now allow researchers to record second messengers, 

neurotransmitter turnover, membrane voltage, pH, chloride dynamic, and apoptotic events 

in living mice (Table S3). Mice encoding fluorescent biosensors for cAMP allowed 

recordings of real-time cAMP dynamics in response to GPCRs-mediated neuromodulatory 

inputs in the intact circuitry of the brain. These cAMP-encoded reporter (CAMPER) mice 

allow conditional expression in defined neuronal populations and were used to study the 

integration of GPCR signaling in neuronal circuits with subcellular resolution (Muntean et 

al., 2018). It was also demonstrated that baseline levels of cAMP differ across brain regions.

Several genetically encoded cyclic guanosine monophosphate (cGMP) biosensors have been 

reported (Honda et al., 2001; Nikolaev et al., 2006). A ratiometric cGMP indicator with 

EC50 of 500 nM/L was engineered using the Förster resonance energy transfer (FRET) 

pair of ECFP and EYFP linked in between with cGMP-binding domain of bovine cGMP-

dependent protein kinase type I (Russwurm et al., 2007). cGMP binding decreases the 

ECFP/EYFP emission ratio (480 nm/535 nm) proportionally to the intracellular cGMP level. 

Characterization of this biosensor in cultured cells was soon followed by the generation of 

a cGi500 transgenic mouse (Thunemann et al., 2013) (Table S3), which allows for studying 

cGMP responses in various tissues and organs.

Genetically encoded Ca2+ fluorescent biosensors that were initially engineered as a fusion 

of GFP and the M13 peptide sequence of myosin light-chain kinase, joined by Ca2+-

sensing calmodulin (GCaMPs), now include those bearing RFPs instead of GFP, which are 

preferable when combinations of reporters or optogenetic actuators are used. Now GCaMPs 

are presented by a variety of sensors with fast or slow responses, and different brightness 

for precise applications. A set of GCaMP6 biosensors (Chen et al., 2013) gave rise to 

Thy1-GCaMP6s and Thy1-GCaMP6f transgenic mice with stable neuronal expression of 
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the biosensors in the cortex and hippocampus. These mouse models enabled synchronous 

cortex-wide Ca2+ imaging of neural activity (Allen et al., 2017) and allowed to evaluate the 

capacity of individual neurons in the retrosplenial cortex to encode information for spatial 

navigation and context discrimination (Sun et al., 2021).

Mouse strains with genetically encoded calcium indicators, including FRET-based sensors 

such as yellow cameleon indicators, allow inducible and cell-specific expression for in vivo 
imaging. A fast variant of the GCaMP6 calcium indicator (GCaMP6f) (Chen et al., 2013) 

allows the detection of single action potentials with fast response kinetics and fast recording 

of neuronal activity in awake mice. Targeting of GCAMP6f to GABAergic neurons by 

crossing with VGATCre driver mice and subsequent two-photon imaging demonstrated that 

whisker stimulation suppresses the inhibitory interneurons (VGAT positive) in the primary 

auditory cortex of awaked mice, suggesting the important role of somatosensory inputs in 

auditory thalamocortical processing (Lohse et al., 2021). Studies on mice with GCAMP6f 

targeted to mitral cells of olfactory bulbs and olfactory somatosensory neurons demonstrated 

that the mammalian olfactory system has access to temporal features of odor stimuli in rapid 

odor fluctuation and allows mice to extract information about space from temporal odor 

dynamics (Ackels et al., 2021).

Genetically encoded voltage indicators (GEVIs), which comprise more structurally 

heterogeneous proteins, can be generated as FP with voltage-sensing domains, FRET pair of 

several FPs, and opsin-based or opsin-FP FRET pair sensors. A range of mice expressing 

GEVIs is now actively used in neuroscience for the optogenetic recording of action potential 

in vivo and in primary neurons. Mice expressing ArcLight, ASAP2, ASAP3, QuasAr2, 

and QuasAr3 are actively used to monitor action potentials and subthreshold depolarization 

in neurons (Jin et al., 2012) and enabled recordings of voltage dynamics in the mouse 

hippocampus in vivo (Adam et al., 2019).

Transgenic mice expressing chloride biosensor Clomeleon are used for imaging synaptic 

inhibition in various populations of neurons and in some more unique cases for studying 

GABA-mediated excitation in bipolar cells of the mouse retina (Duebel et al., 2006).

A transgenic mouse expressing glutamate biosensor iGluSnFr (Table S3) now opens the 

perspective for direct monitoring of its dynamics in vivo, which is also expected to happen 

for other neurotransmitters like GABA, glycine, serotonin, and dopamine, among others.

APPLICATIONS TO BASIC RESEARCH

Cell fate mapping for connectome analysis and developmental studies

Targeting imaging reporters to specific cell subpopulations in the tissue provides wide 

possibilities for tracking cell migration, differentiation, and functional input in tissue 

(Figure 4A). For these purposes, a simple reporter model uses the FP expressed under 

the control of cell-specific promoters to monitor cell migration to specific sites and/or 

differentiation. Thus, GFP expressed under the control of human CD68 antigen promoter/

enhancer sequences in hCD68-GFP transgenic mice (Table S2) enables monitoring of 

monocyte trafficking to sites of inflammation and differentiation into macrophages in situ. 
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Activity-dependent promoters based on immediate-early genes, like FOS, now advance 

functional labeling of neuronal ensembles and functional brain mapping.

STochastic gene Activation with Regulated Sparseness knockin mice express mCherry 

(Shaner et al., 2004) and floxed mEYFP with the first 16 residues of Lyn kinase, which 

enables its myristoylation/palmitoylation and targeting to the plasma membrane. As mEYFP 

labels axonal and dendritic processes, it is suitable for tracing neuronal projections. The 

expression of mEYFP in specific subsets of neurons for brain mapping can be achieved with 

various Cre drivers.

Tracing the individual neurons based on their monosynaptically connected presynaptic 

partners allows for deciphering the contribution of certain neuronal inputs into external 

information sensing and processing in the central nervous system. Retrograde axonal 

transports implicated in the natural life cycle of neurotropic viruses, such as rabies, 

pseudorabies, and herpes simplex virus type-1, were used as transneuronal tracers in 

neuroscience (Wickersham et al., 2007). More recently, genetically modified pseudorabies 

virus type 1, vesicular stomatitis virus, lentivirus (Kato et al., 2011), and recombinant 

AAV-retro (Tervo et al., 2016) were introduced for efficient retrograde access to projection 

neurons.

The Brainbow technique (Cai et al., 2013) and Confetti mice encoding various FPs and 

Cre/lox system or Flp recombinase enable the labeling of individual cells with up to 

100 different hues, sufficiently advancing studies on tissue development and regeneration 

(Choquet et al., 2020; Miao et al., 2019; Mizuhashi et al., 2018; Rios et al., 2014; Kurita 

et al., 2018), neurogenesis (Calzolari et al., 2015), tumorigenesis (Schepers et al., 2012), 

and connectome analysis. Brainbow multicolor fate mapping has now gone beyond an 

application in the brain and allows tracking events in embryology, developmental biology, 

and immunology (Tas et al., 2016). The application of this approach using AicdaCreERT2/+ 

Rosa26Confetti/Confetti mice demonstrated that positive selection of B cells can take place in 

steady-state gut-associated germinal centers, which support targeted antibody responses to 

gut infections (Nowosad et al., 2020). During rapid turnover of germinal center B cells, this 

clone selection is tunable by the presence and composition of the microbiota. The targeting 

of Brainbow to retinal ganglion cells upon crossing with Opn5Cre mice demonstrated that 

opsin 5-dependent retinal light responses regulate vascular development in the postnatal eye 

(Nguyen et al., 2019).

Multispectral and combinatorial mosaic gene function analysis is now performed using 

inducible, fluorescent, and functional genetic mosaic analysis (ifgMosaic or Dual ifgMosaic) 

mice (Pontes-Quero et al., 2017). To map the expansion and arteriovenous fate of single 

endothelial cells the loss- and gain-of-function genetic mosaics were used with normal or 

altered Notch signaling. Chromatin-tagged FP in iChr-NotchTie2-Mosaic embryos induces 

a mosaic of cells throughout the embryonic endothelium, with normal (H2B-Cherry+), 

lower (dominant-negative MAML1+ and H2B-EGFP+), or higher (N1ICDP+ and HA-H2B-

Cerulean+) Notch signaling. This approach demonstrates that the development of arteries 

depends on the timely suppression of endothelial cell-cycle progression and metabolism, a 

process that precedes arterial mobilization and complete differentiation (Luo et al., 2021).
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Multiplexing for cell fate mapping in the brain can be applied using the quadruple-colored 

(PrismPlus) (Gaire et al., 2018) mouse line with EGFP fluorescence in microglia, YFP 

fluorescence in neurons, Cerulean fluorescence in oligodendrocytes and DsRed-Max (Strack 

et al., 2008) fluorescence in astrocytes. This animal model provides possibilities for in vivo 
two-photon microscopy in longitudinal studies, or for wide-view imaging modalities such as 

light-sheet microscopy, for characterization of the individual cellular population in different 

brain regions and their mobility toward relevant stimuli. The confirmed compatibility of this 

model with the advanced tissue clearing technique (CLARITY) (Chung et al., 2013) expands 

its application by three-dimensional imaging of intact large-scale tissue samples.

Multicolor Confetti reporter mice were adapted with the inclusion of an additional 

oncogenic cDNA following the tDimer2 RFP sequence, which allows an oncogene to be 

co-expressed specifically in RFP+ clones (Red2Onco mouse). This mouse model is of 

value for understanding multiple aspects of the tumor microenvironment, oncogene-driven 

paracrine remodeling in tissue, with a local displacement of neighboring wild-type cells 

(Yum et al., 2021).

Defining patterns of protein expression

As the specificity of antibodies does not always allow to determine endogenous patterns of 

protein expression, the use of immunolabeling knockin mice with Cre or Flp recombinase 

expression under the control of endogenous promoters is a powerful instrument to define 

endogenous patterns of protein expression (Figure 4B). Moreover, with appropriate imaging 

techniques, such expression patterns can be registered in vivo. For example, the lack of 

specificity of available commercial antibodies against vitamin D receptor (VDR) prompted 

researchers to generate a new knockin mouse strain with Cre recombinase expression under 

the control of the endogenous VDR promoter (VDRCre). Cre activity in the VDRCre mouse 

brain was highly overlapping with endogenous VDR mRNAs, allowing for visualization of 

VDR-expressing cells and characterizing their functions (Liu et al., 2021). VDR profiling 

in the brain can shed light on its role in brain development and neuroprotective responses 

(Kasatkina et al., 2020).

Another approach allows tracking the patterns of endogenous protein knockout upon 

crossing the Cre driver to the mouse bearing floxed allele. A reporter mouse model with 

floxed alleles of both the mouse GAD1 and GAD2 (glutamate decarboxylase 1 and 2) 

genes, in addition, has floxed tdTomato reporter. This model allows the detection of specific 

cellular populations with Cre-mediated knockdown of GAD1 and GAD2 and revealed the 

critical roles of GABA in the control of feeding and metabolism (Meng et al., 2016).

Monitoring organelle and protein trafficking

Among the prospective applications of mice expressing imaging reporters, we discuss the 

ability to track not only individual cells in multicellular organisms but also to study the 

dynamics of organelles and proteins within the cell (Figure 4C). The progress in this field 

relies on both the implementation of new fluorescent reporters, including photoactivatable 

variants, and the simultaneous development of techniques for high spatial resolution 

imaging.
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The main strategy for tracking cellular organelles is the design of fluorescent reporter 

fusions with organelle-specific markers. Several reporter mice were generated for tracking 

mitochondria dynamics and fusion. These mice express FP fused with cytochrome c oxidase 

subunit VIIIa, which is a terminal enzyme of the mitochondrial respiratory chain. The fusion 

of the cytochrome c oxidase subunit VIIIa with enhanced cyan FP (Heim et al., 1994) was 

used to selectively image mitochondrial dynamics in the mouse nervous system in vivo 
and acute explants (Misgeld et al., 2007). Dendra2 green/red photoswitchable monomeric 

FP derived from coral Dendronephthya sp (Gurskaya et al., 2006) enables local labeling 

of organelles to track their dynamics. Mice bearing the floxed mitochondrial-specific 

version of Dendra2, PhAMfloxed (photo-activatable mitochondria) allow measurements of 

mitochondrial fusion and transport. When the subpopulation of mitochondria is exposed to 

405 nm light, green fluorescence is irreversibly switched to red.

Cells use the lysosome system to degrade and recycle aged and damaged organelles, 

misfolded proteins, and internalized infection agents. The diversity of cellular phagosomes 

at different stages of maturation can be visualized using mice encoding FP fusion with 

the microtubule-associated protein 1 light chain 3α. Transgenic mice expressing fuse of 

microtubule-associated protein 1 light chain 3 alpha with the red FP under the control of 

MYH6 promoter allow measuring cardiac autophagic flux in vivo (Martinez et al., 2011).

Extracellular vesicles, such as microvesicles, exosomes, and apoptotic bodies, are now 

recognized as important mediators of intercellular communication. They differ in size, 

biogenesis, and cargo. The labeling of circulating extracellular vesicles and subsequent 

detection by immunohistochemistry, FACS analysis, or in vivo was shown on transgenic 

CD9-EGFP mice (Neckles et al., 2019).

Dynamics of second messengers and ion fluxes

Genomically encoded chloride, Ca2+, cAMP, cGMP, and voltage sensors expressed in 

transgenic mice allow for studying signaling cascades in excitable and non-excitable tissues.

Transgenic cGi500 mouse (Table S3) encoding cGMP indicator (Russwurm et al., 2007) 

enables the visualization of cardiovascular cGMP signals in real time and is a useful tool 

to study vascular cGMP dynamics associated with vasodilation in vivo (Thunemann et al., 

2013). Megakaryocyte/platelet-specific expression of cGi500 was achieved by crossing the 

cGi500-L2 strain (with floxed cGi500 transgene) to the platelet-specific PF4Cre driver strain 

and allowed demonstrating that shear stress significantly potentiates nitric oxide-induced 

cGMP generation in pre-activated platelets and results in platelet inhibition at later stages of 

thrombus formation (Wen et al., 2018).

Transgenic mice expressing GEVIs together with light-gated ion channels, like 

channelrhodopsins, are used for all-optical electrophysiology (Figure 4D). Multiple 

parameters can be registered simultaneously with the proper combination of the reporters 

for multiplexed applications. For simultaneous light-controllable stimulation and voltage 

recording, bicistronic vectors for the co-expression of blue-shifted channelrhodopsin 

actuator (CheRiff-EGFP) and NIR Archaerhodopsin-derived voltage indicator QuasAr1-

mOrange2 (Optopatch1) or QuasAr2-mOrange2 (Optopatch2) were engineered (Hochbaum 
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et al., 2014). The later construct was used to generate an Optopatch mouse, which enables 

Cre-dependent expression (also called Floxopatch) (Lou et al., 2016), for the simultaneous 

optical stimulation and measurement of membrane voltage. The engineering of improved 

NIR Archaerhodopsin-derived voltage indicator QuasAr3 led to the generation of the 

Optopatch3 (Ai155) mouse (Adam et al., 2019), which displays a higher signal-to-noise 

ratio in genetically targeted all-optical electrophysiology recordings. A fusion of the 

GCaMP6f indicator with QuasAr2 conditionally expressed in CaViAr mouse provides an 

opportunity for simultaneous recording of Ca2+ dynamics and membrane voltage changes in 

excitable cells.

TRANSLATIONAL STUDIES AND DRUG DISCOVERY

Assessment of host-pathogen interactions

In vivo and ex vivo fluorescence imaging are essential for the development and screening 

of new drug and vaccine candidates. Transgenic mice with encoded imaging reporters 

enable tracking of pathogen tropism, specific receptors enabling entry to the cells, immune 

invasion, involvement of the specific T and B cell subpopulations, and host response for 

efficient search of new drug targets and screening of their selective effectors.

The fusions of FP and receptors involved in the recognition molecules for multiple 

pathogens, including viruses, bacteria, protozoa, and fungi, are useful reporters to monitor 

the activation of innate immunity. A range of mice strains was generated to express 

fluorescent reporters together with recognition receptors, implicated in innate immunity and 

adaptive immunity to pathogens and resolution.

An important part of the innate immune response is the assembly of inflammasome triggered 

by cytosolic activated pattern recognition receptors, which recognize pathogen-associated 

or host-derived danger-associated molecular patterns. A reporter mouse encoding the 

fluorescent adaptor protein, apoptosis-associated speck-like protein containing a caspase 

recruitment domain (ASC-citrine mouse) is used for characterization of inflammasome 

assembly. The formation of assembled inflammasome complexes (specks) was shown 

in different tissues and at distinct phases of viral and bacterial infection. It has been 

demonstrated that the speck-forming cells exhibited pyroptosis and extensive release of 

specks to the extracellular milieu in vivo (Tzeng et al., 2016).

Reporters can be targeted to dendritic cells with CD11c promoter (Table S1) to study their 

antigen-presenting function during the initiation of an adaptive immune response. Mice 

encoding EYFP targeted to dendritic cells enabled studies of the steady-state and mature 

dendritic cells in various regions of the lymph nodes (Lindquist et al., 2004). Fluorescent 

dendritic cells were imaged with two-photon microscopy in the CD11c-EYFP mouse in 

lymph nodes at depths of up to 300 μm.

Markers in cell replacement and transplantation

FPs and their fuses may serve as a transplantation marker for embryonic and adult 

tissue. Imaging reporters expressed in transgenic mice make animals a valuable xenograft/

transplant host. Transgenic mouse models, including Confetti, Brainbow, PrismPlus, and 
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iRFP713, are evolving to the platform for cell subtype classification and multiplexed 

quantification of protein markers in transplants for tracking graft development and 

integration. This expands the screening of new compounds targeting the cell division, 

differentiation, adhesion, and migration as well as immune response during graft rejection.

Fluorescent reporter mice expressing mRFP1 (Campbell et al., 2002) in early development 

(Zhu et al., 2005) can be used for cell population visualization during embryogenesis or 

transplantation, as well as for studies on chimeric mice and multiplexed imaging along with 

green and cyan FPs. A high level and ubiquitous expression of the reporter in mRFP1 mouse 

does not interfere with cell morphology, developmental potential, viability, or fertility.

Pharmacological targeting of receptor-specific functions

Genomically encoded designer receptors exclusively activated by designer drugs 

(DREADDs), based on engineered G-protein-coupled receptors, provide the possibility to 

analyze the contribution of certain signaling pathways to the physiological response. The 

advantages of DREADDS include low baseline activity, insensitivity to endogenous (natural) 

ligands and minimal, if any, off-target activity of pharmacologically inert ligands. In line 

with these opportunities, a fusion of imaging reporter to DREADDs enables tracking of 

cell-specific expression of the tool and locates positive cells for manipulation.

DREADD derived from human M3 muscarinic receptor (hM3D) was modified for binding 

synthetic agonist clozapine-N-oxide. Downstream signaling with the involvement of the 

Gαq subunit triggers the PLC-mediated generation of PIP2 and IP3 and induces Ca2+ release 

from intracellular stores and enhances neuronal excitation.

The in vivo visualization and activation of genetically defined cells were accessed 

using mice, which enable Flp/Cre recombinase-dependent targeting of DREADDs. 

Genomically encoded hM3Dq/mCherry fusion protein enabled somatodendritic localization 

and reproducible expression in mice (Sciolino et al., 2016). Studies confirmed that activation 

of hM3Dq is sufficient to dose-dependently and noninvasively control the activity of diverse 

cellular populations to analyze their specific functions at any developmental stage (Sciolino 

et al., 2016).

Inhibitory DREADD that induces the canonical Gi/o pathway was generated from human 

M4 muscarinic receptor (hM4Di). Signaling via this receptor inhibits adenylate cyclase, 

decreases cAMP production and provokes K+ efflux, which results in cell-autonomous 

hyperpolarization and decreased neuronal firing. Mouse model allowing conditional hM4Di 

and mCherry expression following the sequential steps of recombination was used as 

a noninvasive tool for mapping neuron function. Targeting this inhibitory DREADD to 

serotoninergic neurons of the lower brainstem demonstrated the involvement of these cells 

in life-sustaining respiratory and thermoregulatory networks. Studies supported the role 

of these cells as central respiratory chemoreceptors capable of regulating the downstream 

respiratory network and lung ventilation in an attempt to restore a normal arterial pH/PCO2 

(Ray et al., 2011).
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CONCLUSIONS

Stable transgene expression, targeting expression to various tissues, undisrupted tissue 

microenvironment, and the possibility for long-term imaging make transgenic mice the 

advanced research tools. Recent in vivo studies demonstrate that transgenic mice expressing 

imaging reporters provide unique information in the areas where tissue connectivity and 

overall homeostatic regulation are essential for studied processes. As proteins for fluorescent 

imaging and genetically encoded biosensors continue to evolve, we expect the generation of 

new transgenic animals and mice, in particular, to expand our knowledge on poorly studied 

signaling cascades and metabolic pathways.

New reporter mouse lines can be generated based on recently developed genetically encoded 

biosensors for neurotransmitters (Leopold et al., 2019) like gamma-aminobutyric acid 

(Marvin et al., 2019), dopamine (Sun et al., 2018), norepinephrine (Feng et al., 2019), 

glycine (Zhang et al., 2018b), and serotonin (Wan et al., 2021). Mice expressing genetically 

encoded cell-eath indicators (Linsley et al., 2021) can advance studies of early cell death 

triggers in neurodegeneration. The genetically encoded sensor system, which enables the 

multicolor and signal-amplified imaging of endogenous RNAs, was already introduced 

(Zhou et al., 2021) and its application in mice can soon be expected.

We anticipate that biosensors for other neuromediators including aspartate, adenosine, 

histamine, and endocannabinoids, which are highly required for in vivo studies, will be 

engineered and introduced in transgenic animals. In vivo dynamics for most of the second 

messengers and hormones is still inaccessible owing to the absence of specific genetically 

encoded probes. Therefore, protein engineering in this direction may serve as a trigger for 

new possibilities in the non-invasive monitoring of various signaling pathways.

Recently engineered protein kinase A activity reporter (ExRai-AKAR2) (Zhang et al., 

2021) could be introduced in transgenic mice for in vivo monitoring of protein kinase A 

signaling. Several other kinase reporters with a large dynamic range are suitable for in vivo 
imaging and could be used to develop new mouse models. A kinase translocation reporter 

approach based on a nucleocytoplasmic shuttling of phosphorylated reporters enables the 

measurement of single-cell activation of multiple signaling pathways simultaneously with 

high temporal resolution (Regot et al., 2014). A separation of phases-based activity reporter 

of kinase also provides an easy approach to quantitatively image dynamic kinase signaling in 

living animals (Zhang et al., 2018a).

Intravital imaging still has a limited spatiotemporal resolution, which could be improved in 

the future by refinement of imaging optics. Recently, an advanced two-photon fiberscopy 

with a deep learning algorithm has been applied to image the arousal-induced activity 

changes in layer 2/3 pyramidal neurons in the primary motor cortex of freely behaving 

mice, providing opportunities to define the neural basis of behavior (Guan et al., 2022). 

Combining such techniques with NIR imaging probes could expand their potential and 

provide access to deeper brain regions.

In optical detection, the light penetration to deep brain structures and developing organs 

remains problematic, frequently requiring in utero imaging with intravital windows (Huang 
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et al., 2020). Ultrasound examination or MRI, in contrast, cannot use the advantages of 

transgenic organisms with optical reporters. This limitation can be overcome by using 

photoacoustic imaging. In this regard, a transgenic mouse with the knocked-in bacterial 

phytochrome BphP1 from Rhodopseudomonas palustris, which binds biliverdin as a 

chromophore and reversibly photoswitches between two absorbing states (680 nm and 

740 nm), provides a substantial advance (Kasatkina et al., 2022). This mouse allows 

both a NIR light-induced gene transcription activation with AAV-delivered BphP1 binding-

partner QPAS1 and a differential photoacoustic tomography using BphP1 photoswitching. 

This loxP-BphP1 mouse enables Cre-dependent temporal and spatial targeting of BphP1 

expression and non-invasive deep tissue imaging.

The future development of sophisticated techniques for non-invasive imaging, in particular 

photoacoustic imaging (Yang et al., 2019; Li et al., 2021; Liu et al., 2018), will go hand-in-

hand with the generation of new imaging probes and reporter mice. Such mutual progress 

should facilitate the use of conditional transgenic mouse models expressing novel NIR 

probes with tumor markers, intracellular antigen receptors and nanobodies, and boost the 

development of deep tissue imaging applications.
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Figure 1. Workflow depicting major steps starting from the engineering of an optical reporter to 
the generating of a transgenic mouse
Possible challenges and their solutions are shown. The design of the transgene comprises the 

selection of optical reporter and the targeting strategies. Conditional transgene induction is 

determined by the transgene design and the selection of Cre/Flp driver.
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Figure 2. Approaches for spatial and temporal control of reporter expression in transgenic mice
(A) Targeting the transgene expression using tissue-specific/activity-dependent promoters or 

tissue-specific Gal4/UAS (Upstream Activation Sequence) system.

(B) Using Cre/loxP system or Flippase for conditional reporter expression in progeny 

or following viral-mediated delivery. FP fusions and localization signals enable further 

subcellular targeting.

(C) Tet response element (TRE) upstream of a minimal promoter is recognized by a 

Tet-controlled transactivator (tTA) (Tet-On/Off system) and is used for inducible reporter 

expression.

(D) Photoactivatable and destabilized Cre/Flp. Fusion of Cre with a tamoxifen-sensitive 

form of the estrogen receptor (ER) and self-cleaved Cre (sCre-ER) provide the control for 

both spatial and temporal reporter expression, and the possibility to switch the Cre to a 

constitutively active form. Destabilized Cre/Flp and light-inducible Cre enable chemogenetic 

and optogenetic control of floxed reporters.
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Figure 3. Sequences for subcellular targeting of transgene expression in mice
(A) Localization sequences and nuclear export sequences located on N- and C-termini, or 

reporter protein fusion provide targeting of the synthesized protein to the specific cellular 

compartments or anchor the reporter on the plasma membrane.

(B) FP fuses can be designed for targeting reporters to the proximal and distal 

cellular compartments and/or specialized organelles (i.e., synaptic vesicles). MARCKS, 

myristoylated alanine-rich C-kinase substrate. MAP1LC3A, Microtubule-associated proteins 

1A/1B light chain 3A.
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Figure 4. Applications of transgenic mice with tissue-specific expression of optical probes 
(A) Cell-specific reporter expression from the early embryonic stage throughout the lifespan 

provides the tools for cell fate mapping during embryogenesis, tissue differentiation and 

regeneration. Distinct cellular subpopulations can be dissected within the tissue following 

experience-dependent activation, or based on monosynaptic circuit tracing.

(B and C) Using specific promoters and reporter protein fusions for tracking endogenous 

patterns of protein expression (B) or organelle dynamic both in vitro and in vivo (C).

(D) Transgenic mice expressing combinations of imaging reporters enable longitude studies 

of ion fluxes, second messenger generation and simultaneous recording of several functional 

parameters (Ca2+, membrane voltage) during intrinsic or ontogenetically induced neuronal 

activity.
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