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Disturbances can play a major role in biological invasions: by destroying
biomass, they alter habitat and resource abundances. Previous field studies
suggest that disturbance-mediated invader success is a consequence of
resource influxes, but the importance of other potential covarying causes,
notably the opening up of habitats, have yet to be directly tested. Using exper-
imental populations of the bacterium Pseudomonas fluorescens, we determined
the relative importance of disturbance-mediated habitat opening and resource
influxes, plus any interaction between them, for invader success of two ecolo-
gically distinct morphotypes. Resource addition increased invasibility, while
habitat opening had little impact and did not interact with resource addition.
Both invaders behaved similarly, despite occupying different ecological niches
in the microcosms. Treatment also affected the composition of the resident
population, which further affected invader success. Our results provide exper-
imental support for the observation that resource input is a key mechanism
through which disturbance increases invasibility.
1. Introduction
Biological invasions are a major global issue and widely accepted as the second
biggest cause of extinctions after habitat loss [1]. They reduce biodiversity, change
ecosystem dynamics and cause huge financial costs [1–6]. For these reasons, it is
essential to understand how some exotic species can become invasive and what
makes an ecosystem vulnerable to invasion [2,7,8]. A factor frequently shown to
facilitate invasions is disturbances: events that, through destruction of biomass,
lead to changes in resource and habitat availability [9–12].

Disturbance can potentially alter invasion success in a number of inter-
related ways. Three key examples are increased resource availability (defined
as required substances such as light, soil nitrogen or water [2,12,13]), habitat
opening [14] and alterations in community composition [15]. The extent to
which these factors occur may vary for different disturbance types and differ
in their impact on community invasibility; disentangling these differences is
fundamental for understanding disturbance-mediated invader success. Disturb-
ances can increase resource availability through associated resource inputs and
resident mortality [13,16,17]; this can allow invading populations to establish
by reducing competition with residents [18,19]. Consequently, increased
resource input is likely to particularly benefit fast-growing, generalist invaders
[8,14,20–22]. The opening up of habitats reduces any advantage established
residents have over invaders due to priority effects (larger population sizes
and local adaptation) [23–25]; if specific habitats are opened, it is most likely
that specialists will benefit over generalist invaders [8,14,20–22]. The temporary
loss of resident functional diversity associated with some disturbances [15,26]
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Figure 1. Timeline of experimental design: the four treatments: (a) static + KB (added resources), (b) homogenized + KB (full disturbance), (c) static + buffer (no
disturbance/control) and (d ) homogenized + buffer (opened habitat) were carried out on day 7. All treatments were invaded post-disturbance with either a WS or
SM invader and replicated six times. Treatments ended 2 days later on day 9. Homogenization lasted 30 s; 2 ml of KB or buffer was added, where appropriate.
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can result in less efficient resource use and vacant habitats,
again promoting invasions [19,21,22,27–30].

A large proportion of previous disturbance–invasion
work concentrates on resource influxes as the cause of
increased invasibility, with little consideration for habitat
opening (e.g. [13,31], but see [12]). Studies that do take habi-
tat opening into account are either observational and do not
actively disturb or invade communities (e.g. [8]) or indirectly
alter resource availability in habitat opening treatments
through consumption reduction (e.g. [12]) [13]. Here, we
experimentally investigated the relative importance of two
aspects of disturbance-induced biomass destruction in deter-
mining invasion success: resource availability and habitat
opening, as well as their consequences for the resident
population density and diversity, in experimental popu-
lations of bacteria. In order to independently manipulate
these variables, biomass destruction per se had to be avoided.

We used the bacterium Pseudomonas fluorescens, which has
previously been used as a model for testing the causes and
consequences of diversity [32,33] and invasion biology
[28,34,35]. When introduced into a spatially structured
microcosm, P. fluorescens diversifies into three distinct mor-
photypes: an air–broth interface growing wrinkly spreader
(WS), a broth inhabiting smooth (SM) and the rarer bottom-
dwelling fuzzy spreader [32,34,36–38]. We independently
manipulated two key potential consequences of disturbance
in a full factorial design: habitat opening by homogenization
to open the surface niche and resource abundance through
directly adding nutrients. We then determined the change
in resident population composition and the success of geneti-
cally marked and visually distinguishable P. fluorescens lacZ
marked invaders. Although originally reported to be neutral
[39], the lacZ marker has been found to give a fitness advan-
tage [40]: we additionally test this. By using two different
invading morphotypes, the faster-growing SM and the
more spatial niche-specific WS, it was possible to test whether
different invader characteristics are predictably affected by
resource input and habitat opening.
2. Methods
(a) Strains
Ancestral P. fluorescens SBW25 was grown overnight to carrying
capacity in shaken glass vials (microcosms) containing 6 ml of
King’s medium B (KB), at 28°C with loose lids to allow oxygen
transfer. This was inoculated into static microcosms and left to
diversify for 7 days, before either being plated or disturbed
and invaded according to treatment group and left for a further
2 days (figure 1). Microcosms plated on day 7 (n = 12) were used
to estimate a resident density at the time of invasion of 4.17 × 109

(±1.09 × 109 SD) colony forming units (cfu). On day 9, all treated
microcosms were thoroughly homogenized and frozen at −80°C
in a final concentration of 25% glycerol. Samples were plated at
10−5 and 10−6 dilutions on KB agar plates containing 100 µg l−1

of X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside [41]).
For the invader, P. fluorescens marked with a lacZ insert [39] was
grown in static KB and left to diversify for 6 days before being
plated; this strain is visually distinguishable from the wild-type
in the presence of X-gal due to a colour change to blue. A single
SM and a WS morph were selected, grown overnight, then both
frozen in glycerol stock and plated to check morphotype purity.
To stop any additional resources being added to the treatments,
invaders were removed from their growth medium by centrifu-
ging and re-diluted in M9 salt solution (3 g KH2PO4, 6 g
Na2HPO4, 5 g NaCl per litre), a buffer to control for volume,
before addition.

(b) Experimental design
Treatments to manipulate resource availability contrasted the
addition of the growth medium KB with that of M9 buffer. Treat-
ments to examine habitat opening involved homogenization to
open the broth surface niche, in contrast with a static control. This
generates a 2 × 2 full factorial experimental design with four treat-
ment groups: homogenized +M9 buffer (opened habitat only),
static + KB (added resources only), homogenized +KB (full disturb-
ance: opened habitat + resource addition) and static + buffer (no
disturbance/control; figure 1). Buffer (M9) was added to the control
microcosms to account for increases in broth volume in the KB
addition treatments. About 2000 µl of KB or buffer was added;
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Figure 2. Invasion success (√v) in four treatments representing different aspects of disturbance: no disturbance, opened habitat, added resources, and combined
habitat and resources. The dotted line shows equal proportional change (invader and resident fitness). The left panel shows the SM invader, right the WS. Circles
represent individual microcosms.
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homogenization lasted for 30 s. All microcosms were then immedi-
ately invaded with 60 µl (1% of resident population volume) of
either the SM (= 1.48 × 108 cfu) or WS (= 1.21 × 108 cfu) invader.
Both invader and resources were pipetted slowly down the side of
the microcosm in order to minimize disruption to any biofilm.
Biofilms remained whole throughout addition, with any disruption
(i.e. separation from the glass) being minimal in comparison with
homogenization. All treatments were replicated six times with
both invaders, resulting in 48 microcosms.

(c) Competition experiment
To determine the relative fitness of the ancestral wild-type to the
ancestral lacZ strain, cultures were grown shaken overnight before
3 ml of each was mixed together in a fresh microcosm. This was
plated to determine starting densities and 60 µl used to inoculate 8
KB microcosms that were then left to grow overnight statically
before being plated. Relative fitness (W ) was calculated as
the ratio of growth rates, with growth estimated from Malthusian
parameters (ln(end density/start density))/time [42].

(d) Statistical analysis
Relative invader fitness (invasion success) was calculated as per-
centage change, v, of the proportion of invader (lacZ strain)
relative to the resident. v was given by v = x2(1− x1)/x1(1− x2),
where x1 is the initial invader proportion and x2 the final [43].
This was then square-root transformed. This allows comparison
of proportional change even when the community is no longer
growing exponentially. Generalized linear models (GLMs) were
carried out in R [44] to test for the interactive effects of habitat
opening, resource addition and invader morphotype on invasion
success (√-transformed). We additionally added resident SM
and WS densities, plus their interaction, as covariates in this
model. Similarly, we also tested for the effect of treatments
and invader morphotypes on resident densities using a GLM.
Resident densities were normalized using a log10(n + 1 ml−1)
transformation. In both cases, non-significant model terms
( p > 0.05) were sequentially removed and model fits were
compared using F-tests. Relative wild-type and invader fitness
were compared with a t-test.
3. Results
(a) Invasion success
We factorially manipulated resource availability and habitat
opening to determine their relative impact on the success of
two different invaders. Habitat opening did not significantly
affect invasion success (F1,44 = 0.94, p = 0.34; figure 2), nor
interact with resources (F1,43 = 2.04, p = 0.16), but resource
addition increased invasibility (F1,45 = 13.0, p < 0.001).
Invader morphotypes differed in their success, with the
mean SM invasion success (2.78 ± 0.73 s.d.) higher than WS
(1.58 ± 0.90 s.d.) across the four treatments (F1,45 = 10.8,
p < 0.001). There were no significant interactions between
invader type and the resource and habitat manipulations in
terms of invasion success ( p > 0.16 for all interaction terms).
Note that the lacZ invader increased in frequency in the
majority of replicates (v > 1), and the lacZ ancestor had a
higher relative fitness than the wild-type ancestor in
competition frequencies in which starting ratios were
approximately equal (t = 5.3, d.f. = 7, p = 0.001).
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Figure 3. Density per millilitre of resident SM (left panel) and WS (right panel) colonies after 9 days (log10 transformed). Grey boxes show the SM invaded
treatments; white the WS. Densities did not significantly differ between treatments.
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(b) Resident morph density and its effect on invasion
success

Total resident density did not significantly differ between
treatments (F3,44 = 1.14, p = 0.35; figure 3). However, specific
resident morphotypes did differ. Resident SM density
increased when resources were added, but only when
invaded by the SM morphotype (F1,44 = 7.28, p < 0.01); no
other variable had a significant affect. The density of resident
WS was affected by a more complex three-way interaction
between invader, habitat opening and resource addition
(F1,40 = 17.2, p < 0.001).

To determine the relative importance of these changes in
resident populations to the direct effects of the manipula-
tions, we included total resident density in our model:
there was a negative effect on invader success (F1,43 = 17.6,
p < 0.001). To decompose total resident density effects into
the effects of WS and SM residents, we added final resident
SM and WS densities, plus the interaction between them, as
covariates in the statistical model for invasion success. As
before, resource addition consistently increased invasion suc-
cess (F1,44 = 21.7, p < 0.001) and the WS invader was less
successful (F1,46 = 18.2, p < 0.001). However, increased resi-
dent density significantly reduced invasion success (main
effect of WS density and WS by SM density interaction:
F1,42 = 18.2, p < 0.001; F1,38 = 14.4, p < 0.001, respectively;
figure 4). Additionally, there was a significant three-way
interaction between resources, habitat opening and invader
(F1,37 = 8.31, p = 0.007), with the greatest invasion success
occurring when SM invaded microcosms that were disturbed
in both ways. This demonstrates treatments had a direct effect
on invasion, as well as an indirect effect through changes in
resident population densities.
4. Discussion
Here, we experimentally determined, using a microbial
system, the contributions of two distinct disturbance-induced
processes predicted to enhance the success of invaders:
resource influx and habitat opening. We found that resource
influx provided a fitness advantage to the faster-growing
invaders over the residents, while habitat opening had no
impact. These results support previous observational work
that attributes post-disturbance invader success primarily to
resource influxes [8]. Invaders benefiting from resource
influxes can be explained by reduced competition, and hence
higher growth rate, allowing the invading genotypes to
become established [13,18]. That the relative benefit of resource
influx was independent of the life history of the invader
(faster-growing SM or mat-forming WS [45]) adds to the
generality of this finding.

The absence of an effect of opening up the WS ecological
niche on invasion success of the WS invader may initially
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Figure 4. Invasion success (√v) against the log10(n + 1) density (cfu ml−1) of the resident WS (a) and SM (b) morphs. Regression lines with densities as the sole
explanatory variable are significant to p < 0.02 with the shaded area showing the 95% confidence interval. The dotted line at v = 1 shows equal invader and
resident proportional change.
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seem surprising. In this context, the resident WS were still pre-
sent in the population, hence both resident and invader would
have competed to colonize the opened niche, as opposed to
the invader invading an already colonized niche. This lack of
difference between invasion success when the residents were
occupying the same niche as opposed to being present in the
wider environment suggests either an absence of, or no treat-
ment effect on, priority for this particular niche [22]. As
previous work has found strong priority effects in diversified
P. fluorescens communities, the latter is more likely [46].

The density of the resident communities also affected inva-
der success, with the density of WS in particular having a
negative effect. This is presumably because of increased
resource competition. The morphotypic composition of each
resident population was the result of independent evolution
from an initially clonal population, and as such, therewas con-
siderable within-treatment variation. However, resident
composition was also affected by interactions between the
two treatments and the invader type; gaining insights into
the mechanisms underlying these results may be a useful
future direction. The key point is that resource influx had an
indirect effect on invasion success through changes in resident
community composition, in addition to the direct effect
described above. Moreover, controlling for these differences
revealed that SM invaders were particularly successful at
invading microcosms in which resources were added and
the biofilm was destroyed. More generally, the interactions
between invader type and resident populations demonstrate
how invaders can modify their new environment and poten-
tially create invasion feedback loops [27,47]. Biological
invasions themselves can act as disturbances; the establish-
ment of invaders that alter resource abundances could have
a major future impact on the community’s invasibility
[2,18,22,29,48]. An example of this is the invasion of New
Zealand forests by mammalian browsers which, through
changing the forest composition, can facilitate invasion by
exotic avifauna that are otherwise outcompeted by native
birds [49].

While our results suggest resource influxes are a key driver
of invasion success post-disturbance, the relative importance of
resources and habitat opening is likely to be dependent on the
community being disturbed [2,8,27]. For example, habitat open-
ing may be expected to have a bigger effect when resident
species are maladapted to the post-disturbance environment;
this could be due to the disturbance itself or from niche modifi-
cation byestablished invaders [22,24].Maladaptationwill erode
both priority (fitness advantage of being the first to occupy a
niche) and dominance effects (disproportionally large influence
by one species on invasion resistance, usually through competi-
tive dominance over limiting resources), ultimately reducing
invasion resistance by weakening the residents’ competitive
dominance [27,50]. The chance of post-disturbance maladapta-
tion occurring may be greater in more diverse communities,
where species are more likely to be niche specialists [32]. Simi-
larly, resource influxes have been shown to have a bigger
effect on invasibility in communities that were resource-poor
beforehand [8]. How communities respond to disturbance
also depends on their previous disturbance regime [2,8,27],
with deviations from this explaining twice the variation in inva-
sion risk than disturbance per se [51]. Finally, invaders only
being able to establish due to resource influxes raises the ques-
tion of whether their populations will be stable when resource
abundances return to pre-disturbance levels. For example, Pet-
ryna et al. [52] found that although disturbance facilitated
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invasions of grassland, invader populations reduced with time
after disturbance.

In summary, using a microbial system, we have provided
experimental support for the proposed key role of resource
influx in driving post-disturbance invasion success. However,
more studies are needed to determine how disturbance his-
tory and other ecological variables will affect the generality
of this conclusion.
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