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Neuroimage analysis pipelines rely on parcellated atlases generated from healthy

individuals to provide anatomic context to structural and diffusion MRI data. Atlases

constructed using adult data introduce bias into studies of early brain development.

We aimed to create a neonatal brain atlas of healthy subjects that can be applied to

multi-modal MRI data. Structural and diffusion 3T MRI scans were acquired soon after

birth from 33 typically developing neonates born at term (mean postmenstrual age at birth

39+5 weeks, range 37+2–41+6). An adult brain atlas (SRI24/TZO) was propagated to the

neonatal data using temporal registration via childhood templates with dense temporal

samples (NIH Pediatric Database), with the final atlas (Edinburgh Neonatal Atlas, ENA33)

constructed using the Symmetric Group Normalization (SyGN) method. After this step,

the computed final transformations were applied to T2-weighted data, and fractional

anisotropy, mean diffusivity, and tissue segmentations to provide a multi-modal atlas

with 107 anatomical regions; a symmetric version was also created to facilitate studies

of laterality. Volumes of each region of interest were measured to provide reference data

from normal subjects. Because this atlas is generated from step-wise propagation of

adult labels through intermediate time points in childhood, it may serve as a useful starting

point for modeling brain growth during development.

Keywords: MRI, neonatal, brain, atlas, parcellation

INTRODUCTION

Labeled atlases provide anatomic information to a range of structural and diffusion MRI (sMRI,
dMRI) analysis tasks including structural connectivity mapping and spatio-temporal modeling.
In early development such approaches have the potential to provide neuroscientific and clinical
advances including: provision of quantitative measures of typical brain growth in vivo, so defining
“normal” for a newborn population; mapping of atypical trajectories following adverse exposures
such as preterm birth; evaluation of tissue effects of neuroprotective treatment strategies that
are ready for evaluation in humans; uncovering neural substrates for childhood impairment; and
facilitating investigation of the early life origins of adult neurological and psychiatric disease.
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The majority of human brain atlases have been developed
using adult data (for review see Evans et al., 2012), and their
use for studying the brain during early life may not be valid
due to differences in adult and newborn anatomy and image
properties (Muzik et al., 2000; Wilke et al., 2003; Kazemi et al.,
2007; Yoon et al., 2009; Kuklisova-Murgasova et al., 2011).
The latter include marked variation in head size and shape,
maturational processes leading to changes in signal intensity
profiles, relatively lower spatial resolution, and lower contrast
between tissue classes (Matsuzawa et al., 2001; Paus et al.,
2001; Lenroot and Giedd, 2006; Knickmeyer et al., 2008; Serag
et al., 2011; Vardhan et al., 2014). Such differences can lead
to misclassification of tissues/structures, so it is essential to
match the study group to age-appropriate reference volumes and
a number of templates have been developed for this purpose
(Sanchez et al., 2012a,b; Fillmore et al., 2015; Richards et al.,
2016).

Atlases can be created by manual delineation of a single
subject or a small number of subjects. Several investigators
have defined protocols to delineate regions of interest (ROIs) in
neonatal data. For example, Gilmore and colleagues manually
parcellated a single neonatal brain into 16 cortical regions, 20
subcortical regions, brainstem, and cerebellum (Gilmore et al.,
2007); Goussias and colleagues manually parcellated 20 neonatal
brains (15 preterm and 5 term-born infants) into 50 regions
(the ALBERTs atlas; Gousias et al., 2012); and Kabdebon et al.
(2014) created a 94 region neonatal single-subject template by
adapting an adult brain atlas (Tzourio-Mazoyer et al., 2002),
and used it to derive probability maps for the locations of six
main sulci in cohort of 16 newborn infants. In recent work,
Alexander et al. (2015) manually labeled 33 cortical areas per
hemisphere corresponding to those in the Desikan-Killiany adult
brain atlas (Desikan et al., 2006) in three term neonates. While
such atlases describe anatomical detail well (Gilmore et al., 2007;
Kabdebon et al., 2014; Alexander et al., 2015), they may not
capture population diversity adequately (Evans et al., 2012), are
time-consuming to generate and are susceptible to inter- and
intra-rater variability.

Some of these issues can be overcome using computational
modeling techniques. For example, the UNC atlas was created
using image registration and label fusion to propagate an
adult brain atlas to 95 neonates through 2 and 1 year old
templates (Tzourio-Mazoyer et al., 2002; Shi et al., 2011). Wu
and colleagues used large deformation registration to propagate
62 neuroanatomical labels from adults to 15 neonatal brains
and performed multi-atlas labeling based on accurate prior-
based tissue segmentation (Wu et al., 2014). Makropoulos
and colleagues performed multi-atlas segmentation by label
fusion using the ALBERTs atlas (Makropoulos et al., 2014),
and subsequently propagated the segmentations (plus labels of
cortical ribbon) to the coordinate space of Serag et al. (2012a) and
averaged these data with an age kernel at each timepoint to create
a 4D atlas with 87 labeled structures (Makropoulos et al., 2016).
While these atlases are generally generated from a large cohort
and capture population diversity, they are prone to registration
error due to shape and tissue contrast differences between adult
and neonatal brains.

There are also approaches that combine single subject
parcellation with computational methods to create a template.
For example, Oishi and colleagues created a template from 20
subjects and propagated a manually labeled single subject (122
regions including white matter parcellations) to the template
using image registration (Oishi et al., 2011); and subsequently,
Zang and colleagues modified the atlas to represent the average
anatomic features of the study group by evolving the initial atlas
to the representative “center” of the study population, based on
the morphological information (Zhang et al., 2014).

In summary, recent advances in standardized delineation
of ROIs and computational modeling have led to the
development of templates for studies of childhood brain
development. However, most existing neonatal atlases contain
less anatomical information compared to adult atlases, often
include atypical participants which leaves uncertainty about
“normal” representation. They also work mainly with one
modality and use labeling protocols that do not map readily to
established adult atlases, and none facilitate studies of laterality
in early life when it may be desirable to distinguish asymmetries
in the study population from those of the atlas. These limitations
led us to create a new neonatal atlas (ENA33), which has the
following features:

1. ENA33 is generated exclusively from healthy control subjects,
so represents “normal.”

2. The atlas has 107 anatomical regions transformed from an
adult atlas, so it is consistent with adult label protocols.

3. ENA33 is operable across different modalities including sMRI
and dMRI.

4. Symmetric templates are provided to facilitate studies of
cerebral laterality.

MATERIALS AND METHODS

Overview
The atlas construction framework consists of two main steps.
First, each subject is parcellated into anatomical ROIs using
temporal registration (Serag et al., 2012b) of an adult atlas
(Rohlfing et al., 2010) via intermediate spatio-temporal templates
of the National Institutes of Health Pediatric Database (NIHPD;
Fonov et al., 2009, 2011). Second, a groupwise atlas is constructed
from the parcellated cohort of healthy neonates using Symmetric
Group Normalization (SyGN; Avants et al., 2010).

Participants
Thirty-three healthy infants born at term (>37 weeks’
postmenstrual age, PMA) with mean PMA at birth 39+5

weeks (range 37+2–41+6) and with mean birthweight of
3.42 kg (2.35–4.67) were recruited from the Royal Infirmary
of Edinburgh, UK, between July 2012 and September 2015.
Exclusion criteria were congenital infection, intrauterine growth
restriction, major chromosomal abnormalities, evidence of
central nervous system malformation or injury on MRI and
contraindications to MRI scanning. Underwent MRI at mean
42+2 weeks (range 39–47+1). Results from a subset of the group
have been reported previously (Anblagan et al., 2015). Ethical
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approval for the study was obtained from the National Research
Ethics Service (South East Scotland Research Ethics Committee),
and informed written parental consent was obtained for each
subject in accordance of the Declaration of Helsinki.

Image Acquisition
A Siemens MAGNETOM Verio 3T MRI clinical (Siemens,
Healthcare Gmbh, Erlangen, Germany) and 12-channel Siemens
phased-array head matrix coil were used to acquire the following
scans: 3D T1-weighted (T1w) MPRAGE (TR = 1650ms, TE
= 2.43ms, inversion time = 160ms, flip angle = 9◦, acquisition
plane = sagittal, voxel size = 1 × 1 × 1mm, FOV = 256mm,
acquired matrix = 256 × 256, acquisition time = 7min 49 s
and acceleration factor = 2); T2-weighted (T2w) SPACE (TR =

3800ms, TE = 194ms, flip angle = 120◦, acquisition plane
= sagittal, voxel size = 0.9 × 0.9 × 0.9mm, FOV = 220mm,
acquired matrix = 256 × 218, acquisition time = 4min 32 s);
dMRI using a protocol consisting of 11 T2- and 64 diffusion-
weighted (b = 750 s/mm2) single-shot, spin-echo, echo planar
imaging volumes acquired with 2mm isotropic voxels (TR =

7300ms, TE= 106ms, FOV= 256, acquired matrix= 128×128,
50 contiguous interleaved slices with 2mm thickness, acquisition
time = 9min 29 s). To reduce eddy current induced artifacts
and shimming errors to a minimum in the dMRI protocol, an
optimized bipolar gradient pulse scheme was employed with a
manually selected shim box covering a region extending from the
top of the head to several centimeters below the chin.

Infants were examined in natural sleep with pulse oximetry
and electrocardiography data monitoring. Ear protection was
used for each infant comprising earplugs placed in the external
ear and neonatal earmuffs (MiniMuffs, Natus Medical Inc., CA).

Image Registration
For each registration between two different images, a linear
transformation was first computed and used as an initialisation
to compute a non-linear transformation. In other words, a
transformation T (x) for a point x in 3D space with coordinates
x, y, and z is computed as follows:

T (x) = Tglobal (x)+ Tlocal(x) (1)

where Tglobal represents the linear transformation and Tlocal

represents the non-linear transformation. The computed
transformation maps all the points of a “Target” volume to a
“Source” volume (TTarget, Source).

The interpolation used for all intensity images was B-spline
because of its efficacy (Meijering, 2000); and Nearest Neighbor
interpolation was used for label maps so as not to introduce new
classes.

Pre-processing
For dMRI, Fractional Anisotropy (FA) and Mean Diffusivity
(MD) were calculated using the Camino Diffusion MRI Toolkit
(http://cmic.cs.ucl.ac.uk/camino; Cook et al., 2006). For each
subject, the T1w volume was selected as the reference anatomy
to which the T2w scan was linearly registered (6 degrees of
freedom) using NyftiReg (http://cmictig.cs.ucl.ac.uk/research/
software/niftyreg; Ourselin et al., 2001; Modat et al., 2010). Then

FA and MD were mapped to the same T1w space using the
transformation of the first T2w volume of the dMRI dataset
(B0) to T1w, using Advanced Normalisation Tools (ANTs,
http://stnava.github.io/ANTs; Avants et al., 2008) with mutual
information as the similarity metric (Studholme et al., 1999).
Intra-subject registration of diffusion maps involved linear plus
a non-linear registration, with the aim of minimizing distortions
associated with the single-shot spin-echo echo planar imaging
acquisition sequence. We used affine and SyN (Avants et al.,
2008) with a four-level multi-resolution scheme which ran until
convergence or a fixed (maximum) number of iterations was
reached. We allowed up to 100 iterations at the first level, 100
iterations at the second level, 100 iterations at the third level and
20 iterations at the full resolution. The rest of the parameters were
set to default settings.

A brain mask was computed from the T1w volumes by
removing non-brain tissues and skull using the ALFA method
(Serag et al., 2016). The resulting mask was applied to all
co-registered modalities, and all volumes were corrected for
intensity inhomogeneity using the N4 method (Tustison et al.,
2010). After the process of label propagation and template
creation, all the subjects were affine registered to the 42 weeks
template of Serag et al. (2012a).

All the results were checked after this preprocessing to ensure
that the N4 method and the skull stripping performed correctly.

Tissue Segmentation
To create tissue segmentations, T1w images were first registered
non-linearly to the closest age-matched T1w template from the
4D atlas (Serag et al., 2012c) using Free-Form Deformation
(Rueckert et al., 1999) implemented in NiftyReg (Ourselin et al.,
2001; Modat et al., 2010) with default parameters. Then, the
expectation-maximization (EM) algorithm (Van Leemput et al.,
1999; Kuklisova-Murgasova et al., 2011) was used to classify each
voxel into a tissue class based on voxel intensity information
and spatial-based probabilities (Serag et al., 2012c); after this,
segmentations were mapped back to the subject’s native space.
The tissue probability maps were constructed by averaging the
tissue segmentations to producemaps of graymatter (GM), white
matter (WM), and cerebrospinal fluid (CSF).

Temporal Registration Via Spatio-Temporal
Atlases
To parcellate the neonatal brain, the SRI24/TZO adult brain
atlas (Rohlfing et al., 2010) with 90 ROIs (cortical and sub-
cortical structures only) was propagated to the neonatal template
using a spatio-temporal atlas from the online database of the
NIHPD (Fonov et al., 2009, 2011) containing age-dependent
templates between birth and 4.5 years old (4.5, 3.5, 2.5, 2, 1.5,
1.25, 1, 0.75, 0.5, 0.25, and 0 year [neonate]; McConnell Brain
Imaging Centre; http://www.bic.mni.mcgill.ca/ServicesAtlases/
NIHPD-obj2). The SRI24/TZO atlas is based on the transformed
version of the single-subject Automated Anatomical Labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002) to 24 healthy subjects.

To model the very wide anatomical differences between adult
and neonatal brain, we used the LISAmethod (Serag et al., 2012b)
where spatio-temporal atlases are used to aid the registration
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process between two images taken over large time-interval, as
it provides prior information about the missing anatomical
evolution between the two images to be registered. Given a pair
of structural images from the adult atlas (ISRI24) and our neonatal
cohort (INEO), we aim to find a transformation TNEO,SRI24

that maps every location in INEO to ISRI24 by estimating a
deformation field to register ISRI24 to INEO. To do this, we first
mapped each template of the NIHPD to the preceding one:
T3.5→4.5 = NIHPD3.5 → NIHPD4.5, T2.5→3.5 = NIHPD2.5 →

NIHPD3.5,. . . , T0→0.25 = NIHPD0 → NIHPD0.25. After this step,
the adult atlas was mapped to the 4.5 year atlas (T4.5→SRI24 =

NIHPD4.5 → SRI24) and the neonatal NIHPD template to NEO
(T0→NEO = NEO → NIHPD0). All the transformations were
then concatenated together:

TNEO→SRI24 = TNEO→0
◦T0→0.25

◦ . . . ◦T4.5→3.5
◦T4.5→SRI24 (2)

Finally, the combined transformation from the previous step
(TNEO→SRI24) was used to derive the registration between the
ISRI24 and INEO. The temporal registration process used is
summarized in Figure 1.

After registration, the transformation allowed locations in
the target image to be mapped to locations in the source
image. All the temporal registrations were performed using affine
plus SyN (Avants et al., 2008) with mutual information as the
similarity metric (Studholme et al., 1999), since this is suitable for
contrast changes associated with myelination of the brain during
development. The last step, T0→NEO = NEO → NIHPD0,

was performed using cross correlation (Yoo and Han, 2009),
because in this case the neonatal T1w template of the NIHPDwas

registered to subjects where there was no change in the contrast,
so registration is intra-modality.

Template and Atlas Construction
For template creation, we used the SyGN. This method works by
coupling the intrinsic symmetry of each pairwise registration and
optimizing the shape-based sharpening/averaging of the template
appearance. The method has been used in previous studies with
successful results (Avants et al., 2010, 2015; Zhan et al., 2013).

The SyGN method robustly maps populations to a common
space by finding the template and set of transformations that
gives the “smallest” parameterization of the dataset (Avants
et al., 2010). The metric distance between the average affine
transformation and the identity affine transformation as well as
the diffeomorphism lengths gives the size of the parametrization.
The method may be initialised using an external template or an
inital template (Ī) that can be derived from the database of n
images (Ii). In this work, a 42 weeks template (the closest age-
matched template to the mean of the cohort under study) from
the 4D atlas (Serag et al., 2012a) was used as an initial template.

SyGN optimizes the shape of Ī via a diffeomorphism,ψ (which
contains an affine transformation with 12 degrees of freedom),
such that the size and shape of the brain converges to the
group mean. This is achieved by optimizing the following energy
iteratively,

EI =
∑

i

ESyN,
∏

(

I, Ii, φi
)

where ∀i, φi (x, 0) = ψ (x) (3)

here ψ is a diffeomorphism representing the initial conditions of
each optimal transformation (φi) that maps every point x in a

FIGURE 1 | The framework used for temporal atlas propagation. The SRI24/TZO adult atlas is propagated to the neonatal template from the NIHPD atlas

through intermediate time points, and finally to the cohort under study.
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FIGURE 2 | Anatomical parcellation of the neonatal brain (axial view). The slices have 3mm distance.

Frontiers in Neuroscience | www.frontiersin.org 5 May 2016 | Volume 10 | Article 220

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Blesa et al. Parcellation of the Neonatal Brain

TABLE 1 | Anatomical definition of all the ROIs and the correspondent

Labe ID.

Anatomical definition Label

ID

Anatomical definition Label

ID

Precentral left 1 Fusiform left 55

Precentral right 2 Fusiform right 56

Frontal superior left 3 Postcentral left 57

Frontal superior right 4 Postcentral right 58

Frontal superior orbital left 5 Parietal superior left 59

Frontal superior orbital right 6 Parietal superior right 60

Frontal middle left 7 Parietal inferior left 61

Frontal middle right 8 Parietal inferior right 62

Frontal middle orbital left 9 Supramarginal left 63

Frontal middle orbital right 10 Supramarginal right 64

Frontal inferior opercularis left 11 Angular left 65

Frontal inferior opercularis

right

12 Angular right 66

Frontal inferior triangularis left 13 Precuneus left 67

Frontal inferior triangularis

right

14 Precuneus right 68

Frontal inferior orbital left 15 Paracentral lobule left 69

Frontal inferior orbital right 16 Paracentral lobule right 70

Rolandic opercularis left 17 Caudate left 71

Rolandic opercularis right 18 Caudate right 72

Supplementary motor area left 19 Putamen left 73

Supplementary motor area

right

20 Putamen right 74

Olfactory left 21 Pallidum left 75

Olfactory right 22 Pallidum right 76

Frontal superior medial left 23 Thalamus left 77

Frontal superior medial right 24 Thalamus right 78

Frontal median orbital left 25 Heschl left 79

Frontal median orbital right 26 Heschl right 80

Rectus left 27 Temporal superior left 81

Rectus right 28 Temporal superior right 82

Insula left 29 Temporal pole superior left 83

Insula right 30 Temporal pole superior right 84

Cingulum anterior left 31 Temporal middle left 85

Cingulum anterior right 32 Temporal middle right 86

Cingulum middle left 33 Temporal pole middle left 87

Cingulum middle right 34 Temporal pole middle right 88

Cingulum posterior left 35 Temporal inferior left 89

Cingulum posterior right 36 Temporal inferior right 90

Hippocampus left 37 Corpus callosum 91

Hippocampus right 38 Lateral ventricle left 92

Parahippocampal left 39 Lateral ventricle right 93

Parahippocampal right 40 Midbrain left 94

Amygdala left 41 Midbrain right 95

Amygdala right 42 Pons left 96

Calcarine left 43 Pons right 97

Calcarine right 44 Medulla left 98

Cuneus left 45 Medulla right 99

Cuneus right 46 Cerebellum left 100

Lingual left 47 Cerebellum right 101

(Continued)

TABLE 1 | Continued

Anatomical definition Label

ID

Anatomical definition Label

ID

Lingual right 48 Vermis anterior left 102

Occipital superior left 49 Vermis anterior right 103

Occipital superior right 50 Vermis posterior left 104

Occipital middle left 51 Vermis posterior right 105

Occipital middle right 52 Vermis central left 106

Occipital inferior left 53 Vermis central right 107

Occipital inferior right 54

3D space of a image (Ii) to a reference image (I). The solution for
each pairwise problem is obtained using SyN (Avants et al., 2008).
The algorithm iteratively minimizes the energy EI with respect to
the set of φi through distributed computing (Avants et al., 2011).
In this study, all images were previously affine registered to the
initial template, so ψ did not contain an affine transformation.
The procedure first optimizes themappings with a fixed template,
then, optimizes the template appearance with fixed shape and
mappings, and, finally, optimizes the template shape. The process
then repeats. The final template is obtained after four iterations.

The final transformations were applied to map the
corresponding label maps, tissue segmentation, T2w, FA
and MD data to the final template space. To create the final
label map majority-voting (Heckemann et al., 2006) of all the
propagated labels to the template space was used, because it is
known to perform well in studies of neonates (Shi et al., 2011).

Studies of brain laterality benefit from a symmetric atlas
because of the challenge of distinguishing asymmetries in
the study group from those in atlas space, so we created a
symmetric version of the atlas. This was created by flipping
each subject’s T1w volume left to right, and using each volume
as an independent subject in the template creation. The final
transformations were then applied to the other modalities which
were also flipped including the label maps, using methods
described by Fonov et al. (2011, 2009). To create the final
symmetric label map majority-voting (Heckemann et al., 2006)
was also used.

An additional color map to the standard coding scheme of
the SRI24/TZO was created using brainCOLOR (Klein et al.,
2010) to aid visualization of lobes. This computes the optimal
color assignments for regions in a 2D or 3D brain image
using a brute force strategy to maximize the distinguishability
of adjacent regions while simultaneously choosing perceptually
similar colors for groups of regions.

Validation
Cross-correlation (CC) between registration of consecutive time
points of the spatio-temporal atlas was used to evaluate accuracy
of the final registration using methods described for temporal
modeling of perinatal MRI data (Serag et al. (2012c).

After temporal propagation, labels were inspected and edited
where necessary by a radiologist experienced in neonatal brain
MRI (A.G.W.) according to the protocols defined in the The
Human Brain During the Third Trimester (Bayer and Altman,
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FIGURE 3 | 3D rendered of the atlas comparing both color codes:

standard color code (left column) vs. created color code (right column).

2003) using ITK-SNAP (http://www.itksnap.org; Yushkevich
et al., 2006). After the template was created, all labels were
re-checked according to the same protocol.

The accuracy of registration used for label propagation
between the subjects and the registered atlas was tested. To do
this, five landmarks were placed in ten randomly selected subjects
and the atlas; the atlas was then registered to the subjects using
affine and SyN (Avants et al., 2008) using cross-correlation as the
similarity metric. The Euclidean distance between the landmarks
of the subjects and those of the registered atlas were measured
(Black et al., 2001; McLaren et al., 2009; Ella and Keller, 2015;
Love et al., 2016). The landmarks were placed at: the most rostral
point of right and left superior temporal gyrus viewed in the
coronal plane at the level of the third ventricle (referred to as
cortical left and right in Table 2); the wall of the right and left
bodies of the lateral ventricles at the level of the third ventricle
in coronal plane (referred to as ventricles left and right in
Table 2); and the floor of the fourth ventricle in the sagittal plane
(referred as cerebellum in Table 2. To investigate potential bias
due to intra- and inter-rater variability in landmark placement,
landmarks were placed by the same rater twice and by another
rater. Raw measurements and intraclass correlation coefficient
(ICC) using a two way mixed effects model are reported.

To evaluate agreement of volumetric measurements obtained
from ENA33 with those of a comparable atlas,(the UNC atlas,
which is derived from the same adult atlas), we compared lobar
volumes using the protocol described by Tzourio-Mazoyer et al.
(2002): Central Region, Frontal Lobe, Temporal Lobe, Parietal
Lobe, Occipital Lobe, Limbic Lobe, Insula and Sub Cortical
Gray Nuclei plus the Corpus Callosum, Lateral Ventricles, the
Brainsteam and the Cerebellum. The proportion of intra-cranial
volume of each region was calculated. Both label maps were
multiplied by the respective mask, then the lobular volume was
divided by the brain volume (mask volume).

To investigate differences between the asymmetric and
symmetric versions an Asymmetry coefficient (S) was calculated.
The coefficinet (S) is defined as:

S =
2∗ |VL − VR|

VL + VR
(4)

where VL is the volume of the left ROI and VR is the volume of
right ROI. Themain difference with the index defined in previous

FIGURE 4 | From left to right: T1w template, T2w template, label parcellation map overlaid on T1w template, FA template, MD template and tissue

probability maps for CSF, GM, and WM.
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studies (Luders et al., 2004; Dubois et al., 2010) is that, originally,
the index is defined to perform voxel-wise studies, and here it
is adapted to a volumetric analysis. If template construction and
label fusion were completely error free across the volume then S
would have a value of 0 for all regions in the symmetric version.

Volumetric Analysis
We non-linearly registered the final atlas to all subjects using
ANTs (Avants et al., 2008) with the same parameters as above,

TABLE 2 | Landmark registration accuracy (Euclidean distance between

ENA33 and individuals).

Distance (mm)

Rater 1 Rater 1 second time Rater 2

Landmark Mean (SD) Mean (SD) Mean (SD)

Cortical left 1.29 (0.82) 1.17 (0.79) 1.66 (0.81)

Cortical right 1.58 (0.91) 1.58 (0.86) 1.89 (1.21)

Cerebellum 1.15 (0.59) 1.02 (0.59) 1.16 (0.61)

Lateral ventricle left 1.89 (0.49) 1.86 (0.59) 2.33 (0.60)

Lateral ventricle right 1.77 (0.63) 1.85 (0.92) 2.08 (0.85)

with the aim of calculating the volume and different dMRI
metrics of all ROIs for both hemispheres of the brain. The
volumes and dMRI metrics for each region were calculated using
FSL (http://fsl.fmrib.ox.ac.uk; Jenkinson et al., 2012).

RESULTS

Neonatal Brain Parcellation
ENA33 is shown in transverse sections using default color scheme
(generated by ITK-SNAP) in Figure 2, andTable 1 lists the labels.
The 3D volume rendered atlas is shown in Figure 3., using the
default and brainCOLOR color coding generated schemes.

An intial step from adult to 4.5 years was used because we did
not find that any additional benefit was conferred by the inclusion
of three time points at 15.5, 10.5, and 6.5 years: the normalized
cross correlation between registered images generated using both
approaches was≈0.98.

Application of the Atlas to Multi-Modal
Data
Figure 4 shows the templates for available modalities. Nine
participants had T2w volumes that were free of motion artifact
and suitable for registration, so the T2w template shown is
constructed from a subset.

FIGURE 5 | (A) asymmetric version of the atlas; (B) symmetric version of the atlas. From left to right: T1w template, T2w template and label parcellation map overlaid

on T1w template.
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Validation
Cross correlation between the intermediate time points was high
(0.93 ± 0.05). The smallest values were 0.81 and 0.87 for the last
two steps (3 month to 1 months and 6 months to 3 months),
which is a period of dynamic change in signal intensity associated
with myelination. The rest of the values were above 0.94.

Assessment of parcellations by an expert (A.G.W.) according
to a reference atlas (The Human Brain During the Third
Trimester; Bayer and Altman, 2003) led to minor edits in
thalamus, pallidum, and putamen bilaterally. The following labels
were addedmanually: posterior fossa (with its corresponding sub-
areas), lateral ventricles and corpus callosum. After the template
was created, the labels were checked again, andminor corrections
were made at the brain–CSF boundary only.

The Euclidean distance between landmarks in native space
and those of the registered atlas were in an acceptable range
for both raters (Table 2), and the ICC was >0.95 for intra- and
inter-rater variation.

There was broad agreement between the lobar volumes
calculated as a proportion of intracranial volume from ENA 33
and the UNC atlas, shown in Table 3.

Analysis of Normative Data From 33
Healthy Newborns
Labels were propagated to the images of the 33 healthy infants
to provide reference sMRI data for each ROI. Table 4 shows the
mean volumes for all ROIs.

Figure 5 shows the symmetric version of the atlas compared
with the asymmetric version, and Figure 6 shows the differences
in S for each ROI. S was <0.05 for all regions in the symmetric
version, and values ranged from 0.01 to 0.9 in the asymmetric
version.

TABLE 3 | Volumes of interest calculated from ENA33 and UNC atlases.

ENA 33 Atlas UNC Atlas

Region Proportion of intracranial

volume (%)

Proportion of

intracranial volume (%)

Central region 7.57 7.46

Frontal lobe 34.41 36.3

Temporal lobe 8.80 11.19

Parietal lobe 8.53 11.6

Occipital lobe 13.23 14.55

Limbic lobe 5.9 8.57

Insula 1.46 1.74

Sub cortical gray nuclei 3.53 3.75

Corpus callosum 1.06 –

Lateral ventricles 0.55 –

Brainsteam 1.98 –

Cerebellum 5.58 –

FIGURE 6 | Asymmetry coefficient in the asymmetric and the symmetric versions of ENA33.

Frontiers in Neuroscience | www.frontiersin.org 9 May 2016 | Volume 10 | Article 220

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Blesa et al. Parcellation of the Neonatal Brain

TABLE 4 | Volumes for all brain regions.

Right hemisphere Left hemisphere

Region Mean (SD)/cm3 Mean (SD)/cm3

Precental 8.87(1.19) 9 (1.17)

Frontal superior 9.96(1.54) 8.59(1.26)

Frontal superior orbital 1.51(0.22) 1.4(0.22)

Frontal middle 11.6(1.74) 13.27(1.61)

Frontal middle orbital 2.36(0.37) 2.56(0.41)

Frontal inferior opercularis 2.77(0.36) 2.71(0.44)

Frontal inferior triangularis 2.89(0.56) 3.03(0.57)

Frontal inferior orbital 5.32(0.78) 4.23(0.66)

Rolandic opercularis 5.37(0.74) 3.67(0.54)

Supplementary motor area 5.81(0.74) 5.33(0.77)

Olfactory 1.25(0.16) 1.31(0.2)

Frontal superior medial 5.96(1.04) 6.84(1.12)

Frontal median orbital 1.47(0.28) 1.47(0.3)

Rectus 1.17(0.2) 1.13(0.17)

Insula 3.67(0.28) 3.46(0.28)

Cingulum anterior 2.47(0.27) 2.38(0.32)

Cingulum middle 3.53(0.4) 3.85(0.42)

Cingulum posterior 0.35(0.07) 0.44(0.08)

Hippocampus 2.08(0.18) 2.2(0.18)

Parahippocampal 2.58(0.22) 2.41(0.23)

Amygdala 0.65(0.06) 0.76(0.06)

Calcarine 4.26(0.55) 3.8(0.57)

Cuneus 3.72(0.51) 3.55(0.47)

Lingual 7.35(0.69) 7.83(0.89)

Occipital superior 2.24(0.34) 3.45(0.38)

Occipital middle 5.7(0.74) 6.43(0.71)

Occipital inferior 3.34(0.43) 5.52(0.53)

Fusiform 5.73(0.74) 5.06(0.54)

Postcentral 6.82(0.98) 7.08(0.91)

Parietal superior 5.72(0.73) 4.65(0.57)

Parietal inferior 2.42(0.33) 5.75(0.8)

Supramarginal 3.81(0.54) 2.98(0.51)

Angular 3.47(0.55) 2.25(0.42)

Precuneus 7.17(0.69) 7.14(1.03)

Paracentral lobule 2.17(0.29) 3.2(0.45)

Caudate 1.03(0.12) 1.1(0.14)

Putamen 1.29(0.13) 1.57(0.17)

Pallidum 1.56(0.24) 1.7(0.24)

Thalamus 3.81(0.24) 3.89(0.28)

Heschl 1.04(0.24) 0.94(0.17)

Temporal superior 6.47(0.69) 7.24(0.69)

Temporal pole superior 2.65(0.34) 2.91(0.35)

Temporal middle 7.46(0.82) 8.61(1.02)

Temporal pole middle 1.53(0.29) 1.35(0.23)

Temporal inferior 8.24(0.86) 6.38(0.78)

Lateral ventricle 2.58(0.6) 2.75(0.77)

Midbrain 1.88(0.11) 1.86(0.1)

Pons 0.83(0.1) 1.03(0.12)

Medulla 2.24(0.2) 2.57(0.2)

(Continued)

TABLE 4 | Continued

Right hemisphere Left hemisphere

Region Mean (SD)/cm3 Mean (SD)/cm3

Cerebellum 11.24(1.28) 11.17(1.33)

Vermis anterior 0.8(0.16) 0.82(0.18)

Vermis posterior 2.03(0.4) 1.97(0.36)

Vermis central 0.69(0.09) 0.85(0.13)

Corpus callosum 2.63 (0.36)

DISCUSSION

Using MRI data from 33 healthy newborn infants, we created a
neonatal brain atlas that parcellates the brain into 107 anatomical
regions that can be applied to T1w, T2w, dMRI (FA and
MD), and tissue probability maps; it also contains a symmetric
version of all templates. The framework for atlas creation was
based on temporal propagation of a labeled adult brain atlas
(SRI24/TZO) via a sequence of MRI templates from childhood
to early infancy, which may make it suitable for modeling
human brain growth using a consistent set of labels over time.
The basis for considering that one-to-one mapping of adult to
neonatal structures would be feasible stems from the consistent
observation that human cortical gyrification is established during
the third trimester of pregnancy, so such that the “adult”
configuration is present in the healthy infant born at full term,
and this can be discerned using MRI (Armstrong et al., 1995; van
der Knaap et al., 1996; Pienaar et al., 2008; Shi et al., 2010).

The SRI24/TZO atlas was used because it represents brain
anatomy in an unbiased population-averaged coordinate system,
and at the same time, provides a large number of structures
in crisp definition so is suitable for label propagation (Rohlfing
et al., 2010). An intitial temporal registration step from adult to
4.5 years was used because we did not find additional benefit
conferred by the inclusion of three time points at 15.5, 10.5, and
6.5 years.

There is inverted contrast of WM and GM signal between
neonatal and adult brain images, which might suggest that the
ideal registration between adult and neonatal templates should
be performed between neonatal T1w and adult T2w images.
However, the use of intermediate templates avoids marked step-
wise changes in contrast and it was possible to achieve accurate
temporal registration using T1w images with mutual information
as the similarity metric (Serag et al., 2012b). The diffeomorphic
registration algorithm described by Avants et al. (2008) was used
because of its accuracy as demonstrated in a recent comparison
of non-rigid registration techniques (Klein et al., 2009), but
other algorithms may also be suitable for this framework,
including Free-Form Deformation (Rueckert et al., 1999), Large
Deformation Diffeomorphic Metric Mapping (LDDMM; Beg
et al., 2005), or FNIRT (Jenkinson et al., 2012) among others.
For multi-modality template construction, the SyGN framework
was used, because of its ability to produce population-specific
templates. The main advantage of the method is that it iteratively
optimizes the template appearance and template shape (Avants
et al., 2015).

Frontiers in Neuroscience | www.frontiersin.org 10 May 2016 | Volume 10 | Article 220

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Blesa et al. Parcellation of the Neonatal Brain

The validation strategy we used was both qualitative and
quantitative. The requirement for manual editing by an expert
according to protocols defined in the The Human Brain During
the Third Trimester (Bayer and Altman, 2003) was limited
to a small number of ROIs. We tested accuracy of temporal
registration using cross-correlation and results demonstrated
high accuracy of the registration approach (mean CC of 0.93).
To confirm accuracy of label propagation we used a landmark
approach, and found Euclidean distances in an acceptable range
for landmarks selected to represent the cortex, ventricular system
and cerebellum. Both intra- and inter-rater variability were low,
and the magnitude of difference is likely to be acceptable for most
applications.

The volumes reported in this cohort of normal infants are
of similar magnitude and variance to those reported in other
smaller studies of healthy newborns, albeit at the level of tissue
class or larger regions interest, rather than corresponding ROIs
(Inder et al., 2005; Boardman et al., 2007; Thompson et al., 2011).
We found very similar measurements of lobar volumes as a
proportion of ICV between ENA33 and the UNC atlas, which
uses a similar label protocol to ENA33. The small differences
between the two atlases could be due to the propagation
approach (in this work more time points were used, and an
extra registration step is implemented), to differences in template
construction method and/or to the manual corrections, or they
could reflect normal population variation. Further studies that
include large numbers of participants with sharing of data and
protocols frommultiple centers will be required to determine the
extent to which small differences in measured values represent
population diversity vs. methodological variation.

It should be noted that partial volume effects are not
significant for measures derived from the structural volumes with
voxel size of ∼1mm3 because the template is resampled from
0.86 to 1mm3 (Ashburner and Friston, 2000; Antonova et al.,
2005; Serag et al., 2012c). For acquisitions with larger voxel sizes
(for example dMRI with 2mm3) it is possible that partial volume
effects could confound the extracted metrics.

A beneficial feature of ENA33 is provision of a symmetric
version with labels, which is novel for a neonatal populations
and could have utility for future study designs involving neonatal
data that require identification of asymmetry in the study group.
The asymmetry coefficient (S) was <0.05 for all structures
in the symmetric atlas but ranged from 0.01 to 0.9 in the
asymmetric atlas, which reflects the wide regional variation and
the magnitude of asymmetry in healthy newborn brain.

The atlas could be used for different voxel-wise studies or
multi-modal applications that are substantially improved by
the use of a specific neonatal template, including voxel-based

techniques such as Tract-based Spatial Statistics (TBSS; Smith

et al., 2006; Ball et al., 2010), Statistical Parametric Mapping
(SPM; Ashburner and Friston, 2000), structural connectivity and
network analyses or volumetric studies. This atlas can be used to
perform studies of laterality when it is important to distinguish
template asymmetries from those of the study population.

CONCLUSION

In this work, we present a new framework for atlasing the brain in
early life. The resulting atlas (ENA33) contains 107 regions with
high spatial definition which can be applied to give anatomical
context to T1w, T2w volumes, and FA and MD data, whilst
also providing tissue probability maps. The way of generating
the labels of ENA33 using step-wise propagation of adult labels
through intermediate time points makes the atlas consistent with
adult atlases, which is very useful in future studies from birth to
adulthood. A symmetric version of the atlas is also generated for
studies of laterality in the developing brain. The atlas is available
to the research community from: http://brainsquare.org, and the
raw data from the Brain Images of Normal Subjects (BRAINS)
repository (http://www.brainsimagebank.ac.uk; Job et al., 2016).
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