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As it is well known, a worldwide improvement in life expectancy has taken place. This
has brought an increase in chronic pathologies associated with aging. Cardiovascular,
musculoskeletal, psychiatric, and neurodegenerative conditions are common in elderly
subjects. As far as neurodegenerative diseases are concerned dementias and
particularly, Alzheimer’s disease (AD) occupy a central epidemiological position given
their high prevalence and their profound negative impact on the quality of life and life
expectancy. The amyloid cascade hypothesis partly explains the immediate cause of
AD. However, limited therapeutical success based on this hypothesis suggests more
complex remote mechanisms underlying its genesis and development. For instance,
the strong association of AD with another irreversible neurodegenerative pathology,
without curative treatment and complex etiology such as presbycusis, reaffirms the
intricate nature of the etiopathogenesis of AD. Recently, oxidative stress and frailty
syndrome have been proposed, independently, as key factors underlying the onset
and/or development of AD and presbycusis. Therefore, the present review summarizes
recent findings about the etiology of the above-mentioned neurodegenerative diseases,
providing a critical view of the possible interplay among oxidative stress, frailty
syndrome, AD and presbycusis, that may help to unravel the common mechanisms
shared by both pathologies. This knowledge would help to design new possible
therapeutic strategies that in turn, will improve the quality of life of these patients.
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INTRODUCTION: THE NEUROBIOLOGICAL MISSING LINKS
BETWEEN AGE-RELATED HEARING LOSS AND ALZHEIMER’S
DISEASE

Age-related hearing loss (ARHL) or presbycusis is a major public health burden worldwide
that profoundly affects the quality of life of those who suffer from it (Mathers et al., 2000,
2008; World Health Organization [WHO], 2002, 2021). It is a progressive, chronic, and
irreversible condition, which should be construed as a neurodegenerative disease, for which
no curative treatment is available yet (Yamasoba et al., 2013; Melgar-Rojas et al., 2015;
Parham et al., 2015; Wang and Puel, 2020). Also, it is the most frequent sensory impairment in
the elderly. Estimates are that 4 out of 10 adults aged 60 years or older have some degree of
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limiting hearing loss (World Health Organization [WHO], 2021).
Moreover, the prevalence of disabling hearing loss has been
estimated at about 15% at 60 years of age, increasing up to 58% at
90 years of age, with all the consequences that this entails (World
Health Organization [WHO], 2021). AD is also a progressive,
chronic, and irreversible pathology without curative treatment.
It represents around 70% of dementias, which affect about 55
million people worldwide (World Health Organization [WHO],
2017a; Zheng et al., 2017; Shen et al., 2018; Ralli et al., 2019; Guo
et al., 2020). Life quality is severely affected since AD interferes
with the ability to perform daily life activities. Therefore,
autonomy and life expectancy are severely compromised (World
Health Organization [WHO], 2017a; Guo et al., 2020).

Epidemiological studies show a strong independent
association between ARHL and AD (Lin et al., 2011; Lin
and Albert, 2014). Actually, recent data link 9% of sporadic AD
to hearing loss starting at mid-life. Thus, ARHL emerges as the
main preventable risk factor of AD, at least in this life period,
even with causal implications (Livingston et al., 2017; Loughrey
et al., 2018). Comorbidity between ARHL and AD will further
aggravate the condition of the patients, multiplying health,
social, economic, and sanitary impact. In sum, epidemiological
data link ARHL with cognitive impairment and dementias, in
particular AD, pointing to dynamic association between these
two neurodegenerative conditions (Fortunato et al., 2016; Zheng
et al., 2017; Shen et al., 2018; Panza et al., 2019; Ralli et al., 2019;
Uchida et al., 2019; Guo et al., 2020; Llano et al., 2020; Slade
et al., 2020; Johnson et al., 2021). Besides ARHL contributing
to the pathogenesis of AD, the converse may also be the case.
However, at present, the biological or mechanistic foundations
of such interplay are unknown (Griffiths et al., 2020; Nadhimi
and Llano, 2021). Several hypotheses/mechanisms have been put
forth. These include existence of shared underlying pathologies,
such as those of vascular origin; diminished auditory input
that directly triggers brain atrophy as an expression of the
complex chain of cellular events leading to dementia; overload
of cognitive resources, diverted to process diminished auditory
input (Uchida et al., 2019; Griffiths et al., 2020); existence of
amyloid plaques (AP), intraneuronal neurofibrillary tangles
(NFT) and cytoskeletal pathology in the cochlea, dorsal cochlear
nucleus, superior olive, central nucleus of the inferior colliculus,
medial geniculate body, primary auditory cortex and association
area of the auditory cortex (Omata et al., 2016; Shen et al., 2018).
These or another related hypothesis/mechanism do not exclude
each other mutually. Whether such interplay is unidirectional
from ARHL to AD, or bidirectional is also unknown. The
challenge of testing such intricate and open-end hypotheses
scenery, is the complexity and multiplicity of factors involved
in the genesis and development of both neurodegenerative
conditions. Frailty and related oxidative stress have recently
drawn considerable attention (Kawada et al., 2015; Panza
et al., 2015a,b; Huang et al., 2016; Shen et al., 2018; Wang and
Puel, 2020; Misrani et al., 2021). In this review, we discuss the
possibility that the oxidative stress linked to frailty, could be, at
least in part, primarily involved in the interplay between ARHL
and AD. We stress the need for the development and use of
rodent models to target and integrate in a translational approach

molecular, cellular, and behavioral mechanisms at the interphase
between ARHL and AD.

OXIDATIVE STRESS IN AGE-RELATED
HEARING LOSS AND ALZHEIMER’S
DISEASE

When the endogenous antioxidant system is overcome either
by production of excess free radicals, essentially reactive oxygen
and nitrogen species (ROS/RNS), limited free radical handling
or both, accumulation of toxic free radicals occurs, leading
to oxidative stress-induced damage to lipids and proteins in
cell membranes and the cytosol, as well as to the nuclear
and mitochondrial genome (Ames et al., 1993; Halliwell, 2006;
Fetoni et al., 2011; Böttger and Schacht, 2013; Nimse and Pal,
2015). The deleterious effects that excess of free radicals has on
cells, seemingly is critically associated with the aging process,
the genesis and/or development of different neurodegenerative
pathologies such as amyotrophic lateral sclerosis, Huntington,
Parkinson’s and Alzheimer’s diseases and presbycusis (Ames
et al., 1993; Seidman, 2000; Chauhan and Chauhan, 2006; Uttara
et al., 2009; Dai et al., 2014; Huang et al., 2016).

In the auditory system, besides ARHL, oxidative stress is at
the core of noise-induced hearing loss (NIHL) and drug-induced
hearing loss (DIHL; Henderson et al., 2006; Le Prell et al., 2007a,b;
Fetoni et al., 2013). This has led to the notion that oxidative
stress is a common pathogenic pathway, shared by the above-
mentioned auditory pathologies (Alvarado et al., 2015, 2018).
In the peripheral auditory system, the cochlea is particularly
exposed to damage from oxidative stress. This is likely due
to the metabolic demands of mechanoelectrical transduction
(Robles and Ruggero, 2001; Fettiplace and Kim, 2014), for
which large electrochemical gradients have to be maintained,
particularly for the generation of the endocochlear potential,
the driving force behind mechanoelectrical transduction. Also,
fast contractile properties of outer hair cells (OHCs) allowing
them to act as active signal amplifiers (Robles and Ruggero,
2001), are energetically demanding. High physiological oxidative
metabolism rates in the organ of Corti may result in increased
production of free radicals, more demanding to keep within a
normal range. Possible convergence with different scenarios of
mitochondrial dysfunction (Böttger and Schacht, 2013) makes
the auditory receptor prone to imbalances in the endogenous
antioxidant system, which will lead to unchecked accumulation
of ROS/RNS and damage sensory cells, stria vascularis and spiral
ganglion cells, leading to altered auditory function (Henderson
et al., 2006; Fetoni et al., 2013; Fujimoto and Yamasoba, 2014;
Alvarado et al., 2015, 2018). Meanwhile, there is also mounting
evidence that the central auditory pathway is affected directly
by oxidative stress leading to increases in the expression of
NADPH oxidase 2 and 8-hydroxy-2-deoxyguanosine, levels of
lipid peroxidation and mitochondrial DNA deletion, and also
to neurodegenerative changes in the cochlear nucleus, inferior
colliculus and auditory cortex (Du et al., 2014; Li et al., 2018;
Tavanai et al., 2019). Supporting this, antioxidant-based therapies
should mitigate the hearing damage induced by oxidative stress.

Frontiers in Neuroscience | www.frontiersin.org 2 January 2022 | Volume 15 | Article 816300

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-816300 January 12, 2022 Time: 15:0 # 3

Alvarado et al. Presbycusis and Alzheimer’s Disease

Accordingly, several antioxidant and combinations has proven
to be effective, mainly at the level of proof principle, for the
treatment of NIHL (Yamasoba et al., 1999; Kopke et al., 2000,
2007; Tanaka et al., 2005; Le Prell et al., 2007a, 2011), DIHL
(Campbell et al., 2007; Tokgoz et al., 2011; Le Prell et al., 2014)
and ARHL (Alvarado et al., 2018; Cai et al., 2020). This confirms
the central role that oxidative stress plays in the development
and/or progression of many auditory pathologies.

In relation to AD, the view of the disease as a proteinopathy,
summarized in the amyloid cascade and tauopathy hypotheses
has been the source of essential advances in the understanding
of the disease, in spite of yet limited therapeutical success
(Karran et al., 2011). However, this should not obscure the
fact that oxidative stress has also been implicated in the
pathogenesis of AD. Actually, it has even been postulated
that oxidative stress-induced damage precedes AP and NFT
deposits, characteristic of this neurodegenerative disease.
Several biomarkers of oxidative stress have been detected in
blood, neural tissue or cerebrospinal fluid in AD patients,
indicating lipid peroxidation (2-propenal, 4-hydroxynonenal,
F2-isoprostanes, malondialdehyde), protein oxidation (3-
nitrotyrosine) and DNA oxidation (8-hydroxydeoxyguanosine,
8-hydroxyguanosine), even at early stages of the disease (Perry
et al., 2002; Castellani et al., 2006; Chauhan and Chauhan, 2006;
Uttara et al., 2009; Gella and Bole, 2011; Chen and Zhong, 2014;
Huang et al., 2016).

Although it is not clear which factors trigger the oxidative
stress in AD, both the amyloid-β protein (Aβ), either in its soluble
or fibrillar forms, and the hyperphosphorylated microtubule-
stabilizing protein tau, that lead to NFT formation, contribute

to such oxidative stress-induced damage. Aβ has binding sites
with high affinity for metal ions such as iron, copper and zinc,
which would produce chelation of the Aβ and consequently
accumulation of AP, with highly toxic oxidative capacity for the
neurons (Chauhan and Chauhan, 2006; Uttara et al., 2009; Gella
and Bole, 2011; Chen and Zhong, 2014; Huang et al., 2016).
The hyperphosphorylated tau, due to the oxidative imbalance,
might be modified by a non-enzymatic glycation process, with
formation of advanced glycation end products (AGEs; Perry
et al., 2002; Castellani et al., 2006; Chauhan and Chauhan, 2006).
The AGEs are highly reactive and thus, they would generate
a large amount of ROS/RNS that are not only harmful for
neurons “per se”, but could increase, even more, Aβ levels, thus
generating a vicious circle that could worsen the manifestations
of AD. Nevertheless, it is also worth noting that antioxidant
properties have been attributed to Aβ and hyperphosphorylated
tau, suggesting that they are also part of the endogenous neuronal
protection system against oxidative stress (Zou et al., 2002;
Castellani et al., 2006; Baruch-Suchodolsky and Fischer, 2009;
Uttara et al., 2009; Gella and Bole, 2011). Therefore, increases in
ROS/RNS levels would lead directly or indirectly to an increase
in the levels of those two AD biomarkers. Without ruling out
other possibilities, this “dual” role seems to be related in part to
the aging process, as these molecules would exert their protective
effect before aging when the disease is not present yet, while their
deleterious effect occurs during aging after the onset of the disease
(Zou et al., 2002; Castellani et al., 2006; Baruch-Suchodolsky
and Fischer, 2009; Uttara et al., 2009; Gella and Bole, 2011). As
opposed to ARHL, antioxidant-based therapies have not yielded
the expected results in AD. However, similar to other therapies,

FIGURE 1 | Age-related hearing loss and frailty syndrome. Presbycusis has been proposed as a preventable risk factor for the development of frailty. Depending on
the magnitude of the hearing loss, its impact could go far beyond auditory dysfunction, affecting also the physical, emotional, and cognitive domains. If
presbycusis-induced alterations of these three domains co-exist, this could lead to a “frailty syndrome” that, consequently, will have a profound negative impact in
the aggravation of Alzheimer’s disease, if there is comorbidity between FS and AD.
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failures can be attributed to experimental design, including late
start of the therapies when the disease is already established,
the individual and not combined use of micronutrients or
the difficulty of crossing the blood-brain barrier, which would
decrease its bioavailability at the brain level (Persson et al., 2014).
Therefore, new studies avoiding these, and other limitations are
needed in order to draw valid conclusions about the use of
antioxidants as possible therapies for the treatment of AD.

FRAILTY SYNDROME IN AGE-RELATED
HEARING LOSS AND ALZHEIMER’S
DISEASE

The World Health Organization (World Health Organization
[WHO], 2017b), defines frailty as “a clinically recognizable state
in which the ability of older people to cope with every day or acute
stressors is compromised by an increased vulnerability brought
by age-associated declines in physiological reserve and function
across multiple organ systems”. Recent conceptualization
currently limits consensus on how to diagnose frailty. Different
models have been proposed, “the phenotype model” being one
of the most used. In this model, physical/functional capacity is
evaluated based on five criteria: weight loss, weakness, slowness,
exhaustion, and low levels of physical activity. A patient is

considered frail when presenting at least 3 and pre-frail if 1
or 2 of them are present (Xue, 2011; Wou and Conroy, 2013;
Leng et al., 2014; Kane et al., 2016). It is important to note that
although frailty mainly occurs during aging, frailty and aging are
not synonymous and not all aged people will develop it, in fact it
is estimated that, depending on diagnostic criteria, its prevalence
varies between 4 to 59% among people 65 years or older (Kojima
et al., 2019). Although frailty is a multifactorial condition that
affects multiple organs and systems, underlying mechanisms
are not clear. It has been proposed that pro-inflammatory
states, sarcopenia, hormonal and metabolic imbalances, DNA
damage, and more recently, oxidative stress are critical in the
development of this pathology (Mulero et al., 2011; Xue, 2011;
Inglés et al., 2014; Leng et al., 2014; Namioka et al., 2017; Soysal
et al., 2017; World Health Organization [WHO], 2017b; Bisset
and Howlett, 2019; El Assar et al., 2020). Regarding the latter,
it has been suggested that it could be a primary mechanism
triggering frailty, since oxidative stress-induced damage could
serve as background or starting point of the multiple alterations
described in subjects with frailty (Mulero et al., 2011; El Assar
et al., 2020). For instance, while the oxidative stress-induced
mitochondrial dysfunction could contribute to the distinctive
sarcopenia that leads to weight loss, weakness and slowness, the
DNA oxidation would induce the DNA damage observed in
frailty (El Assar et al., 2020).

FIGURE 2 | Oxidative stress and frailty syndrome in age-related hearing loss and Alzheimer’s disease. The figure shows the complex interplay among oxidative
stress, frailty syndrome, age-related hearing loss and Alzheimer’s disease. Oxidative stress-damage represents a possible trigger for both age-related hearing loss
and Alzheimer’s disease, and also for the genesis of frailty syndrome. Presbycusis is a fundamental risk factor for the development of Alzheimer’s disease and frailty
syndrome while, frailty syndrome may contribute to the exacerbation of Alzheimer’s disease. Note a hypothetical biunivocal relationship between age-related hearing
loss and Alzheimer’s disease, as these neurodegenerative pathological conditions may influence each other.
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Given the relevance that, from the clinical point of view, frailty
has for different age-related pathologies, the concept has evolved,
incorporating in addition to the physical/functional domain,
the emotional and cognitive, known as frailty syndrome (FS;
Xue, 2011; Wou and Conroy, 2013; Leng et al., 2014; Khezrian
et al., 2017; Kojima et al., 2019). It has been suggested that the
FS, mainly the emotional and cognitive domains, are essential
for the development or progression of AD, which has a high
prevalence (32%) of coexisting frailty (Kojima et al., 2019).
This is crucial considering that the potentially modifiable nature
of the risk factors that could lead to emotional or cognitive
frailty, might be useful to identify possible therapeutic targets for
AD. For instance, it has been proposed that cognitive frailty is
pivotal in the pathogenesis of AD. One of the key risk factors
for the development of this frailty is hearing impairment and
particularly, ARHL (Figure 1) (Panza et al., 2006, 2015a,b, 2019;
Khezrian et al., 2017). As previously mentioned, epidemiological
studies highlight the association between hearing loss in older
adults with dementia and cognitive decline. In these subjects,
the rate of cognitive decline is accelerated, increasing the risk of
developing dementia, including AD, and this risk is proportional
to the level of hearing loss observed (Lin et al., 2011; Lin and
Albert, 2014; Deal et al., 2016; Thomson et al., 2017). The
emergence of the concept of FS, opens the possibility that at least
part of the high prevalence of hearing loss observed in patients
with AD and its consequences for the progression of the disease
may be amplified through FS, and this will need to be explored.

Regarding the emotional frailty, ARHL has a profound
impact on the quality of life of these patients causing low self-
esteem, social withdrawal, isolation, frustration, and depression
which would undoubtedly affect their emotional domain (World
Health Organization [WHO], 2002, 2017a,b; Huang and Tang,
2010; Ciorba et al., 2012; Kidd and Bao, 2012), producing or
aggravating the emotional frailty (Figure 1). Since emotional
frailty can coexist with cognitive frailty (Khezrian et al., 2017),
the latter can be affected, which would increase the risk of
suffering from dementia and AD in older people. Finally, the
relationship between ARHL and physical frailty has been less
studied. However, there is no doubt that hearing loss in older
people also has a negative impact on their physical activity.
Accordingly, it has been suggested that ARHL: (1) induces
to perform less physical activity because subjects are socially
isolated; (2) affects cognitive resources and attention, which are
essential for maintaining posture and balance and (3) restricts
the ability to effectively monitor the environment (hearing
footsteps and other auditory cues that provide guidance), which
reduces the probability of engaging in physical activities (Gispen
et al., 2014; Fortunato et al., 2016). Additionally, common
neural degeneration, which affects both the cochlea and the
vestibular organ, involved in controlling balance, may explain
decreases in physical activity (Gispen et al., 2014; Fortunato
et al., 2016). All these scenarios may influence the onset
and/or progression of physical frailty (Figure 1). Finally, a high
association between presbycusis and falls over time in older
people has been described, which might have repercussions
leading to decreased physical activity and therefore, worsening
frailty (Kamil et al., 2016).

CONCLUSION

Oxidative imbalance and related FS due to it, may be part
of multiple pathologies that affect geriatric patients. The
oxidative imbalance, either due to overproduction or lack
of elimination of ROS is critical not only for the onset
and/or development of ARHL or AD but also for triggering
FS (Figure 2). The latter is also affected by ARHL which
in turn, enhances the frailty condition in older subjects.
Considering that oxidative stress, ARHL and FS individually
might be critical factors in the development of AD (Figure 2),
their coexistence in the same patient would be decisive for
the onset, progression, and severity of this neurodegenerative
disease. More so if it is considered that dementias such as
AD may negatively affect ARHL, generating a vicious circle
between both conditions with devastating consequences. Hence,
due to the complex relationship that exists between ARHL
and AD in which oxidative stress and related FS may play
unexplored roles, it would be logical to expect that therapies
aimed at specific targets of a single pathogenic pathway would
have little beneficial effect. Therefore, the optimal therapeutic
approach should not only focus on a single pathway, instead
it should be multifaceted, as the combination of therapeutic
strategies aimed at different pathogenic pathways or different
points of the same pathway would guarantee a synergistic
interaction enhancing the beneficial effect of the therapy which
in turn, would have a positive impact on the patient’s health
quality of life.

To achieve the goal of unveiling pathogenic mechanisms
of AD in relation to ARHL, it is necessary to design studies
in appropriate animal models reproducing the pathological
complexities of AD, in particular comorbidity with ARHL,
oxidative stress and frailty syndrome. Such animal models,
besides presenting clinical and biological markers of AD, must
reproduce ARHL traits, comparable to those found in humans.
The results obtained from such studies will allow a more
“humanized” and reality-adjusted analysis of the data that will
help to comprehend the interplay between these important
neurodegenerative pathologies, which will facilitate a better
understanding of the etiopathogenic mechanisms involved in
their onset, progression, and severity.
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