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Neuroimaging studies have revealed that insomnia is characterized by aberrant neuronal
connectivity in specific brain regions, but the topological disruptions in the white
matter (WM) structural connectivity networks remain largely unknown in insomnia.
The current study uses diffusion tensor imaging (DTI) tractography to construct the
WM structural networks and graph theory analysis to detect alterations of the brain
structural networks. The study participants comprised 30 healthy subjects with insomnia
symptoms (IS) and 62 healthy subjects without IS. Both the two groups showed small-
world properties regarding their WM structural connectivity networks. By contrast,
increased local efficiency and decreased global efficiency were identified in the IS group,
indicating an insomnia-related shift in topology away from regular networks. In addition,
the IS group exhibited disrupted nodal topological characteristics in regions involving
the fronto-limbic and the default-mode systems. To our knowledge, this is the first
study to explore the topological organization of WM structural network connectivity in
insomnia. More importantly, the dysfunctions of large-scale brain systems including the
fronto-limbic pathways, salience network and default-mode network in insomnia were
identified, which provides new insights into the insomnia connectome. Topology-based
brain network analysis thus could be a potential biomarker for IS.

Keywords: insomnia, diffusion tensor imaging tractography, white matter, graph theoretical analysis, small-world
network

INTRODUCTION

Insomnia is one of themost prevalent sleep disorders that is distinguished by difficulties in falling or
maintaining sleep, and/or early morning awakening (Morin and Benca, 2012; Cheung et al., 2013;
Morin et al., 2015; Riedner et al., 2016). Insomnia is associated with impaired daytime functioning
and affects approximately one-third of the general population (Ohayon, 2002; Moore, 2012; Morin
and Benca, 2012; Kronholm et al., 2015). In addition, individuals with insomnia show an increased
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risk for developing other psychiatric disorders. For example,
nearly 40% of the insomnia patients have a comorbid psychiatric
disorder, and almost all of depression patients present high
risk for insomnia (Taylor et al., 2005; Kaneita et al., 2006;
Ohayon and Hong, 2006; Benca and Peterson, 2008; Wulff
et al., 2010; Mayer et al., 2011). More importantly, insomnia can
lead to feeling fatigued, poor academic performance, working
disability, drugs and alcohol abuse, suicidal thoughts and
reduced quality of life (Short et al., 2013; Kronholm et al., 2015).
Consequently, insomnia can negatively impact personal and
public health, incur direct and indirect healthcare costs, and
have a huge socio-economic impact on society (Kucharczyk
et al., 2012; Moore, 2012; Lian et al., 2015). Although
well-documented neuroimaging studies have investigated
insomnia, the neurobiological mechanisms underlying this
psychiatric disorder remain poorly understood.

Growing functional and structural neuroimaging evidence
shows that widespread brain regions are implicated in
the pathobiology of insomnia, including the amygdala,
hippocampus, anterior cingulate gyrus, caudate nucleus,
insula and the frontal areas (Drummond et al., 2004; Nofzinger
et al., 2004; Riemann et al., 2007, 2015; Altena et al., 2008,
2010; Spiegelhalder et al., 2013, 2015; Winkelman et al., 2013;
Baglioni et al., 2014; Joo et al., 2014; Stoffers et al., 2014; Liu
C.-H. et al., 2016; Lu et al., 2017). In particular, the functional
and structural networks are strongly correlated with each other,
and the structural connectivity works as a physical substrate of
the functional connectivity. The functional connectivity can also
affect the structural connectivity according to the brain plasticity
(van den Heuvel et al., 2008; Greicius et al., 2009; Rubinov
et al., 2009; Zhang J. et al., 2011; Long et al., 2015). In addition,
it has been widely recognized that functional interactions
among different brain regions are effectively constrained by
large-scale structural connections (Hagmann et al., 2008; Honey
et al., 2009). However, the network-level structural deficits
remain largely unknown, especially the topological alterations
associated with insomnia. It is therefore essential to examine
the structural substrate of interactions among distributed brain
regions to understand the functional brain activation patterns in
insomnia.

Diffusion tensor imaging (DTI) tractography is a robust,
non-invasive method that can be utilized to reconstruct the
white matter (WM) tracts of the human brain (Basser et al.,
2000; Guo W.-B. et al., 2012; Guo W. et al., 2012). When
combined with a graph theoretical approach, this advanced
neuroimaging technique can allow us to characterize the
structural connection patterns of the human brain in vivo.
Graph theoretical analysis can delineate the whole brain as a
large-scale network consisting of nodes (brain areas) and edges
(functional connectivity between pairs of areas; Bullmore and
Sporns, 2009). Both of these methods have been increasingly
used for the reconstruction of brain WM structural connectivity
networks in psychiatric disorders such as post-traumatic stress
disorder (Long et al., 2013), depression (Long et al., 2015),
Alzheimer’s disease (Lo et al., 2010), and multiple sclerosis (Shu
et al., 2011). So far, there are only two studies exploring the
integrity of WM in insomnia, one study demonstrated that

insomnia is associated with reduced integrity of WM tracts
in the anterior internal capsule by comparing the fractional
anisotropy (FA) between 24 primary insomnia (PI) patients
and 35 healthy controls (Spiegelhalder et al., 2014) and by
performing the between-group comparisons of the WM tracts
between 23 PI patients and 30 healthy controls, another
study suggested that the insomnia patients had decreased
integrity of WM tracts predominantly in the areas of right
anterior and posterior limb internal capsule, right anterior
and superior corona radiate and right thalamus (Li S. et al.,
2016). As such, this pilot work focuses on revealing topology
abnormalities inWM structural connectivity networks associated
with insomnia.

In this study, we hypothesized that compared to the healthy
subjects without insomnia symptoms (NIS) group, the healthy
subjects with IS group would exhibit an altered structural
topology and disrupted nodal network properties of the brain
areas mainly involved in the fronto-limbic system, salience
network, and default-mode network. TheDTI data from IS group
and NIS group were collected first. Then, we constructed the
whole brain WM structural connectivity networks with 90 nodes
represented by cerebrum brain areas using the automated
anatomical labeling (AAL) template and corresponding edges
defined as the mean FA using DTI tractography. In addition,
we applied graph theoretical analysis to generate the small-
world characteristics of these WM networks, which can be used
to identify the altered topological properties of brain networks
in insomnia. More importantly, we examined the associations
between clinical data and the altered network topologies.

MATERIALS AND METHODS

Participants
The study participants comprised 92 right-handed healthy
subjects (female/male: 51/41, age: 20–60 years). All participants
were first screened with the Non-Patient Structured Clinical
Interview for the Diagnostic and Statistical Manual of Mental
Disorders (DSM-IV; SCID) by two independent experienced
psychiatrists (LRT and CLT) as described in our previous
study (Lu et al., 2017). All the subjects had no neurological
or psychiatric disorders, such as depression, anxiety disorders,
epilepsy, schizophrenia, mental retardation, or chronic pain.
In addition, none of the subjects had taken any psychotropic
medication in at least 2 months prior to the MRI scans.

All clinical tests were approved by the Medical Ethics
Committee of Beijing Anding Hospital, Capital Medical
University, the Imaging Center for Brain Research of Beijing
Normal University and the Biomedical Ethics Board of the
Faculty of Health Sciences at the University of Macau (Macao
SAR, China) in accordance with the approved guidelines. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki. The study groups included 30 healthy
subjects with IS (age: 38.00± 11.85 years) and 62 healthy subjects
without IS (age: 37.47 ± 11.95 years). We find no significant
differences in gender, age, as well as educational level between
two groups. Table 1 provides the demographic characteristics of
the participants.
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TABLE 1 | Demographic and clinical data.

Measurements IS (N = 30) NIS (N = 62) t p-value

Age (years) 38.00 ± 11.85 37.47 ± 11.95 0.201 0.841a

Gender (M/F) 15/15 26/36 0.532 0.466b

Education level (years) 14.07 ± 3.34 15.42 ± 2.95 −1.889 0.065a

Handedness (R/L) 30/0 62/0 - -
HAMD score 2.93 ± 1.46 0.19 ± 0.51 9.987 <0.001a

Adjusted HAMD score 1.23 ± 1.31 0.19 ± 0.51 4.214 <0.001a

HAMA score 3.20 ± 2.12 0.32 ± 0.79 7.187 <0.001a

Adjusted HAMA score 1.97 ± 2.00 0.32 ± 0.79 4.327 <0.001a

Insomnia score 1.70 ± 0.92 0.00 ± 0.00 10.172 <0.001a

Data are presented as mean ± SD. Adjusted HAMD score means HAMD scores after omission of sleep questions. Adjusted HAMA score means HAMA scores after
omission of sleep questions. M, male; F, female; R, right; L, left; IS, healthy subjects with insomnia symptoms; NIS, healthy subjects without insomnia symptoms; SD,
standard deviation; HAMD, Hamilton Depression Rating Scale; HAMA, Hamilton Anxiety Rating Scale. aThe p value was obtained by two sample t-tests. bThe p value for
gender distribution in the two groups was obtained by chi-square test.

Insomnia Symptoms Measurements
The 17-item Hamilton Depression Rating Scale (HAMD-17) was
used to measure the severity of participants’ IS (Hamilton, 1967),
which is based on the sum of the three items on the sleep
subscale of HAMD-17. A total score greater than or equal to
one indicated IS. The severity of depression and anxiety in all
the subjects was also assessed using HAMD-17 and the Hamilton
Anxiety Rating Scale (HAMA). In the current study, the adjusted
HAMD and adjusted HAMA scores were generated by omitting
the insomnia-related items to prevent a potential influence of IS
from these scales on our findings (Lu et al., 2017). Clinical data
for the two groups are given in Table 1.

Image Acquisition
All participants were scanned with a 3T Trio MRI scanner
(Siemens Medical Solutions, Erlangen, Germany) located in
the National Key Laboratory for Cognitive Neuroscience and
Learning, Beijing Normal University. Foam padding and
earplugs were used for all subjects in order to reduce the
head motion. During the data recording, all participants were
instructed to completely relax without thinking of particular
things, rest quietly, close their eyes, remain still and keep
awake. T1-weighted, sagittal 3D magnetization-prepared rapid
gradient-echo (MP-RAGE) sequences were acquired with the
following scanning parameters: repetition time (TR) = 2530 ms;
echo time (TE) = 3.39 ms; matrix = 256 × 256; slices = 128;
flip angle = 7◦; field of view (FOV) = 256 × 256 mm2;
slice thickness = 1.33 mm; inter-slice gap = 0 mm; voxel
size = 1 × 1 × 1.33 mm3; orientation = sagittal. DTI data
were collected using a single-shot echo-planar imaging (EPI)
sequence: TR = 7200 ms; TE = 104 ms; matrix = 128 × 128;
slices = 49; flip angle = 90◦; FOV = 128 × 128 mm2;
slice thickness = 2.5 mm; inter-slice gap = 0 mm; voxel
size = 1.8 × 1.8× 2.5 mm3; orientation = axial; 64 non-collinear
diffusion weighting gradient direction (b = 1000 s/mm2) and one
additional image without diffusion weighting (b = 0 s/mm2).

Structural Network Construction
The structural networks were constructed for all participants.
The network nodes were characterized by the brain areas divided
by the AAL template (Tzourio-Mazoyer et al., 2002), whereas the

network edges were defined as fiber tracts that linked with these
nodes.

Definition of Network Nodes
The procedure to define network nodes was according to the
previous study (Gong et al., 2009). The regions of interest
(ROIs) were described in diffusion native space. In brief,
each subject’s T1-weighted image was first co-registered to the
non-diffusion-weighted (b = 0 s/mm2) images in the diffusion
native space through a linear transformation. Then the
co-registered T1 images were non-linearly converted to the
ICBM-152 T1-template in the Montreal Neurological Institute
(MNI) space. The 12 degrees of freedom combined with
nonlinear warps were applied in this step. The inverse
transformation parameter was used to warp the AAL areas
from MNI space to the DTI native space by using a
nearest-neighbor interpolation method based on the statistical
parametric mapping (SPM8) package. Using this procedure,
90 cortical and subcortical brain areas were generated (45 for
each hemisphere, see Supplementary Table S1).

WM Tractography
The following steps were carried out to reconstruct the whole-
brainWM tracts. The distortions were corrected for the effects of
eddy current with an affine alignment of the diffusion-weighted
images to the non-diffusion-weighted images based on the
FMRIB Diffusion Toolbox (FSL)1. Subsequently, the diffusion
tensor matrix was generated on a voxel-by-voxel analysis,
which was further diagonalized to generate three eigenvalues
and associated eigenvectors. The diffusion tensor models were
calculated using the linear least-squares fitting algorithm at
the voxel level by using the Diffusion Toolkit (Wang et al.,
2007). The DTI fiber tracking procedures were carried out
in diffusion native space based on the Fiber Assignment by
Continuous Tracking (FACT) method through the Diffusion
Toolkit (Wang et al., 2007). All of the path tracing in the
dataset terminated if either the FA of each voxel did not exceed
0.2 or the tracking angle was greater than 45 degrees (Shu et al.,
2011).

1www.fmrib.ox.ac.uk/fsl
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Definition of Network Edges
To determine the brain network edges in the native diffusion
space, an ROI i and ROI j were considered to be linked through
an edge where at least one fiber was present between them (Gong
et al., 2009). The connections were weighted by the mean FA
values of fibers that connected these two ROIs to depict the
connectivity strength between ROI i and ROI j.

Network Analysis
Threshold Selection
Each correlation matrix was thresholded into a set of undirected
binary networks by applying a threshold of sparsity S, which was
computed as the ratio of the total number of existing edges with
the all possible total number of edges. Then the number of nodes
and edges of these normalized resulting networks were the same
which made it possible to explore the between-group differences
in regard to network topological organization (Bullmore and
Bassett, 2011). Each connectivity matrix was thresholded over a
threshold range of 0.1 ≤ S ≤ 0.2 with intervals 0.01 repeatedly.

The minimum threshold (S = 0.1) was determined according
to the criterion that the averaged degree of all network
nodes at each thresholded should be larger than 2log(N), in
which N was 90 here denotes the total number of nodes.
All individual networks reached 90% full connections at the
minimum threshold. The maximum threshold (S = 0.2) was
computed by obtaining the individual network topological cost
without being thresholded, and then selected the minimum
sparsity threshold (Long et al., 2013).

Small-World Properties
To measure the small-world properties of constructed structural
brain networks, we first produced 100 random networks by using
a Markov-chain algorithm and each random network has the
same number in regard to nodes, edges and degree distribution
with a real brain network (Liao et al., 2010). A real brain network
can be regarded as a small world network only if it satisfied
the conditions of both γ > 1 and λ ≈ 1 (Watts and Strogatz,
1998), or sigma σ = λ/γ > 1, which indicated that a small-world
network possess a higher clustering coefficient and a similar path
length as compared with a random network (Humphries et al.,
2006; Liu et al., 2008). Typically, we scaled the characteristic
shortest path length Lp and the clustering coefficient Cp of
the constructed structural networks with the averaged Lrandom
and Crandom of all 100 random networks (i.e., the normalized
characteristic path length, λ = Lp

/
Lrandom and the normalized

clustering coefficient, γ = Cp
/
Crandom

), where Lrandom and
Crandom denote the averaged characteristic shortest path length
and the averaged clustering coefficient of 100 generated random
networks, respectively.

Network Metrics
To evaluate the nodal properties of cortical and subcortical
brain regions in structural networks, three key measurements
were computed: the nodal degree Degi, the nodal efficiency
Ei, and the nodal betweenness BCi. Additionally, the global
efficiency Eglo and local efficiency Eloc were used to define
the network efficiency (Achard and Bullmore, 2007). We first

computed the six global network properties Cp, Lp, λ, γ, Eglo,
and Eloc, and three regional nodal parameters Degi, Ei and
BCi. Furthermore, we computed the area under the curve
(AUC) of each parameter, which denoted an integrated index
for the topological organization of brain networks (Zhang
Z. et al., 2011; Liu F. et al., 2016). Detailed information
about the network properties is provided in the Supplementary
Materials.

Statistical Analysis
Differences in the Network Properties
To show the differences of the global network topological
properties between the two groups, nonparametric permutation
tests (5000 iterations, p< 0.05, uncorrected) were carried out for
each network topology over the threshold of 0.1 ≤ S ≤ 0.2 with
intervals of 0.01 and the AUCs (Bullmore et al., 1999) of each
network topology. In addition, nonparametric permutation tests
(5000 iterations, p < 0.05, uncorrected) were also carried out on
the AUCs of each regional nodal property to determine whether
there were significant group distinctions between groups. Before
performing the permutation tests, a multiple regression analysis
was conducted to regress out the gender, age, educational level,
adjusted HAMA score and adjusted HAMD score as dependent
variables to exclude the influence of the depression and anxiety
and the independent variable is the AUC of each network metric.
A value of p < 0.05 was considered uncorrected significant for
multiple regression analysis.

Correlations between the Network Properties and
Insomnia Scores
We also examined the relationships between the global and
nodal network metrics with the insomnia scores in the IS group.
Pearson’s correlation analysis was performed with age, gender,
educational level, adjusted HAMA score and adjusted HAMD
score as unconcerned confounding factors, the AUCs of each
network property as an independent variables and the insomnia
scores in the IS group as dependent variables. An exploratory
threshold matching value of one divided by the number of nodes
(1/90 = 0.011) was adopted as a significant threshold for false-
positive correction for all analyses.

RESULTS

Demographic Data and Clinical Variables
Demographic information and clinical variables from both the IS
and NIS groups are provided in Table 1. We found no significant
differences between the two groups regarding age (t(91) = 0.201,
p = 0.841), gender (χ2

(1) = 0.532, p = 0.466), and educational level
(t(91) = −1.889, p = 0.065). However, both the original HAMD
scores and the adjusted HAMD scores exhibited significant
differences between the IS and NIS groups (p < 0.001, Table 1).
The original HAMA scores and the adjusted HAMA scores also
differed significantly between groups (p < 0.001, Table 1). In
addition, the original and adjusted HAMD and HAMA scores
in IS group are higher than that in NIS group.
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FIGURE 1 | Group comparison of global network topological properties (Cp, Lp, Sigma, Gamma, Lambda, Eglo and Eloc) between the IS and NIS groups
(5000 permutations, p < 0.05, uncorrected). The small-worldness suggests a small-world topology for brain networks of both the IS and NIS groups. The error bar
represents the standard deviation (SD). Cp, clustering coefficient; Lp, characteristic path length; Eglo, global efficiency; Eloc, local efficiency; IS, healthy participants
with insomnia symptoms; NIS, healthy participants without insomnia symptoms.

Group Differences in Global Network
Properties
Statistical analysis was performed to detect distinctions in the
global organization of brain structural networks between the
IS and NIS groups. Both groups showed prominent small-
world properties for all threshold values from 0.1 to 0.2
(Figure 1), suggesting that the small-world architecture of
the human brain is robust to brain aberrations or disorders
(Achard et al., 2006). Importantly, the IS group exhibited an
increased local efficiency and a decreased global efficiency
in the anatomic brain networks as compared with NIS
group (Supplementary Table S2), indicating an insomnia-
related shift in the topology toward regular networks. However,
no statistically significant differences between groups were
revealed in regard to the measures of global properties of
structural networks (Figure 1 and Supplementary Figure S1,
Supplementary Table S2).

Alterations in Nodal Network Properties in
Healthy Participants with Insomnia
Symptoms
Table 2 provides the results of statistical comparisons of the
nodal properties (nodal betweenness centrality, nodal degree and
nodal efficiency) between the IS and NIS groups (p < 0.05,
uncorrected). In comparison with the NIS group, the IS group
showed significantly stronger nodal betweenness centrality over

two brain regions (the right inferior occipital gyrus (IOG.R) and
the right temporal pole: middle temporal gyrus (TPOsup.R)), as
well as significantly larger nodal degree in one region (the IOG.R)
and significantly higher nodal efficiency over two regions (the left
anterior cingulate gyrus (ACG.L) and left superior frontal gyrus,
medial (SFGmed.L); Figure 2 and Table 2). In addition, the
subjects in the IS group exhibited decreased nodal efficiency in
the orbital part of left middle frontal gyrus (ORBmid.L; Figure 2
and Table 2).

Insomnia Was Associated with Nodal
Structural Connectivity Topology of Areas
Involved in Salience and Default-Mode
Networks
Multiple linear regression analyses revealed no significant
correlations between the global network topology and insomnia
scores in the IS group. However, the nodal efficiency in
the left insula (INS.L) of the salience network showed a
negative correlation with insomnia scores (p < 0.011, false
positive correction; Figure 3 and Table 3). In addition, the
nodal betweenness centrality and the nodal degree of the
right postcentral gyrus (PoCG.R) exhibited significant negative
correlations with insomnia scores (p < 0.011, false positive
correction; Table 3). Furthermore, the nodal betweenness of
the right precuneus (PCUN.R) in the default-mode network
also showed significant negative correlations with insomnia
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FIGURE 2 | Brain areas with altered nodal betweenness centrality, nodal
degree and nodal efficiency in IS group. Group comparisons were based on
permutation tests (5000 permutations, p < 0.05, uncorrected, controlling for
the age, gender, educational level, adjusted HAMA score and adjusted HAMD
score). Colored brain areas displayed the significantly aberrant nodal network
properties in IS group. The red and blue represent significantly increased and
decreased nodal topology in IS group as compared with NIS group,
respectively. The more detailed information were showed in Table 2. L, left; R,
right; IS, healthy participants with insomnia symptoms; NIS, healthy
participants without insomnia symptoms; IOG, inferior occipital gyrus;
TPOsup, temporal pole: middle temporal gyrus; ORBmid, middle frontal gyrus,
orbital part; SFGmed, superior frontal gyrus, medial; ACG, anterior cingulate
gyrus. Figures were visualized based on the BrainNet Viewer software
(https://www.nitrc.org/projects/bnv/).

scores (p < 0.05, uncorrected; Figure 3 and Table 3).
Importantly, the nodal betweenness centrality of the left heschl
gyrus (HES.L; Table 3) and the nodal degree of the right
insula (INS.R; Figure 3 and Table 3) showed significant
positive relationships with insomnia scores (p < 0.011,
false positive correction). In particular, the nodal network
properties from several brain regions were also significantly
related with insomnia scores, including the right middle
temporal gyrus (MTG.R), IOG.R, left superior parietal gyrus
(SPG.L), and right HES (HES.R; p < 0.05, uncorrected;
Table 3).

DISCUSSION

This study examined the topology organization of WM networks
in insomnia using DTI tractography and graph theory analysis.
We discovered that: (1) both the two groups exhibited optimized
small-world organization with respect to their WM structural
networks; (2) the IS group showed a lower global efficiency
and a higher local efficiency than that of the NIS group,
illustrating an insomnia-related shift of the topology towards
regular networks; (3) the IS group manifested altered nodal brain
structural network properties (nodal betweenness centrality,
nodal degree and nodal efficiency) in fronto-limbic pathways
including the SFGmed.L, the ORBmid.L and the ACG.L; and
(4) the salience and default-mode networks showed correlations
with insomnia scores. The insomnia scores were negatively
associated with the nodal efficiency of the INS.L of the salience
network and the nodal betweenness centrality of the PCUN.R
of the default-mode network. These findings revealed large-scale
topological organization substrates of the structural network,
which could provide novel tools for better understanding of
the neural circuitry that underlies insomnia. Our results were
not explained by gender, age or educational level, which were
controlled for during the group comparison analysis. The current
results also removed the influence of adjusted HAMD scores and
adjusted HAMA scores, suggesting that insomnia rather than
depression or anxiety is associated with an altered topology of the
fronto-limbic and salience network and default-mode network
structural connectivity.

The small-worldness is an important topological property
that demonstrates two fundamental organizations of functional
segregation as well as functional integration. Functional
segregation is associated with specialized processing within
densely interconnected brain regions, and functional integration
characterizes the ability of information communication between
distributed brain areas (Rubinov and Sporns, 2010; Bullmore
and Bassett, 2011). Interestingly, we demonstrated that both
the healthy participants with IS and those without IS showed
economic small-world topology with respect to their large-scale
brain WM structural connectivity networks.

However, despite the common small-world topology
organizations, the IS and NIS groups exhibited significant
differences in nodal topological characteristics. Specifically,
increased nodal properties in the IS group were identified in

TABLE 2 | Brain regions showing abnormal nodal network properties in IS as compared with NIS.

Brain regions Nodal property IS NIS p-value

IOG.R BC 0.05 ± 0.10 0.02 ± 0.05 0.011∗

TPOsup.R BC 0.01 ± 0.02 0.01 ± 0.02 0.042
IOG.R Deg 84.35 ± 72.31 65.77 ± 58.06 0.029
ORBmid.L Enodal 2.29 ± 2.38 3.67 ± 3.02 0.017
SFGmed.L Enodal 5.97 ± 1.43 5.57 ± 1.81 0.047
ACG.L Enodal 6.69 ± 0.67 6.55 ± 1.34 0.042

Group comparisons: permutation tests (5000 permutations, p < 0.05, controlling for the age, gender, educational level, adjusted HAMA score and adjusted HAMD
score). Data are reported as mean ± SD for the AUC of the nodal network properties over the range of 0.1 ≤ S ≤ 0.2 with an interval of 0.01. IOG, inferior occipital
gyrus; TPOsup, temporal pole: middle temporal gyrus; ORBmid, middle frontal gyrus, orbital part; SFGmed, superior frontal gyrus, medial; ACG, anterior cingulate gyrus;
IS, healthy participants with insomnia symptoms; NIS, healthy participants without insomnia symptoms. L, left; BC, nodal betweenness centrality; Deg, nodal degree;
Enodal, nodal efficiency. ∗Reported results are significant for p < 1/90 based on false positive correlation for multiple comparisons.
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FIGURE 3 | The Pearson correlation between the AUC of the nodal network properties with insomnia scores in healthy participants with insomnia symptoms
(p < 0.05, uncorrected, controlling for the age, gender, educational level, adjusted HAMA scores and adjusted HAMD score). The AUC of each nodal topology was
computed over the range of 0.1 ≤ S ≤ 0.2 with an interval of 0.01. The red color stands for the positive correlation while the blue color reveals the negative
correlation. For more detailed information see Table 3. L, left; R, right; AUC, area under the curve; BC, nodal betweenness centrality; Enodal, nodal efficiency; INS,
insula; PCUN, precuneus.

mainly the frontal and temporal lobes (e.g., the SFGmed.L
and the TPOsup.R) compared with the NIS group (Table 2).
In addition, the nodal network properties in MTG.R in the
IS group also showed significant correlations with insomnia
scores. The frontal regions are known to play important roles in
memory, executive functions and emotion processing (Stuss and
Alexander, 2000; Baddeley, 2003). A whole-brain voxel-based
morphometry (VBM) study on 24 insomnia patients revealed
reduced volume in the left orbitofrontal cortex (Altena et al.,
2010). Drummond et al. (2013) demonstrated that individuals
with insomnia exhibited decreased activations in the frontal
regions when performing working memory tasks. In addition,
Li C. et al. (2016) suggested that the insomnia patients had
decreased amplitude of low-frequency fluctuation (ALFF) values
in the left orbitofrontal cortex and right middle frontal gyrus
during resting-state.

Another ALFF study showed significantly decreased
amplitudes in the prefrontal cortex and default-mode network
sub-regions (Zhou et al., 2016). The temporal lobe structures
were recognized to be responsible for disturbed sleep or
dyssomnia (Van Sweden, 1996). A recent study highlighted
that individuals with poor sleep quality showed increased rates
of atrophy within the frontal, temporal and parietal regions
(Sexton et al., 2014). Another study showed decreased local

coherence in the right temporal, parietal and frontal lobe regions
in obstructive sleep apnea (OSA) patients (Santarnecchi et al.,
2013). More importantly, a DTI study observed widespread
WM integrity alteration, which includes axons linking brain
structures within the limbic system, frontal and temporal cortices
in OSA (Macey et al., 2008). Furthermore, studies based on VBM
approaches demonstrated that the gray matter concentration
was significantly decreased in both the cortical and subcortical
brain regions, including the fronto-parietal cortices, temporal
lobe and anterior cingulate cortex in OSA patients compared to
healthy volunteers (Joo et al., 2010; Torelli et al., 2011). However,
these discrepancies in frontal and temporal lobe analyses could
be caused by the different subjects and imaging methods used
(e.g., fMRI, EEG, structural MRI and DTI).

The present method was the first to use the DTI tractography
to inspect the small-world changes in WM network in insomnia.
Our findings indicated that the alterations of WM structural
connectivity in frontal and temporal regions could influence
information communication and functional integration for
insomnia. In addition, increased nodal properties in the IS
group were found in the default-mode network region, including
the ACG.L. The ACG is the important part of the limbic
system, which is implicated in regulating cognitive and emotional
processing (Bush et al., 2000). The ventral ACG is also part
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TABLE 3 | Significant correlations between nodal network properties and the
insomnia scores in IS group.

Brain regions Nodal topology r-value p-value

Negative correlations between nodal topology with insomnia scores
PoCG.R BC −0.455 0.011∗

PCUN.R BC −0.446 0.014
MTG.R BC −0.381 0.038
IOG.R Deg −0.382 0.038
PoCG.R Deg −0.466 0.010∗

SPG.R Deg −0.376 0.041
INS.L Enodal −0.524 0.003∗

SPG.L Enodal −0.393 0.032

Positive correlations between nodal topology with insomnia scores
HES.L BC 0.461 0.010∗

INS.R Deg 0.503 0.005∗

HES.R Enodal 0.440 0.015

Pearson correlation analyses were corrected by controlling for age, gender,
educational level, adjusted HAMA score and adjusted HAMD score. The AUC
of the nodal topology was computed over the range of 0.1 ≤ S ≤ 0.2 with
an interval of 0.01. R, right; L, left; AUC, area under the curve; BC, nodal
betweenness centrality; Deg, nodal degree; Enodal, nodal efficiency; PoCG,
postcentral gyrus; PCUN, precuneus gyrus; MTG, middle temporal gyrus; IOG,
inferior occipital gyrus; INS, insula; SPG, superior parietal gyrus; HES, heschl gyrus;
IS, healthy participants with insomnia symptoms. ∗Reported results are significant
for p < 1/90 based on false positive correlation for multiple comparisons.

of the default-mode network (Margulies et al., 2007). The
anterior cingulate areas have extensive connections with the
INS, prefrontal cortex, amygdala, hypothalamus and brainstem
(Margulies et al., 2007; Cersosimo and Benarroch, 2013).
Recently, there has been increasing evidence obtained using
positron emission tomography and glucose metabolism from
fludeoxyglucose shows that the ACG plays an essential role in
the regulation of normal sleep, including between sleep and
wake, during sleep deprivation, as well as across sleep stages
in humans (Braun et al., 1997; Nofzinger et al., 1997, 2002;
Thomas et al., 2000). In addition, using VBM, Winkelman et al.
(2013) have found increased rostral ACG in PI patients compared
to good-sleeper controls. Using graph theoretical analysis, our
findings indicated WM alterations of the structural connections
in the ACG. The increased nodal efficiency in the ACG in
insomnia may reflect a compensatory response to repetitive sleep
disturbance.

The INS is thought to be a key hub of the salience network
(Kelly et al., 2012; Tahmasian et al., 2016) and is responsible for
the detection of salience, making decision, emotion judgment,
attention modulation, motor/sensory processes and cognition
regulation (Menon and Uddin, 2010; Cauda et al., 2012; Uddin,
2015). It can be divided into two core parts: one is the anterior
insula which is linked with the frontal and parietal cortex,
ACG, and limbic regions. It is mainly responsible for salience
detection and other emotional processes. Another is the posterior
insula which is associated with the sensorimotor, temporal,
premotor and posterior cingulate regions. It plays a critical role
in perception processing, emotion regulation, interoception and
sensorimotor integration (Cauda et al., 2011, 2012). Previous
studies have observed insula abnormalities in insomnia patients.
For example, Liu C.-H. et al. (2016) observed a decreased
fractional ALFF in the INS, indicating the misperception and

hyperarousal during sleep state in insomnia patients. Further,
Huang et al. (2012) reported decreased functional connections
mainly between the INS and the amygdala as well as between the
thalamus and striatum in PI.

Our study also showed that decreased nodal efficiency of the
left INS was associated with increased insomnia scores. However,
Chen et al. (2014) showed an increased activation in the anterior
INS with the salience network in female insomnia patients.
Recently, Li et al. (2014) found that the PI group exhibited
strong connectivity between the right INS and the bilateral
superior parietal lobe. In the current study, we discovered that
the increased right INS in the nodal degree was related with
increased insomnia scores. These discrepant results may due
to a result of different sample size of the insomnia patients,
gender distinction, potential confounding variables that were
controlled for in different studies, or methodological differences.
Our findings regarding different changes in the left INS and right
INS may provide new evidence that they play different roles in
information processing in insomnia. We demonstrated that the
INS could be an important neural marker for the hyperarousal
pathophysiology underlying insomnia. Taken together, our
findings suggest that IS may disrupt the role of the INS in
maintaining the functions of alertness and cognitive processing.

Some limitations need to be considered. First, we did not
use the Pittsburgh Sleep Quality Index or Duke structured
interview to measure the IS. We applied the three-item sleep
subscale based on HAMD-17 instead since it is better associated
with sleep diaries (Manber et al., 2005). Second, the false-
positive correction (1/number of regions) was used in this
study, which was not as conservative as the false discovery
rate (FDR) correction. Third, we divided the whole brain
into 90 sub-regions based on the AAL atlas to construct the
brain large-scale structural network. However, previous studies
suggest that different parcellation strategies may result in distinct
network topological properties (Fornito et al., 2010; Sanabria-
Diaz et al., 2010). Therefore, it is necessary to apply a more
precise parcellation strategy to provide the information for the
brain network topology alterations in insomnia. Fourth, the
voxel size of DTI data was not isotropic in the present study
which may cause underestimate FA values in brain regions with
crossing fibers (Oouchi et al., 2007), which may influence the
structural connectivity network. Finally, future studies should
employ a high b-value diffusion-weighted acquisition sequence
and streamline tractography to estimate structural connectivity
and model WM architecture.

CONCLUSION

We applied DTI tractography combined with graph theory
approaches to explore the abnormalities of topological
organization in WM structural networks of subjects with
IS. Both the healthy subjects with IS and those without IS showed
small-world organization. However, the insomnia group showed
altered regional network properties in the fronto-limbic system.
The salience and default-mode networks were also strongly
linked with insomnia. Our results demonstrated a disrupted
WM network integrity and thus provided structural insights
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into the insomnia connectome. Importantly, certain structural
networks can provide important implications for understanding
the brain structural connectome in insomnia.
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