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The use of restricted mean time lost under
competing risks data
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Abstract

Background: Under competing risks, the commonly used sub-distribution hazard ratio (SHR) is not easy to interpret
clinically and is valid only under the proportional sub-distribution hazard (SDH) assumption. This paper introduces an
alternative statistical measure: the restricted mean time lost (RMTL).

Methods: First, the definition and estimation methods of the measures are introduced. Second, based on the
differences in RMTLs, a basic difference test (Diff) and a supremum difference test (sDiff) are constructed. Then, the
corresponding sample size estimation method is proposed. The statistical properties of the methods and the estimated
sample size are evaluated using Monte Carlo simulations, and these methods are also applied to two real examples.

Results: The simulation results show that sDiff performs well and has relatively high test efficiency in most situations.
Regarding sample size calculation, sDiff exhibits good performance in various situations. The methods are illustrated
using two examples.

Conclusions: RMTL can meaningfully summarize treatment effects for clinical decision making, which can then be
reported with the SDH ratio for competing risks data. The proposed sDiff test and the two calculated sample size
formulas have wide applicability and can be considered in real data analysis and trial design.

Keywords: Competing risks, Hypothesis tests, Proportional sub-distribution hazard assumption, Restricted mean time
lost

Background
Competing risks arise frequently in many applications in
medical studies. In a competing risks setting, patients
may fail due to multiple causes. The most commonly
researched endpoint is recorded as the event of interest;
other endpoints, whose occurrence may preclude the
occurrence of the event of interest, are recorded as com-
peting events [1]. When competing risks exist, the
Kaplan-Meier estimation tends to overestimate the
cumulative incidence function, which may cause large
errors and lead to incorrect conclusions [2, 3]. The com-
monly used measures in the present competing risks

data analysis are the cumulative incidence function
(CIF), sub-distribution hazard (SDH), and cause-specific
hazard (CSH) [4, 5]. CIF curves are used to describe or
explore patients’ trend of survival in cases of competing
risks, and the measures of treatment effect correspond-
ing to the SDH and CSH are the sub-distribution hazard
ratio (SHR) and cause-specific hazard ratio (CHR), re-
spectively. Lau et al. [3] pointed out that the CHR
regards competing events as right censored and is more
suitable for epidemiologic studies, while the SHR is good
at estimating risk factors and treatment effects, which
makes it more applicable in clinical studies. Thus, the
SHR is given as the commonly used descriptive index
for the comparison of CIFs between groups. However,
the SHR also has limitations in some applications: i) the
most commonly used method, the Gray test [6], needs
to satisfy the proportional SDH assumption [7]; ii)
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normally, the descriptive statistic used for competing
risks data is the CIF curve; however, the statistical infer-
ence is the Gray test based on the SDH; thus, the statis-
tical description and statistical inference do not match
exactly; iii) when the SHR is used to summarize the
treatment effect, the test framework contains only an
SHR of the treatment group vs. the control group in-
stead of the SDH for each group. Without baseline (con-
trol group) information, the SHR may be a relatively
abstract concept for patients [8, 9]; iv) the estimation of
the SDH is based on conditional probability, so that the
SHR does not reflect the risk ratio of two groups, which
complicates the interpretation of survival outcomes [10].
Based on the above limitations of the SHR, the median

time can reflect the effect of survival, but only on a sin-
gle time point, which is not a meaningful way to
summarize the effect on patients over a time period.
Calkins et al. [11] referred to the concept of the re-
stricted mean survival time under competing risks
(RMSTc), which is based on the restricted mean survival
time (RMST) [12, 13] spent in a state free of composite
events. However, the simple use of composite endpoints
may not have clinical meaning [14]. In addition, the
RMSTc causes the loss of accuracy regarding the event
of interest, and the result can be simplified to the RMST
based on the single endpoint by taking all events as one
composite event.
Anderson [15] defined the number of life years lost

under competing risks settings and proposed a regres-
sion model based on pseudovalue observations. Zhao
et al. [16] introduced the restricted mean time lost
(RMTL), which corresponds to the area under the CIF
curve of the event of interest and represents the average
of the lost time for the event of interest within a specific
restricted period of time.
This paper develops statistical methods based on the

RMTL that can avoid the limitations of the SHR and
RMSTc. The paper is organized as follows. Section 2
presents the definition and estimation of measures based
on the hazard, the RMTL, and the corresponding hy-
pothesis tests and sample size formulas. In Section 3, we
conduct simulation studies to assess the impact of the
proposed tests. Two examples are used to illustrate the
proposed methods in Section 4. Section 5 provides a dis-
cussion of our research.

Methods
Assume a randomized study with n patients in two
groups (k = 1,2). The time-to-event and censoring times
are denoted by T = ti, i = 1, 2, …, n and C, respectively.
For simplicity, we assume that C is independent of T. τ
is the truncation time point, also called the cut-off time
point. Without loss of generality, two endpoints are as-
sumed in this research: one event of interest (j = 1) and

one competing event (j = 2). Let I1(t) and I2(t) be the
CIFs for the event of interest and competing event, re-
spectively. Based on the nonparametric maximum likeli-
hood estimation of the CIF, the estimate of CIF Ij(t) is

Î jðtÞ ¼
X
ti ≤ t

ðdij=niÞŜðti−1Þ , where dij is the number of

events of type j that occur at time ti, the number of indi-

viduals at risk at ti is denoted by ni, and ŜðtÞ is the
Kaplan-Meier estimate when all events (both j = 1 and
j = 2) are considered.

Descriptive analysis
Existing measure based on the CSH and SDH
Both the CSH and the SDH are hazard-related measures.
Under competing risks, the CSH of an event of interest
is defined as

λCSH tð Þ ¼ lim
Δt→0

P t≤T < t þ Δt; j ¼ 1jT ≥tð Þ
Δt

; ð1Þ

which indicates the patients’ hazard of the event of inter-
est at t without any prior event. The corresponding de-
scriptive measure CHR is the ratio of the CSHs of two
groups.
The SDH of an event of interest is given by

λSDH tð Þ ¼ lim
Δt→0

P t≤T < t þ Δt; j ¼ 1jT > t∪ T < t∩ j≠1ð Þð Þ
Δt

;

ð2Þ

which describes the patients’ hazard of the event of
interest at t only without previously having experienced
the event of interest. The corresponding descriptive
measure SHR is the ratio of the SDHs of two groups.
In formulas (1) and (2), the main difference between

the CSH and SDH is the number of individuals at risk.
For the CSH, the number at risk at t includes only pa-
tients who do not experience any type of event, while
the number at risk of the SDH includes patients who do
not experience the event of interest while still including
patients who have experienced competing events.

Alternative measure based on the RMTL
The RMTL of the event of interest is defined as RMTL

¼ R τ
0 I1ðtÞdt [15, 16]. Then, based on the CIF estimation

of the event of interest, Î1ðtÞ, the estimate of the RMTL
is given by

dRMTL ¼
Z τ

0
Î1 tð Þdt; ð3Þ

and the estimated variance in dRMTL is

Lyu et al. BMC Medical Research Methodology          (2020) 20:197 Page 2 of 11



dvarRMTL ¼ E dRMTL
2� �
−E dRMTL

� �2

¼ 2τ
Z τ

0
Î1 tð Þdt−2

Z τ

0
tÎ1 tð Þdt−

Z τ

0
Î1 tð Þdt

� �2
;

ð4Þ

where Eð dRMTL
2Þ is estimated by

E RMTL2
� � ¼ E τ−Tð Þ2jT ≤τ

� 	
Pr T ≤τð Þ

þ E τ−Tð Þ2jT > τÞ� 	
Pr T > τð Þ

¼
Z τ

0
τ−uð Þ2 f 1 uð Þduþ 0

¼ 2τ
Z τ

0
I1 uð Þdu−2

Z τ

0
uI1 uð Þdu;

and f1(t) is the density function of I1(t).
The descriptive measure of the RMTL is the RMTL

difference between two groups. From formula (3), the ef-
fect size of the difference in the RMTLs (RMTLd) is re-
lated to the difference between the two areas under the
CIF curves.

Hypothesis Test Procedures
Existing test procedures based on the CSH and SDH
The log-rank test can be directly used as the test corre-
sponding to the CSH [17].
The most commonly used test for the SDH is the Gray

test (Gray) [6], the test statistic of which is defined as

zk ¼
Z τ

0
ϖ k tð Þ λ 1ð Þ

SDH tð Þ−λ 2ð Þ
SDH tð Þ

n o
dt;

where λðkÞSDHðtÞ is the estimate of the SDH for group k.

The weight function is defined as ϖkðtÞ ¼ nkðtÞ 1−Î kðt−Þ
Ŝkðt−Þ

,

nk(t) is the number of individuals at risk at time t in
group k, Î kðt−Þ is the left-hand limit of the CIF for the

event of interest in group k, and Ŝkðt−Þ is the left-hand
limit of the probability of being free of any event in
group k, as estimated by the Kaplan-Meier method.

New tests based on the RMTLd
Basic difference test Assuming that Δ is the RMTLd

between two groups, then the estimates of Δ, Δ̂ , are Δ̂

¼ R τ
0 ½̂I12ðtÞ−Î11ðtÞ�dt , where Î1kðtÞ is the CIF estimate

for the event of interest in group k. Thus, we present a
basic test procedure based on the RMTLd. Under the
null hypothesis H0 : Δ = 0, the basic difference test (Diff)

statistic is given by Z ¼ Δ̂ffiffiffiffiffiffiffiffiffiffiffiffi
varðΔ̂Þ

q � Nð0; 1Þ; and the esti-

mate variance varðΔ̂Þ is derived by the delta method;
that is,

var Δ̂
� � ¼ var1=n1 þ var2=n2; ð5Þ

where vark ¼ 2τ
R τ
0 Î1kðtÞdt−2

R τ
0 tÎ1kðtÞdt−½

R τ
0 Î1kðtÞdt�

2

according to formula (3), and nk is the sample size in the
kth group.

Supremum difference test We refer to the supremum
difference test (sDiff) statistics [18] based on the

RMTLd. The test statistic is given by QS ¼ supfjΔ̂ðtrÞj;
tr ≤τg=σ̂ðτÞ, where Δ̂ðtrÞ is calculated by

Δ̂ trð Þ ¼
X
ti ≤ tr

Î12 tið Þ−Î11 tið Þ� 	
tiþ1−tið Þ;

tr ¼ t1; t2;…; τ:

ð6Þ

The standard error of Δ̂ðtrÞ is solved by

σ2 τð Þ ¼
X
ijti<τ

tiþ1−tið Þ2 V̂ Î
12

tið Þ
h i

þ V̂ Î
11

tið Þ
h in o

þ
X

i<i0jti;t0i<τ

2ρ tiþ1−tið Þ ti0þ1−ti0ð Þ

� V̂ Î
12

tið Þ
h i

þ V̂ Î
11

tið Þ
h in o

V̂ Î
12

ti0ð Þ
h i

þ V̂ Î
11

ti0ð Þ
h in on o1=2

based on Aalen’s variance [19] of the CIF estimator,
where ρ is the correlation coefficient between Î12ðtiÞ−Î11
ðtiÞ, and Î12ðti0 Þ−Î11ðti0 Þ, where i ≠ i'. ρ is difficult to esti-
mate because it involves the assumption of an unknown
underlying CIF distribution of the actual data. Lyu et al.
[20] found that when ρ = 0.50, the test statistic does not
inflate the type I error rate and maintains high power.
Hence, we fixed ρ at an acceptable value of 0.5 in this
article.
Under the null hypothesis, the distribution of QS can

be approximated by the distribution of sup{|M(x)|, 0 ≤
x ≤ 1}, where M is a standard Brownian motion process.
According to Billingsley [21], the probability distribution
of sup|M(t)| is given by

P sup M tð Þj j > x½ � ¼ 1−
4
π

X∞
a¼0

−1ð Þa
2aþ 1

e −π2 2aþ1ð Þ2=8x2½ �:

ð7Þ
Assuming that formula (7) converges when a → m

[22], then m is solved as m ¼ maxfdx
ffiffi
2

p
π

ffiffiffiffiffiffiffiffiffiffiffiffi
log 1

πε

q
− 1

2e; 1g,
where ⌈·⌉ refers to the minimum positive integer of this
value, and ε is the permissible error for estimating
P[sup|M(t)| > x]..

The sample size formula based on the RMTLd
Under competing risks, the use of Gray is limited by the
proportional SDH assumption. Hence, the correspond-
ing sample size formula is not always available. In
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addition, the estimated Gray sample size (based on the
Gray) depends on the incidence of the event of interest;
that is, a large deviation between the actual incidence
and the assumed incidence results in a broad range of
estimated sample sizes. This paper does not discuss the
sample size formula for the RMSTc (which can be esti-
mated by the method based on the single endpoint), as
our focus is on the event of interest. The sample size
formulas based on Diff and sDiff are proposed in the fol-
lowing section.

Method based on the basic difference test
According to Diff, as shown in Section 2.2.2, the following
hypotheses are considered: H0 :Δ = 0; H1 :Δ ≠ 0. The test

statistic under the null hypothesis Z ¼ Δ̂ffiffiffiffiffiffiffiffiffiffi
σ ðΔ̂Þ

q � Nð0; 1Þ

is rejected at the approximate α level of significance if

j Δ̂ffiffiffiffiffiffiffiffiffiffi
σðΔ̂Þ

q j > zα=2 . We write the expression z1 − α/2 =Φ−1(1

− α/2), where Φ is the standard normal distribution. Then,
under the alternative hypothesis with a desired power of 1
− β, the sample size can be obtained by solving 1 − β =
P(|Z| > z1 − α/2|H1) = P(Z > z1 − α/2|H1) + P(Z < − z1 − α/2|
H1).
By symmetry of the normal distribution, P(|Z| >

z1 − α/2|H1) and P(Z < − z1 − α/2|H1) are equal. Thus, we
obtain 1−β≃Φð−z1−α=2 þ Δ

σÞ, i.e., (z1 − β + z1 − α/2)
2σ = Δ.

According to formula (5), we have σ2 ¼ σ21
n1
þ σ22

n2
¼ ð1

þrÞ � ðσ21n þ r−1 � σ22
n Þ , where n2

n1
¼ r . Thus, the total re-

quired sample size is

n ¼ 1þ rð Þ z1−β þ z1−α=2
� �2
Δ2= σ21 þ r−1σ22ð Þ :

Method based on the Supremum difference test
In the sample size calculation of the supremum test, the
main purpose is to obtain ξ in function n ¼ ξ � ~n, where
~n is the calculated sample size based on Diff.
As with H0 : Δ = 0; H1 : Δ ≠ 0, we assume that Δ = η ≠ 0

under the alternative hypothesis. Then, we write the
expression

U tð Þ ¼ Δ̂ tð Þ
σ̂ τð Þ ¼ M u tð Þð Þ þ ηu tð Þ;

where M(⋅) is a standard Brownian motion process and
u(t) is a time function. Then, U(t) is a standard Brown-
ian motion process that deviates with a mean of η. Here,
we assume η ¼ λ

ffiffiffi
R

p
with a fixed effect size λ, where R =

nR(τ), and R(t) is the probability that the event of inter-

est happened before t. Then, the relation of R and η is
given by

R ¼ η2

λ2
: ð8Þ

Assume that V1 − α/2 is the critical value of the supre-
mum value of the standard Brownian motion process, i.e.,

P sup
u∈ 0;1½ �

M uð Þj j > V 1−α=2

( )
¼ P sup

u∈ 0;1½ �
M uð Þ > V 1−α=2

( )

þP inf
u∈ 0;1½ �

M uð Þ < −V 1−α=2

� �
¼ α:

ð9Þ

By the symmetry of Brownian motion, both probabil-
ities, Pf sup

u∈½0;1�
MðuÞ > V 1−α=2g and Pf inf

u∈½0;1�
MðuÞ < −

V 1−α=2g, are equal. Hence, we only need to consider the
calculation of Pf sup

u∈½0;1�
MðuÞ > V 1−α=2g here. According

to the joint distribution of sup
u∈½0;1�

MηðuÞ and Mη(1) [22],

Mη(⋅) is the Brownian motion with a mean of η. Eng and
Kosorok [23] obtained the following function after
integration:

P sup
u∈ 0;1½ �

Mη uð Þ > x

( )
¼ Φ x−ηð Þ þ e2ηV 1−α=2Φ xþ ηð Þ:

Thus, the sample size needed to achieve a desired
power of 1 − β with a two-sided type I error of α can be
obtained by

Φ V 1−α=2−η
� �þ e2ηT 1−α=2Φ V 1−α=2 þ η

� � ¼ 1−β; ð10Þ

where Φ ¼ 1−Φ and Φ is the standard normal
distribution.
Under the alternative hypothesis, we obtain the limit-

ing distribution of Un(τ) as Mη(1), which is a normal de-
viation with mean η and variance 1. With a critical value
Z1 − α/2, we solve for ~η in the following expression:
ΦðZ1−α=2−~ηÞ ¼ 1−β; that is, ~η ¼ Z1−α=2 þ Z1−β: Hence,
we obtain

~R ¼ Z1−α=2 þ Z1−β
� �2

λ2
: ð11Þ

Because formulas (8) and (11) have the same effect size
λ, the denominators cancel, and the ratio becomes
R
~R
¼ η2

~η2 ¼ ξ , where only η remains to be solved.

First, we need to estimate the critical value V in for-
mula (9). From the cumulative probability distribution
[21].
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P sup M tð Þj j≤x½ � ¼ 4
π

X∞
a¼0

−1ð Þa
2aþ 1

e −π2 2aþ1ð Þ2=8x2½ �;

let V ¼ 1− 4
π

P∞
a¼0

ð−1Þa
2aþ1 e

½−π2ð2aþ1Þ2=8x2�; and assume that V

converges when a → m. Then, m is solved as m ¼ max

fdx
ffiffi
2

p
π

ffiffiffiffiffiffiffiffiffiffiffiffi
log 1

πε

q
− 1

2e; 1g [23], where ⌈·⌉ refers to the mini-

mum positive integer of this value, and ε represents the
residuals. Finally, assume a function, Y ðxÞ ¼ Φðu−xÞ
þe2uxΦðuþ xÞ , with a derivative function of Y 0ðxÞ ¼
−φðu−xÞ þ e2uxφðuþ xÞ þ 2ue2uxΦðuþ xÞ . Use the
Newton-Raphson iteration to solve for η in formula (10),

let οi ¼ ð1−βÞ−Y ðxÞ
Y 0ðxÞ , and iterate the cycle until ο ≤ ε; the es-

timate η is given by η ¼ ~ηþP
οi.

Results
Hypothesis test procedures
Simulation design
To compare the performance of the above tests, Monte
Carlo simulations were carried out to study the type I
error and the statistical power under a variety of situa-
tions. The following procedures were performed to test
the hypotheses: Gray, Diff, and sDiff. The performance
of these tests was evaluated by using 6 alternative

scenarios (Fig. 1): (A) two groups with no difference (the
comparison for type I error); (B) two groups with a pro-
portional SDH difference; (C) two groups with a non-
proportional SDH difference; (D) an early difference in
the CIFs; (E) CIFs with a late difference; (F) two CIFs
with a cross difference.
Let τ1 and τ2 be the last event of interest time in the

two groups. Here, we considered a commonly used op-
tion, the minimum of the last event in the time of inter-
est in two groups (τ =min(τ1, τ2)), as τ. The event of
interest and the competing event were generated from
CIFs with piecewise Weibull distributions. The specific
parameter settings are presented in Web Table A1. The
distribution of events was based on the binomial distri-
bution B (N, p1), where N represents the sample size of
each group and p1 is the maximum cumulative incidence
of events of interest, which is set as p1 = I1(∞) = 0.7. The
censored times C in the two groups were generated from
uniform distributions. Then, each individual was
assigned an observed time t =min(T, C) and the event
indicator δ = 0[T >C]. By changing the distribution pa-
rameters of C, both groups were set to have the same
censoring rates of approximately 0, 15, 30 and 45%. We
also considered equal group sizes (n1 = n2 = 50, 100, 150)
and unequal group sizes (n1 = 50, n2 = 100; n1 = 50, n2 =
150; n1 = 50, n2 = 200). All simulations were performed

Fig. 1 Six scenarios in the simulation study — CIF curves for the event of interest
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using 5000 iterations. The nominal significance level of
each method was fixed at the conventional level of 0.05.

Simulation results
As Table 1 shows, the type I error rates for Diff are
stable under 0 censoring but gradually inflate with in-
creasing censoring rates, which represent the most rad-
ical test. As the type I error rates of Diff are inflated, this
test is not included in the comparison of test power.
Compared to Diff, Gray is steadier. The type I error rates
of sDiff are relatively conservative for light censoring but
increase with increasing censoring rates.
The power results are shown in Table 1. When two

CIF curves have a proportional SDH (Fig. 1b), the pow-
ers of all the tests increase with increasing sample size
but decline with increasing censoring rates. Gray dem-
onstrates the optimal power in this situation, followed
by sDiff. For the non-proportional SDH difference (Fig.
1c), sDiff is the most powerful test, while Gray has the
lowest power in this situation. For the early difference in
the CIF curves (Fig. 1d), with increasing censoring rates,

sDiff becomes much more powerful, and Gray exhibits
the lowest power in this situation. When considering the
late difference in the CIF curves (Fig. 1e), the powers of
all tests decline with increasing censoring rates. In this
situation, Gray is more powerful, followed by sDiff. In
the case of a cross difference in the CIF curves (Fig. 1f),
Gray has the lowest power. With increasing censoring
rates, sDiff is much more powerful than Gray.
Note that in situation C (non-proportional SDH), situ-

ation D (early difference), and situation F (cross differ-
ence), all tests exhibit gradually increasing power with
increasing censoring rates. This result occurs because
the two CIF curves are not convergent in the later
period but diverge with the increased censoring, which
makes the increased difference between the two CIF
curves proportional.
To summarize the simulation results, we applied the

analysis of variance (ANOVA) technique [24] to evaluate
the type I error and power. For type I error, the absolute
small and close-to-zero estimates indicate that rates are
close to 0.05. For power, good performance is indicated

Table 1 Type I error rates and powers of the test procedures

n1, n2 Cen
(%)

Situation A Situation B Situation C Situation D Situation E Situation F

Gray Diff sDiff Gray Diff sDiff Gray Diff sDiff Gray Diff sDiff Gray Diff sDiff Gray Diff sDiff

50,50 0 0.046 0.053 0.025 0.795 0.813 0.689 0.128 0.383 0.109 0.076 0.258 0.155 0.251 0.228 0.182 0.053 0.190 0.153

15 0.049 0.063 0.033 0.784 0.799 0.678 0.200 0.438 0.161 0.101 0.307 0.185 0.207 0.171 0.134 0.070 0.234 0.192

30 0.049 0.074 0.043 0.707 0.734 0.639 0.302 0.555 0.329 0.142 0.381 0.247 0.129 0.100 0.076 0.105 0.328 0.288

45 0.051 0.078 0.052 0.635 0.666 0.573 0.477 0.761 0.671 0.214 0.549 0.427 0.066 0.068 0.059 0.196 0.611 0.583

100,100 0 0.056 0.056 0.032 0.976 0.982 0.952 0.189 0.541 0.238 0.112 0.370 0.255 0.404 0.437 0.393 0.070 0.247 0.253

15 0.052 0.066 0.032 0.974 0.980 0.946 0.310 0.599 0.288 0.156 0.423 0.289 0.364 0.357 0.307 0.107 0.289 0.309

30 0.052 0.078 0.043 0.947 0.960 0.922 0.493 0.735 0.509 0.237 0.513 0.375 0.222 0.182 0.153 0.171 0.386 0.432

45 0.050 0.082 0.051 0.907 0.926 0.885 0.744 0.931 0.880 0.375 0.711 0.632 0.103 0.100 0.086 0.332 0.679 0.782

150,150 0 0.052 0.055 0.028 0.997 0.999 0.994 0.261 0.669 0.371 0.136 0.483 0.359 0.514 0.611 0.567 0.078 0.315 0.429

15 0.054 0.065 0.032 0.998 0.998 0.994 0.432 0.728 0.433 0.210 0.524 0.396 0.493 0.516 0.463 0.131 0.361 0.482

30 0.052 0.072 0.040 0.994 0.995 0.988 0.660 0.851 0.682 0.330 0.610 0.498 0.298 0.259 0.223 0.237 0.472 0.627

45 0.050 0.077 0.042 0.984 0.986 0.978 0.902 0.983 0.961 0.510 0.807 0.801 0.122 0.111 0.096 0.456 0.764 0.935

50,100 0 0.055 0.060 0.034 0.882 0.910 0.824 0.119 0.457 0.177 0.111 0.285 0.181 0.283 0.314 0.288 0.038 0.243 0.245

15 0.058 0.071 0.041 0.877 0.905 0.824 0.190 0.519 0.233 0.152 0.328 0.216 0.271 0.262 0.236 0.058 0.304 0.294

30 0.054 0.078 0.047 0.829 0.863 0.793 0.303 0.640 0.425 0.216 0.405 0.277 0.172 0.142 0.125 0.096 0.411 0.394

45 0.050 0.079 0.050 0.768 0.808 0.748 0.521 0.865 0.783 0.320 0.588 0.488 0.085 0.081 0.074 0.188 0.663 0.668

50,150 0 0.050 0.056 0.029 0.908 0.931 0.860 0.114 0.509 0.203 0.125 0.292 0.189 0.297 0.350 0.333 0.033 0.288 0.315

15 0.054 0.069 0.032 0.905 0.931 0.864 0.192 0.566 0.261 0.175 0.332 0.219 0.300 0.298 0.281 0.049 0.349 0.365

30 0.055 0.078 0.045 0.869 0.900 0.846 0.313 0.701 0.498 0.252 0.415 0.291 0.202 0.164 0.156 0.085 0.470 0.475

45 0.049 0.078 0.049 0.812 0.856 0.804 0.558 0.899 0.842 0.378 0.605 0.522 0.088 0.084 0.082 0.186 0.713 0.743

50,200 0 0.053 0.059 0.035 0.917 0.947 0.881 0.111 0.536 0.212 0.133 0.302 0.200 0.301 0.377 0.365 0.029 0.309 0.358

15 0.056 0.071 0.039 0.917 0.944 0.883 0.182 0.589 0.279 0.189 0.346 0.231 0.313 0.329 0.324 0.047 0.377 0.411

30 0.054 0.080 0.050 0.887 0.917 0.872 0.312 0.715 0.520 0.276 0.426 0.315 0.222 0.186 0.181 0.084 0.501 0.519

45 0.051 0.082 0.052 0.841 0.877 0.833 0.566 0.917 0.866 0.409 0.608 0.543 0.095 0.098 0.094 0.181 0.747 0.780

Cen: censoring rate for each group
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by large estimated values (see details in Additional file
1). Table 2 shows that sDiff corrects the inflated type I
error of Diff when censoring occurs. In Table 3, sDiff is
slightly lower than Gray when there is a proportional
SDH (situation B), and when there is a late difference
(situation E), the difference between Gray and sDiff is
approximately only 2.242%, whereas the powers of sDiff
are much higher than those of Gray in other situations.
Considering all situations, combinations of sample sizes,
and censoring rates, sDiff performs better in most
situations.

Calculations of sample size
Simulation design
A simulation study was also performed to evaluate the
proposed sample size formula. Two scenarios were con-
sidered (Fig. 1 b-c): (B) two groups with a proportional
SDH difference and (C) two groups with a non-
proportional SDH difference. Both scenarios were exam-
ined under four scenarios with either 0.05 or 0.01 for
the two-sided type I error and with either 0.8 or 0.9 as
the power. The follow-up time, τ, which is also the trun-
cation time point, was set as the minimum of the last
observed time of the pilot study for two groups. Assume
two groups with an equal sample size, i.e., r = 1. Then,
based on situation B and situation C, the necessary pa-
rameters were estimated by simulation, and finally, we
obtained the calculated sample size with the given pa-
rameters. In addition, Monte Carlo simulations were
used to examine the observed power. The simulations
were performed using 1000 replications.

Simulation results
As shown in Table 4, the calculated sample size of all
the tests increases with a decreasing type I error rate
and with an increasing target power. When the CIFs

satisfy the proportional SDH assumption (situation B,
Fig. 1b), the calculated sample sizes of Gray, Diff and
sDiff are close to each other, with Diff having the highest
observed power. In this situation, Gray and sDiff have a
similar observed power, which is close to the target
power. When there is a non-proportional SDH (situation
C, Fig. 1c), the calculated sample sizes of Gray are much
higher than those of Diff and sDiff, and sDiff has a rela-
tively high observed power. In addition, the observed
powers of Gray do not reach the target power in this
situation.
In addition, the comparison of power for Gray, Diff

and sDiff with a fixed sample size (calculated by sDiff) is
shown in Web Table A2. The results show that the
power under situation B for Diff is larger than that for
Gray and sDiff, but the three tests have similar power.

Table 2 Average deviations (%) from the nominal 5% level of
the tests (TEST) adjusted using ANOVA

Gray Diff sDiff

Model 1 50,50 −0.100 1.735 −1.160

n1, n2 100,100 0.230 2.035 −1.065

150,150 0.185 1.715 −1.435

50,100 0.415 2.205 −0.710

50,150 0.175 2.010 −1.135

50,200 0.360 2.295 −0.595

Model 2 0 0.193 0.657 −1.933

cen 15% 0.373 1.733 −1.533

30% 0.260 2.673 −0.527

45% 0.017 2.933 −0.073

Model 4 0.211 1.999 −1.017

cen: censoring rate

Table 3 Average rejection rates for the tests (TEST) adjusted
using ANOVA

Gray Diff sDiff

Model 1 50,50 23.184 37.869 27.650

n1, n2 100,100 35.978 51.732 44.426

150,150 43.716 60.222 56.389

50,100 27.389 44.954 36.473

50,150 29.203 48.274 40.747

50,200 30.059 50.240 43.338

Model 2 0 31.467 48.584 39.116

cen 15% 34.505 50.335 40.591

30% 36.983 53.062 45.576

45% 43.398 63.546 60.732

Model 3 B 87.956 90.108 84.463

sit C 35.752 67.038 45.554

D 22.228 45.288 34.544

E 24.175 24.266 21.993

F 12.831 42.710 45.965

Model 4 36.588 53.882 46.504

cen: censoring rate;
sit: simulated situation

Table 4 Simulation results for sample size

α β Situation Gray Diff sDiff

n Power n Power n Power

0.05 0.8 B 102 0.804 108 0.852 116 0.790

C 606 0.767 208 0.862 220 0.886

0.05 0.9 B 136 0.894 144 0.925 152 0.898

C 810 0.882 278 0.919 294 0.965

0.01 0.8 B 152 0.793 160 0.854 168 0.776

C 900 0.776 308 0.846 322 0.841

0.01 0.9 B 194 0.895 204 0.926 212 0.889

C 1146 0.893 392 0.931 408 0.940
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However, in situation C, the power of Gray is much
lower than that of Diff and sDiff.
As the type I error rates of Diff are inflated with cen-

soring, the corresponding sample size formula is consid-
ered unstable. In general, when the CIFs satisfy the
proportional SDH assumption, both Gray and sDiff can
be considered; when the SDH is non-proportional, sDiff
is considered more adaptive.

Applications
Example 1: Bone marrow transplantation data
The data used to evaluate the effect of T-cell depletion on
bone marrow transplantation [25] came from 408 patients
divided into a T-cell depleted group (Yes) with 354 cases
and a T-cell not depleted group (No) with 54 cases. The
censoring rates for the two groups were approximately
41% and 28%, respectively. The study included two types
of events: death from treatment-related causes, which was
defined as the event of interest, and relapse, which was set
as a competing event. At the end of follow-up, 161 pa-
tients (146 from the Yes group and 15 from the No group)
experienced an event of interest, and 87 patients (70 from
the Yes group and 17 from the No group) experienced
competing events. A test of the proportional SDH as-
sumption yielded a result of P = 0.264.
The descriptive statistics and the hypothesis test re-

sults for the examples are shown in Table 5. In the
hazard-related measures, the CHR and SHR showed that
the ratios of the Yes group vs. the No group were 0.86
(0.59, 1.25) and 0.60 (0.36, 1.00), respectively. However,
the log-rank test, which is based on the CHR, showed
no significant differences (P = 0.053), while Gray based
on the SHR indicated that there were significant differ-
ences between the two groups (P = 0.049). In addition,
we could not obtain the estimated CSH or SDH for ei-
ther group, which led to a lack of descriptive informa-
tion for either group; only a CHR or an SHR could be

obtained. This outcome led to difficulty in clinical
interpretation.
For the composite endpoint, the RMSTc showed that

the mean survival time of the patients in the Yes group
was 1.83 (− 5.03, 8.69) months longer than that of the
patients in the No group within the truncation time
point of 41.8 months, and there were no significant dif-
ferences (P = 0.601). Additionally, the RMSTc could not
provide information regarding treatment-related death.
Let τ =41.8 months; Table 5 shows that the RMTL of

treatment-related death in the Yes group was 9.57 (5.18,
13.96) months, which corresponds to the area under the
CIF curve, i.e., S2 in Fig. 2a. In the No group, the RMTL
corresponds to the area under the CIF curve, i.e., S1 +
S2 = 15.49 (13.53, 17.45) months. Hence, the difference
in RMTL between the two groups has an area of S1,
which means that the patients in the Yes group took
5.92 (1.11, 10.72) months longer to succumb to
treatment-related death. According to Table 5, the
RMTL-based tests (Diff and sDiff) showed significance
at the conventional level of 0.05.
As shown in Fig. 2b, a selection of different τ values

led to a difference in the calculated sample size for Diff
and sDiff: the calculated sample size increased with in-
creasing τ and became steady after 20 months. The cal-
culated sample sizes at τ= 41.8 months were 280 and
298 for Diff and sDiff, respectively, both of which were
close to the sample size calculated by Gray (n = 300).

Example 2: Lymphocytic leukemia data
A previous study compared the effects of radiotherapy in
the treatment of patients with lymphocytic leukemia
(LL). A total of 1400 patients were randomly extracted
from the Surveillance, Epidemiology, End Results (SEER)
Program. Among these patients, two groups were in-
cluded: the no radiotherapy group (No RT) consisted of
1318 cases, and the radiotherapy group consisted of 82
cases. The censoring rates in the two groups were

Table 5 Statistical results of the above tests for the two examples

Index Example 1
(τ =41.8 months)

Example 2
(τ =15.3 years)

No
(95%CI)

Yes
(95%CI)

Difference/Ratio∮

(95%CI)
P (statistic) No radiotherapy

(95%CI)
Radiotherapy
(95%CI)

Difference/Ratio∮

(95%CI)
P (statistics)

CHR 0.86
(0.59,1.25)

0.053(1.93)a 1.14
(0.78,1.65)

0.503(0.67)a

SHR 0.60
(0.36,1.00)

0.049(3.89)b 1.45
(0.98,2.14)

0.072(3.24)b

RMSTc 19.72 21.55 1.83 0.601(0.52)c 8.52 9.09 0.66 0.510(0.66)c

(18.40,21.03) (14.82,28.28) (−5.03,8.69) (8.46,8.57) (7.39,10.79) (−1.13,2.28)

RMTL 15.49
(13.53,17.45)

9.57
(5.18,13.96)

−5.92
(−10.72, −1.11)

0.016(2.41)d 2.96 4.68 1.72 0.014(2.46)d

0.004(3.06)e (2.69,3.24) (3.34,6.03) (0.35,3.09) 0.005(3.01)e

∮: CHR and SHR are related to CSH and SDH ratio, respectively; RMSTc and RMTL are related to RMSTc difference and RMTL difference, respectively
a: log-rank; b: Gray; c: RMSTc; d: Diff; e: sDiff
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Fig. 2 CIF curves and calculated sample size for the two examples. a displays the CIF curves of death from treatment-related causes in example
1. b displays the calculated sample size change with τ in example 1. c displays the CIF curves for death from LL in example 2. d displays the
calculated sample size change with τ in example 2
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approximately 3% and 44%, respectively. During the
follow-up, death from LL was set as the event of interest;
death from other causes was recorded as a competing
risk. At the end of the research, 364 patients (333 from
the No RT group and 31 from the RT group) had died
from LL, and 467 patients (452 from the No RT group
and 15 from the RT group) had died from other causes.
The corresponding test indicated a severe violation of
the proportional SDH assumption (P = 0.006).
Regarding the hazard-related indexes, Table 5 shows

that the No RT group had a lower hazard ratio than the
RT group (CHR = 1.14 (0.78,1.65); SHR = 1.45 (0.98,
2.14)). However, in this example, the SHR varied with
time (P = 0.006) instead of being constant. Therefore, the
CHR and SHR may not be available for this example.
When considering the composite endpoint, the

RMSTc showed that the mean survival time of the RT
patients was 0.66 (− 1.13,2.28) years longer than that of
the No RT patients within the truncation time point of
15.3 years (Table 5), which reflected the overall survival
but could not reflect the survival rates of patients who
died of LL.
Let τ= 15.3 years; Table 5 shows that the RMTL of LL-

related death in the RT group was 4.68 (3.34, 6.03) years,
which is equal to the area of S1 + S2 in Fig. 2c and corre-
sponds to the area under the CIF curve. In the No RT
group, the RMTL was S2 = 2.96 (2.69, 3.24) years. The dif-
ference in the RMTL between the two groups was S1 =
1.72 (0.35, 3.09) years, which is the delay time until the pa-
tients in the No RT group succumbed from LL-related
death. As shown in Table 5, for all test procedures, only
Diff and sDiff, which were based on the RMTL, showed
significance at the conventional level of 0.05.
As Fig. 2d shows, with increasing τ, the calculated

sample sizes showed a trend of decreasing first and then
increasing, and they reached the smallest estimation of
sample size at approximately 7 years, which was much
less than the results found with Gray (n = 886). The cal-
culated sample sizes at τ= 15.3 years were 344 and 364
for Diff and sDiff, respectively.

Discussion
When dealing with competing risks datasets, the SHR is
often used as a typical descriptive method with the test
procedures. However, because the SHR lacks baseline in-
formation (a control group) and does not directly reflect
the risk ratio of the two groups, it may complicate the
interpretation of the survival outcome and may be a
relatively abstract concept for patients. The RMSTc can
directly describe patient survival and does not depend
on the proportional SDH assumption, but the simple use
of composite endpoints does not always have clinical
meaning and degrades the accuracy of patient informa-
tion [14]. Conversely, the RMTL can avoid some

limitations of the above methods. Moreover, the rela-
tionship between the RMTL and RMSTc can be derived
as RMTL1 + RMTL2 +⋯ + RMTLj + RMSTc = τ, where
RMTLj means the area under the CIF curves for cause j.
As RMTLj is interpreted as the average survival time lost
due to cause j within τ, the RMTL can be observed from
the CIF curves directly, while the SHR cannot directly
reflect the CIF curves. In addition, Gray, which corre-
sponds to the SHR, needs to satisfy the proportional
SDH assumption, while the RMTL-related tests do not.
From the simulation results of the hypothesis testing
procedures, sDiff, which is based on the RMTLd, cor-
rects the severe skewness of Diff under high censoring
and has improved power under various scenarios com-
pared to Gray. In general, sDiff maintains good perform-
ance compared to Gray and Diff. In addition, this paper
also contains sample size formulas based on the RMTLd.
When the proportional SDH assumption is satisfied, the
calculated sample sizes of Diff and sDiff are close to that
of Gray, while Diff still has the highest power. Because
the type I error rates of Diff are inflated with censoring,
we still suggest that Gray and sDiff be used in this situ-
ation; however, when the SDH is non-proportional, the
sample sizes estimated by Gray are much larger than
those estimated by Diff and sDiff with the lowest ob-
served power. Hence, in this situation, sDiff seems more
adaptable for use.
The sample sizes calculated in the examples (Fig. 2b,

d) suggest that different choices of τ may have a large in-
fluence on the calculation of the sample size. In example
1, the calculated sample size increases with increasing τ
and is similar to the sample size estimated by Gray after
20 months (Fig. 2b), while in example 2, the calculated
sample sizes show a trend of decreasing first and then
increasing (Fig. 2d). Hence, it is important to choose an
appropriate τ for the calculated sample size of Diff and
sDiff. In practical research, τ is always determined as the
follow-up time in the study design. If all patients in one
of the groups experience an endpoint during the follow-
up period, then the study is stopped, and this time point
is determined as the final analysis of the study, i.e., τ;
otherwise, if patients in either group do not have a com-
pletely observed endpoint until the end of the follow-up
period, then the designed follow-up period is regarded
as the truncation time point. In this paper, the calculated
sample sizes in simulations are based on the minimum
time of the last observation of the event of interest in
the two groups as τ. The issue of how to define an ap-
propriate τ in a specific research context will be consid-
ered in a future study.

Conclusions
The RMTL can meaningfully summarize treatment ef-
fects for clinical decision making, which can be reported
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with the SDH ratio for competing risks data. The pro-
posed sDiff test is robust and can be considered for stat-
istical inference in real data analysis; the two proposed
calculated sample size formulas have wide applicability
and can also be applied to real trial designs.
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niques (ANOVA) used to evaluate the type I error and
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simulations and the comparison of power with a fixed
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