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Abstract: The pregnancy-specific syndrome preeclampsia is a major cause of maternal mortality
throughout the world. The initial insult resulting in the development of preeclampsia is inadequate
trophoblast invasion, which may lead to reduced maternal perfusion of the placenta and placental
dysfunction, such as insufficient trophoblast syncytialization. Endoplasmic reticulum (ER) stress has
been implicated in the pathology of preeclampsia and serves as the major risk factor. Our previous
studies suggested critical roles of calreticulin (CRT), which is an ER-resident stress response protein,
in extravillous trophoblast invasion and cytotrophoblast syncytialization. Here, we studied the
mechanism by which ER stress exposes the placenta to the risk of preeclampsia. We found that CRT
was upregulated in the serum samples, but not in the placental specimens, from preeclamptic women.
By using BeWo cells, an established model of cytotrophoblasts that syncytialize in the presence of
forskolin, we demonstrated that thapsigargin-induced ER stress caused extracellular release of CRT
from BeWo cells and that the extracellular CRT suppressed forskolin-induced release of β-human
chorionic gonadotropin and altered subcellular localization of E-cadherin, which is a key adhesion
molecule associated with syncytialization. Our results together provide evidence that induction
of ER stress leads to extracellular CRT release, which may contribute to placental dysfunction by
suppressing cytotrophoblast syncytialization.

Keywords: calreticulin; syncytialization; trophoblast; preeclampsia; endoplasmic reticulum stress

1. Introduction

The placenta in humans is critical for embryonic development and pregnancy main-
tenance. The placenta and associated extraembryonic membranes are extraembryonic
structures of the conceptus and form from the zygote at the initial stage of pregnancy. The
trophectoderm, the precursor of all trophoblast cells, is the first epithelium that appears
during mammalian embryogenesis; it is a polarized single-cell layer that makes up the
blastocyst wall. During embryogenesis, the trophectoderm forms the cytotrophoblasts
(CTBs), or epithelial “stem cells” of the placenta, that differentiate into two major placental
cell types: extravillous trophoblasts (EVTs) and syncytiotrophoblasts (STBs) [1]. The EVTs
are involved in uterine artery remodeling, which is crucial for perfusion of the placenta
with maternal blood; CTBs undergo syncytialization to form multinucleated STBs that are
essential for nutrient and gas exchange at the maternal–fetal interface and for hormone
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synthesis to support the pregnancy [2–4]. Dysfunction of the CTB syncytialization may
result in pregnancy-related pathologies such as preeclampsia, which is characterized by
hypertension, proteinuria, and edema and is a major cause of maternal death [5–7].

The detailed molecular mechanisms of the development and progression of preeclamp-
sia are not fully understood. Some data have suggested the involvement of endoplasmic
reticulum (ER) stress in the pathogenesis of human pregnancy complications including
preeclampsia [8–11]. Although inadequate placentation has been suggested to result in
the induction of ER stress [12], how ER stress contributes to preeclampsia development is
unknown. We previously showed that calreticulin (CRT), an ER-resident molecular chaper-
one that is ubiquitously expressed throughout the body including the placenta [13,14], is
necessary for both adequate invasion of EVTs and syncytialization of CTBs [15,16]. Certain
studies reported increases in CRT mRNA and protein levels in maternal blood and placen-
tas from preeclamptic patients [12,13]. Although CRT is a classical ER-resident chaperone,
it has been observed outside the ER, cell surface, and extracellular compartments, and it
regulates various biological processes such as uptake by dendritic cells or phagocytosis of
CRT-expressing cancer cells and apoptotic cells [17,18], cell migration, and cell prolifera-
tion [19–23]. Extracellular release of CRT is an unusual event, however, and because CRT is
a stress response protein, ER stress may be involved in the extracellular release of CRT [24].
Adding exogenous Escherichia coli-expressed human CRT to the culture medium for the
HTR8/SVneo human trophoblast cell line reportedly reduced cell migration [25]. These
lines of evidence prompted us to study whether ER stress induces extracellular release of
CRT from CTBs and whether this extracellular CRT affects the functions of CTBs, such as
syncytialization.

We found here that serum CRT levels were significantly higher in preeclamptic patients
than in women with normal pregnancies. We used thapsigargin as an ER stress inducer and
human choriocarcinoma BeWo cells as a CTB model, and we discovered that extracellular
CRT was released as a result of ER stress in BeWo cells. The extracellularly released CRT
reduced forskolin-stimulated release of β-human chorionic gonadotropin (β-hCG) and
altered the cell surface localization of E-cadherin, which is a cell−cell adhesion protein and
is thus critical for CTB syncytialization [26]. On the basis of our results, we thus propose a
novel non-ER function of CRT that may contribute to dysfunctional placentation and the
development of preeclampsia.

2. Materials and Methods
2.1. Materials

The anti-CRT antibody, anti-calnexin antibody, anti-immunoglobulin-binding protein
(BiP) antibody, and anti-ER-resident protein 57 (ERp57) antibody were obtained from
Stressgen Biotechnologies (San Diego, CA, USA). The anti-E-cadherin antibody, anti-β-
catenin antibody, anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibody,
and anti-Golgi matrix protein of 130 kDa (GM130) antibody were from BD Biosciences (San
Jose, CA, USA), Sigma-Aldrich (St. Louis, MO, USA), Merck Millipore (Burlington, MA,
USA), and Abcam (Cambridge, UK), respectively.

2.2. Human Tissue Collection and Sample Preparation

We obtained informed consent from individual patients for the use of the placental
specimens. Third-trimester samples of human placenta were collected during performance
of cesarean sections before the onset of labor. Preeclampsia was defined as having a
blood pressure reading of ≥140/90 mmHg after 20 weeks of gestation plus proteinuria
(≥300 mg of protein/24 h). The eligibility of the preeclampsia cases was determined on the
basis of the diagnostic criteria of the International Society for the Study of Hypertension
in Pregnancy. Cases involving intrauterine growth retardation, multiple pregnancies,
fetal chromosomal abnormalities, or fetal anomalies were excluded. For immunoblot
analysis, we collected specimens of placentas from patients with preeclampsia (n = 6) and
women with gestational age-matched normal pregnancies (n = 6), as well as serum samples
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from healthy nonpregnant women (n = 6), women with gestational age-matched normal
pregnancies (n = 6), and patients with preeclampsia (n = 6). The patients used in the
immunoblot analysis are included in Table 1. Placental specimens and serum samples were
immediately frozen in liquid nitrogen and stored at −80 ◦C before being used for analysis.
This study was approved by the Ethics Committee of Wakayama Medical University.

Table 1. Clinical characteristics of the study population.

Normal Pregnancy Preeclampsia Alone p Value

Characteristic (n = 22) (n = 18)

Maternal age (years) 30.4 ± 5.5 32.8 ± 4.6 ns
Prepregnancy body mass index

(kg/m2) 20.7 ± 2.6 25.5 ± 5.9 <0.001

Gestational age at delivery
(weeks) 34.7 ± 4.2 34.2 ± 2.6 ns

Neonatal weight (g) 2447 ± 712 2232 ± 614 ns
Placental weight (g) 528 ± 133 512 ± 129 ns

2.3. Immunohistochemistry

Paraffin-embedded blocks of placental tissue samples (patients with preeclampsia:
n = 18; gestational age-matched controls: n = 22) were cut into 3-µm-thick sections, de-
paraffinized, and rehydrated. We then blocked endogenous peroxidase activity with 0.3%
hydrogen peroxide in methanol. For antigen retrieval, we boiled the slides in 1 mM
ethylenediaminetetraacetic acid (pH 8.0) in a pressure cooker for 10 min. We incubated
the sections with an anti-CRT antibody (Abcam) at a dilution of 1:5000. We detected sig-
nals by using the simple stain MAX-PO reagent (Nichirei Biosciences, Tokyo, Japan) and
3,3-diaminobenzidine as the substrate. We used Mayer’s hematoxylin solution for coun-
terstaining and scored the staining intensity as 0 = none, 1 = weak, 2 = moderate, and 3 =
strong staining. We graded the percentage of positive cells as 0: no positive cells, 1: <30%, 2:
30–80%, or 3: >80% and then used the following equation to calculate the immunoreactive
score (IRS): IRS = staining intensity × percentage of positive cells, according to previous
reports [16,27].

2.4. Cell Culture

Human choriocarcinoma BeWo cells, which are commonly used as a model of tro-
phoblast differentiation and syncytialization [5,28]), were purchased from the American
Type Culture Collection (Manassas, VA, USA) and were authenticated by the JCRB Cell
Bank (National Institute of Biomedical Innovation-Japan, Report No. KBN0410). BeWo cells
were grown in Roswell Park Memorial Institute RPMI 1640 medium (Wako Pure Chemicals,
Osaka, Japan) supplemented with 10% fetal calf serum (BioWest, Nuaillé, France) and
penicillin, streptomycin, and amphotericin B (Life Technologies, Carlsbad, CA, USA) at
37 ◦C in 5% CO2 and 95% air.

2.5. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Total RNA was collected and reverse-transcribed by using PrimeScript One Step
RT-PCR Kit Ver. 2 (TaKaRa Biomedicals, Shiga, Japan). Polymerase chain reactions were
performed by using the following cycling parameters: for human X-box-binding protein-1
(XBP-1): 25 cycles at 94 ◦C for 0.5 min, at 65 ◦C for 0.5 min, and at 72 ◦C for 1 min; for
human GAPDH: 20 cycles at 94 ◦C for 0.5 min, at 56 ◦C for 0.5 min, and at 72 ◦C for 1 min.
The primer sequences were as follows: for humanXBP-1: forward 5′-GCT GAA GAG GAG
GCG GAA G-3′, reverse 5′-GTC CAG AAT GCC CAA CAG G-3′; for human GAPDH:
forward 5′-GGA TTT GGT CGT ATT GGG CG-3′, reverse 5′-CAG TAG AGG CAG GGA
TGA TG-3′. We analyzed the transcripts by using 8% polyacrylamide gel electrophoresis
for XBP-1 and 1.5% agarose gel electrophoresis for GAPDH followed by ethidium bromide
staining. GAPDH served as a reference RNA.
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2.6. Immunodepletion

BeWo cells were treated with thapsigargin (25–500 nM, Wako Pure Chemicals) for
1 h at 37 ◦C, after which cells were washed and culture media were replaced with fresh
Opti-MEM (Thermo Fisher Scientific, Waltham, MA, USA). After a 24-h culture at 37 ◦C,
we collected the conditioned medium [thapsigargin-conditioned medium (Tg-CM)]. For
immunodepletion of CRT from Tg-CM, CRT was immunoprecipitated by using anti-CRT
antibody that was conjugated with Dynabeads Protein G (Thermo Fisher Scientific). We
used the supernatants as CRT-depleted Tg-CM. The absence of CRT in supernatants was
confirmed by immunoblot analysis (data not shown). Purified rabbit IgG (Thermo Fisher
Scientific) served as an isotype control.

2.7. Immunoblot Analysis

We used a Teflon homogenizer (AS ONE Corporation, Osaka, Japan) to homogenize
500-mg samples of human placental tissues in 0.4 mL of RIPA buffer (Sigma-Aldrich)
containing the protease inhibitors 4 mM Pefabloc, 1 µM pepstatin, 1 µM leupeptin, and
200 µM phenylmethylsulfonyl fluoride (Roche, Basel, Switzerland). Samples were then
centrifuged at 18,000× g for 10 min at 4 ◦C, and supernatants were collected and subjected
to immunoblot analysis as described below. To induce ER stress, we treated BeWo cells with
thapsigargin (25–500 nM) for 1 h at 37 ◦C, and we analyzed the induction of ER stress by us-
ing immunoblotting with anti-phosphorylated or anti-pan-eukaryotic translation initiation
factor 2α antibodies (Cell Signaling Technology, Danvers, MA, USA). For cell-based assays,
we treated BeWo cells with Tg-CM or CRT-depleted Tg-CM for 24 h at 37 ◦C in the presence
of forskolin (80 µM, Sigma-Aldrich). Cells were then lysed in lysis buffer A (10 mM Tris-
HCl (pH 7.5), 150 mM NaCl, 1% Nonidet P-40, and protease inhibitors). Cell lysates were
sonicated intermittently on ice for 15 min and then centrifuged at 10,000× g for 10 min at
4 ◦C. Supernatants were separated by using 10% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis and were then transferred to polyvinylidene difluoride membranes
(Immobilon-P; Merck Millipore). For analysis of serum samples, each sample was diluted
with tris-buffered saline (pH 7.6) to obtain the final protein concentration of 10 µg/µL, and
100 µg proteins were applied to each well of 10% sodium dodecyl sulfate-polyacrylamide
gels. Protein concentrations of nondiluted serum samples are shown in Supplemental
Table S1. Membranes were blocked with the EzBlock Chemi blocking solution (ATTO,
Tokyo, Japan) and were incubated with primary antibodies at 4 ◦C overnight followed by
incubation with peroxidase-conjugated secondary antibodies (Cell Signaling Technology).
Signals were detected by using the Immobilon Western Chemiluminescent Horseradish
Peroxidase substrate (Merck Millipore) and were densitometrically quantified by using
ImageJ version 1.50b (National Institutes of Health, Bethesda, MD, USA). GAPDH served
as a loading control.

2.8. Cytotoxicity of Thapsigargin Treatment

We analyzed cytotoxicity by means of the lactate dehydrogenase (LDH) release assay.
We treated BeWo cells with thapsigargin (25–500 nM) for 1 h at 37 ◦C and measured LDH
release into culture media by using the MTX-LDH kit (Kyokuto Pharmaceutical, Tokyo,
Japan).

2.9. Immunocytochemistry and Determination of Fusion Index

BeWo cells were grown on coverslips cultured for 24 h, after which cells were treated
with Tg-CM or CRT-depleted Tg-CM for 24 h at 37 ◦C in the presence of forskolin (80 µM).
Cells were then fixed with 4% paraformaldehyde in PBS for 20 min at room temperature
and permeabilized with 0.5% Triton X-100 in PBS for 10 min. After the cells were washed
3 times with PBS, they were blocked with 3% bovine serum albumin in PBS for 30 min
and incubated with primary antibodies followed by Alexa 488- or Alexa 555-conjugated
secondary antibodies (Thermo Fisher Scientific). Stained specimens were mounted with
Vectashield mounting medium containing DAPI (Vector Laboratories, Burlingame, CA,
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USA) and examined with a LSM700 laser scanning confocal microscopy and the LSM
software ZEN 2012 (Carl Zeiss, Jena, Germany). For determination of fusion indexes,
numbers of nuclei in STB-like fused cells and the total numbers of nuclei were counted in 8
to 10 randomly selected microscopic fields in each E-cadherin-stained specimen. Fusion
indexes were calculated as the percentages of the total number of nuclei in the STB-like
fused cells to the total number of nuclei in the microscopic fields.

2.10. Statistical Analysis

Data were analyzed via one-way ANOVA with Bonferroni’s multiple comparisons
test, or the Mann−Whitney U-test by means of Prism software (Version 7.04, GraphPad
Software, San Diego, CA, USA). p values of <0.05 were said to be significant.

3. Results
3.1. Upregulation of Serum CRT Levels in Patients with Preeclampsia

Table 1 summarizes the clinical characteristics of the patients in the present study. We
first used Western blotting to determine the CRT protein levels in the samples of placenta
(Figure 1a) and serum (Figure 1b) collected from nonpregnant women (n = 6), women with
gestational age-matched normal pregnancies (n = 6), and preeclamptic patients (n = 6), who
were included in Table 1. We successfully detected the 55-kDa CRT protein in placental and
serum samples. We used cell lysates obtained from BeWo cells as the reference for the CRT
protein band [16]. We noted no difference in the CRT levels in placentas from women with
normal pregnancies and women with preeclampsia (Figure 1c), but the serum CRT levels
were approximately 50% lower in nonpregnant women and 35% higher in preeclamptic
women than the levels in women with normal pregnancies (Figure 1d). We also determined
the CRT levels in the third-trimester placentas of the patients shown in Table 1 by using
immunohistochemical analysis (normal placentas (n = 22) and preeclamptic placentas
(n = 18); Figure 1e). In agreement with our previous report [16], the major site of CRT
expression was the STB cytoplasm in both normal and preeclamptic placentas (Figure 1e).
We also detected CRT in endothelial cells and villous macrophages (Hofbauer cells) in the
villous cores, EVTs in the decidua and chorionic membrane, and connective tissue cells
in the amnion layer of the external membranes in third-trimester placentas. We noted no
difference in IRSs for normal placentas and preeclamptic placentas, a finding that confirmed
the immunoblot analysis (Figure 1e).

Data are expressed as means ± SD; ns, not significant.
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Figure 1. Upregulation of serum CRT levels in patients with preeclampsia. CRT protein levels
in placental (a) and serum (b) samples obtained from nonpregnant women (n = 6), women with
normal pregnancies (n = 6), and patients with preeclampsia (PE; n = 6) were analyzed by using
Western blotting. Cell lysates that were prepared from BeWo cells under conventional culture
conditions served as the reference for the CRT-immunoreactive band. GAPDH was used as the
loading control in (a). For analysis of serum samples in (b), 100 µg of total proteins were loaded in
each well. (c,d) Quantitative analysis of the immunoblots in (a) and (b). (e) Representative images
of immunohistochemical analysis of CRT in normal placentas (n = 22) and preeclamptic placentas
(n = 18). The graph provides CRT IRSs. Data are presented as means ± standard deviation (SD).
* p < 0.05; ** p < 0.01.

3.2. Thapsigargin-Induced ER Stress in BeWo Cells

Because ER stress in placentas has been implicated in the etiology and pathology
of human pregnancy complications, including preeclampsia [29,30], we hypothesized
that the induction of ER stress would stimulate placental cells to release CRT, which
may contribute to increased serum CRT levels in preeclamptic patients (Figure 1b,d). We
utilized human choriocarcinoma BeWo cells, which are commonly used as a model of
trophoblast differentiation and syncytialization [5,28], and thapsigargin, which is a very
popular ER stress inducer and depletes the calcium ion store in the ER, thereby causing
ER stress [31]. We treated BeWo cells with thapsigargin (25–500 nM) for 1 h at 37 ◦C, after
which we replaced the culture media with fresh media and continued the cell culture
for 23 h at 37 ◦C. We then harvested the cells, induced ER stress, and determined the
cytotoxicity of the thapsigargin treatment. The XBP-1 splicing assay [32] confirmed the
thapsigargin concentration-dependent induction of ER stress (Figure 2a). Immunoblot
analysis of phosphorylated eukaryotic initiation factor-2α (eIF2α), another marker of ER
stress induction [33], also indicated thapsigargin concentration-dependent induction of
ER stress (Figure 2b). We did not observe extracellular release of LDH after thapsigargin
treatment, which excluded the possibility of plasma membrane damage (Figure 2c).
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Figure 2. Thapsigargin-induced ER stress in BeWo cells. BeWo cells were treated with thapsigargin
(Tg, 25–500 nM) or DMSO for 1 h at 37 ◦C. After samples were washed three times with phosphate-
buffered saline (PBS), culture media were replaced with fresh Opti-MEM and cells were cultured for
24 h at 37 ◦C. Cells were then harvested, and induction of ER stress and cytotoxicity of thapsigargin
treatment were analyzed. (a) mRNAs of XBP-1 and GAPDH were assessed by using RT-PCR. XBP
1-s, spliced fragments of XBP-1; XBP 1-us, unspliced fragments of XBP-1. (b) Expression levels of the
ER stress marker phosphorylated eIF2α (p-eIF2α) were analyzed by using Western blotting. GAPDH
served as the loading control. The graph shows quantification of p-eIF2α. Data represent means ±
SE (n = 3). (c) Cytotoxicity of thapsigargin treatment (Tg) was assessed by means of the LDH release
assay. Results are presented as a percentage of the values of 2% Triton X-100-treated cells, which
caused the maximum release via complete membrane disruption. Data represent means ± SE (n = 5).
* p < 0.05; ** p < 0.01; *** p < 0.001.

3.3. Extracellular Release of CRT after Thapsigargin-Induced ER Stress in BeWo Cells

We next investigated the effect of thapsigargin-induced ER stress on the release of
CRT from BeWo cells. We treated BeWo cells with thapsigargin (25–500 nM) for 1 h at
37 ◦C, after which culture media were replaced with fresh media and cells were cultured
for 23 h at 37 ◦C. We then harvested the conditioned media and analyzed the CRT levels
in the conditioned media. Immunoblots with an anti-CRT antibody showed thapsigargin
concentration-dependent extracellular release of CRT from BeWo cells (Figure 3a). Be-
cause we did not observe extracellular release of BiP from thapsigargin-treated BeWo
cells (Figure 3a), we concluded that ER stress did not induce extracellular release of all
ER-resident proteins, that is, this phenomenon was specific to CRT. We also used im-
munoblot analysis to determine the expression of CRT and other ER-resident proteins
including BiP, calnexin, and ERp57 in BeWo cells treated with 100 nM thapsigargin. We
detected no alterations in the expression of these proteins including CRT after thapsigargin
treatment (Figure 3b). We previously reported that genetic ablation of CRT expression
resulted in reduced cell surface localization of E-cadherin and subsequent fusion of BeWo
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cells [16]. In our study here, we detected two bands that corresponded to E-cadherin, simi-
lar to bands for epithelial cells whose trafficking of E-cadherin was inhibited by cellular
stress (Figure 3b) [34]. As expected, our immunofluorescence analysis showing enhanced
and condensed colocalization of E-cadherin and the cis-Golgi marker GM130 confirmed
thapsigargin-induced altered E-cadherin subcellular localization (Figure 3c).

Figure 3. Extracellular release of CRT after thapsigargin-induced ER stress in BeWo cells. (a) BeWo cells were treated with
thapsigargin (Tg) or DMSO for 1 h at 37 ◦C. After samples were washed three times with PBS, culture media were replaced
with fresh Opti-MEM and cells were cultured for 24 h at 37 ◦C. Conditioned medium samples were then collected and CRT
protein levels were analyzed by means of Western blotting. GAPDH and BiP served as markers for the cytosol and the ER,
respectively. (b) Expression of ER-resident proteins in thapsigargin-treated (Tg, 100 nM) BeWo cells was analyzed by using
Western blotting. GAPDH served as the loading control. (c) DMSO- or thapsigargin-treated (Tg, 100 nM) BeWo cells were
stained with anti-E-cadherin and anti-GM130 antibodies. Arrows point to condensed E-cadherin signals that colocalized
with GM130.

3.4. Forskolin-Induced Syncytialization of BeWo Cells Inhibited by Extracellular CRT

We also studied the effects of extracellular CRT on the functions of BeWo cells. Because
BeWo cells secrete β-hCG, which is mainly produced by placental STBs and promotes
syncytialization in an autocrine−paracrine manner [35,36], we investigated whether extra-
cellular CRT would affect forskolin-induced β-hCG secretion in BeWo cells. Because we
successfully induced ER stress and extracellular release of CRT by 100 nM thapsigargin
treatment (Figure 2a,b and Figure 3a), we used 100 nM thapsigargin treatment for further
experiments. We treated BeWo cells with 100 nM thapsigargin for 1 h at 37 ◦C, after which
culture media were replaced with fresh media and cells were cultured for 23 h at 37 ◦C. We
then collected Tg-CM samples and treated fresh BeWo cells with Tg-CM in the presence
of 80 µM forskolin for 24 h at 37 ◦C. We successfully obtained CRT-containing Tg-CM by
using thapsigargin treatment (Figure 4a). Because we solubilized thapsigargin in dimethyl
sulfoxide (DMSO), we prepared DMSO-treated conditioned medium (DMSO-CM) as the
control. Figure 4b,c show that treatment with Tg-CM markedly suppressed forskolin-
induced β-hCG secretion and cell fusion in BeWo cells. Tg-CM-treated BeWo cells showed
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two E-cadherin immunoreactive bands that were similar to those of thapsigargin-treated
cells (Figures 3b and 4b), which suggests that extracellular CRT may affect subcellular
localization of E-cadherin. Immunofluorescence analysis demonstrated enhanced and
condensed colocalization of E-cadherin and the cis-Golgi marker, which confirmed the
unfavorable effect of extracellular CRT on syncytialization (Figure 4d).

Figure 4. Extracellular CRT-induced inhibition of forskolin-induced syncytialization in BeWo cells.
(a) BeWo cells were treated with thapsigargin (Tg) or DMSO for 1 h at 37 ◦C. After samples were
washed three times with PBS, culture media were replaced with fresh Opti-MEM and cells were
cultured for 24 h at 37 ◦C. Conditioned medium samples were then collected to obtain DMSO-CM and
Tg-CM. Extracellular release of CRT by thapsigargin was confirmed by means of Western blotting.
The graph shows quantification of extracellular release of CRT by Tg (100 nM)-treatment. Data
represent means ± SE (n = 3). (b) To investigate the effects of extracellular CRT on syncytialization,
fresh BeWo cells were treated with DMSO-CM or Tg-CM in the presence of forskolin (FSK, 80 µM)
for 24 h at 37 ◦C, and expression of E-cadherin and secretion of β-hCG were analyzed by using
Western blotting. GAPDH served as the loading control. The graph shows quantification of secreted
β-hCG. Data represent means ± SE (n = 3). (c) Effects of Tg-CM treatment on syncytialization was
analyzed by means of fusion indexes. Data represent means ± SE (n = 3). (d) Effects of Tg-CM
treatment on subcellular localization of E-cadherin were analyzed by means of immunofluorescence
with anti-E-cadherin and anti-GM130 antibodies. Arrows point to condensed E-cadherin signals that
colocalized with GM130. ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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3.5. Elimination of Harmful Effects of Tg-CM on BeWo Cells by Means of CRT Immunodepletion

Lastly, we immunodepleted CRT proteins in Tg-CM by using an anti-CRT antibody
and Dynabeads that were conjugated with protein G (CRT-depleted CM). By using im-
munoblot analysis, we found that CRT-depleted CM lacked the suppressive effect of
Tg-CM on forskolin-induced β-hCG secretion and cell fusion, which strongly supported
the adverse effect of extracellular CRT on syncytialization (Figure 5a,b). In addition, en-
hanced and condensed colocalization patterns of E-cadherin and GM130 disappeared in
CRT-depleted CM-treated BeWo cells (Figure 5c). Together, our results demonstrated the
detrimental effects of ER stress-induced extracellular release of CRT on CTB functions such
as β-hCG secretion and syncytialization, thus leading to the ER stress-induced development
of preeclampsia.

Figure 5. Elimination of detrimental effects of Tg-CM on BeWo cells by CRT immunodepletion. (a) BeWo cells were treated
with thapsigargin (Tg) for 1 h at 37 ◦C. After samples were washed three times with PBS, culture media were replaced with
fresh Opti-MEM and cells were cultured for 24 h at 37 ◦C. Conditioned medium samples were then collected to obtain
Tg-CM. CRT in Tg-CM was immunodepleted by using an anti-CRT antibody and Dynabeads with protein G. Fresh BeWo
cells were then treated with Tg-CM or CRT-depleted Tg-CM in the presence of forskolin (FSK, 80 µM) for 24 h at 37 ◦C, and
expression of E-cadherin and secretion of β-hCG were analyzed via Western blotting. The graph shows quantification of
secreted β-hCG. Data represent means ± SE (n = 3). (b) Effects of CRT immunodepletion from Tg-CM on syncytialization
was analyzed by means of fusion indexes. Data represent means ± SE (n = 3). (c) Fresh BeWo cells were treated with Tg-CM
or CRT-depleted Tg-CM in the presence of forskolin (80 µM) for 24 h at 37 ◦C, and subcellular localization of E-cadherin
was analyzed by using immunofluorescence with anti-E-cadherin and anti-GM130 antibodies. Arrows point to condensed
E-cadherin signals that colocalized with GM130. ** p < 0.01.
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4. Discussion

CRT is an ER-resident molecular chaperone that is ubiquitously expressed throughout
the body. In addition, non-ER functions of CRT have been implicated in many physiolog-
ical and pathological processes, including wound healing, immunity, cell development,
proliferation, differentiation, malignancy, and tumor progression [14,37,38]. In the ER, CRT
plays important roles not only in the proper folding of newly synthesized proteins and gly-
coproteins but also in homeostatic regulation of calcium levels in the cytosol and ER [14,39].
The human placenta is one site with high CRT expression during pregnancy [40,41], which
suggests a role of CRT in placentation and maintenance of pregnancy. We previously
showed that CRT expression by placental cells was required for trophoblast invasion and
trophoblast syncytialization [15,16], which supported the importance of CRT in pregnancy.
CRT may be released from cells under certain conditions, such as injury or death [42]. Al-
though CRT at the cell surface reportedly served as a marker of phagocytic clearance [17,18],
the functions of extracellular CRT in placentas have remained unclear. In our study here,
we found that CRT was released from cells because of ER stress and that extracellular
CRT possessed certain biological functions such as reduction of forskolin-induced β-hCG
secretion and modification of membrane localization of E-cadherin. Our results showing
that extracellularly released CRT inhibited forskolin-induced syncytialization will aid our
understanding of the molecular functions of CRT beyond that of an ER chaperone. A
previous study reported that a tumor-homing peptide recognized CRT at the placental
membrane [6], which suggested a potential non-ER function of CRT in the targeted delivery
of materials to the placenta. Our study here, however, is the first to report a non-ER
extracellular function of CRT—involvement in the development of preeclampsia. Tong
et al. identified CRT as one component of trophoblast extracellular microvesicles [43].
Because extracellular vesicles such as exosomes and microvesicles are involved in cell−cell
communication in that they transfer biomolecules including microRNAs and proteins [44],
the role of CRT on or in extracellular vesicles warrants future investigation.

ER stress is one major risk factor for preeclampsia, as suggested by the upregulation
of several ER stress markers in placentas with both intrauterine growth retardation and
preeclampsia compared with placentas with intrauterine growth retardation alone [45,
46]. Increased ER stress may lead to reduced proliferation and enhanced apoptosis of
trophoblasts [45], but the precise mechanism of how ER stress results in preeclampsia
is unknown. Gu et al. reported a significant increase in blood CRT levels, but not in
placental CRT levels, in women with normal pregnancies compared with nonpregnant
women [13]. In the present study, blood samples from women with normal pregnancies had
significantly higher CRT levels than samples from nonpregnant women, and blood samples
from preeclamptic women demonstrated further marked increases in CRT levels compared
to those from women with normal pregnancies. Furthermore, BeWo cells released CRT in
response to ER stress, but not under general culture conditions without ER stress induction,
and the extracellular CRT prevented forskolin-induced syncytialization. Thus, our results
provide evidence that excess extracellular CRT may have adverse effects on placental
development and cause dysfunctional placentation that may lead to preeclampsia.

The molecular mechanism by which extracellular CRT suppressed forskolin-induced
β-hCG release is as yet unclear. In extracellular CRT-treated BeWo cells, we observed
an E-cadherin band in addition to the mature 120 kDa form, which may correspond to
the pro-E-cadherin [34], and extracellular CRT induced E-cadherin to accumulate in the
GM130-positive cis-Golgi. Although the accumulation of E-cadherin in the cis-Golgi was
similar to that reported in our previous study of BeWo cells whose CRT was genetically
depleted by stable expression of short hairpin RNA against CRT [16], we did not observe
the additional E-cadherin band in that study. Thus, it seems to be unlikely that extracellular
CRT interfered with the chaperone function of CRT on E-cadherin, and our current results
suggest another role of extracellular CRT in determining subcellular localization of E-
cadherin. Elucidating the details of the detrimental effects of extracellular CRT is a future
challenge.
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The source of the increased serum CRT in preeclamptic patients is also not fully
clarified. Gu et al. suggested that the placenta may be a major source of circulating
CRT in pregnancy [13]. In view of the induction of ER stress in preeclamptic placentas
and our results showing the extracellular release of CRT by an ER stress inducer, the
placenta may indeed be the major source of increased circulating CRT in preeclamptic
serum. However, our immunohistochemical and immunoblot analyses of human placental
tissues demonstrated no significant differences between placental CRT protein levels in
women with normal pregnancies and in patients with preeclampsia. Thus, we cannot
discount the possibility that tissues and organs other than the placenta may contribute to
circulating CRT levels.

5. Conclusions

In summary, we found increased CRT levels in samples of serum from preeclamptic
patients but not in samples of placentas. The results of the cell-based assays supported the
pathological roles of extracellular CRT in preeclampsia. Our findings are thus important
for the prediction, prevention, and treatment of preeclampsia. We showed that ER stress,
a major risk factor for preeclampsia, induced extracellular rerelease of CRT and that the
extracellular CRT prevented forskolin-induced syncytialization in CTB model cells, but
elucidating the precise molecular mechanisms of these data deserves additional study.
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