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Monolayered Platinum 
Nanoparticles as Efficient 
Electrocatalysts for the Mass 
Production of Electrolyzed 
Hydrogen Water
Yanqing Wang1,2 ✉, Bunshi Fugetsu3 ✉, Ichiro Sakata3,4, Chika Fujisue4, Shigeru Kabayama2, 
Norio Tahara2 & Shinkatsu Morisawa2

High-performance/low-cost platinum (Pt)-based electrocatalysts have been established by top-coating 
both sides of a titanium plate with Pt nanoparticles. The average diameter of the Pt nanoparticles used 
in this study is approximately 100 nm. Three types of Pt top-coated Pt/Ti electrocatalysts, each having 
different top-coated Pt layer thicknesses, are prepared. Type I is a monolayered Pt top-coated type, in 
which the thickness of the top-coated Pt layer is approximately 100 nm; Type II is a few-layered type 
with a top-coated Pt layer thickness of approximately 200 nm, and Type III is a multilayered type with 
a top-coated Pt layer thickness of approximately 750 nm. The mass loading of Pt is 0.0215 mg cm−2 
for Type I, 0.043 mg cm−2 for Type II, and 0.161 mg cm−2 for Type III. The electrocatalytic activities of 
each type of Pt/Ti electrocatalyst are evaluated through the electrolysis of acidic water and tap water. 
Type I gives the highest electrocatalytic efficiencies, which are comparable or even better than the 
electrocatalytic efficiencies of the state-of-the-art commercially available Pt/C electrode and other 
metal-/carbon-based HER catalysts. For example, in the case of the electrolysis of acidic water at an 
overpotential of 0.15 V, Type I shows a Tafel slope of 29 mV dec−1 and a current density of 27.5 mA cm−2. 
Even in the case of the electrolysis of tap water, Type I gives an HER Faradaic efficiency of 92%. A 
model of water (H2O), hydronium ions (H3O+), and hydroxyl ions (OH−) properly adsorbing on the Pt 
(111) facet is proposed to explain the electrocatalytic mechanism. New insights into the distinguishing 
properties of the resultant electrolyzed hydrogen water (EHW), namely, the healthy beneficial effects of 
EHW, are also described, and a new concept of storing and carrying reductive hydrogen (H*) by free Pt 
nanoparticles is proposed.

Electrolyzed hydrogen water (EHW) is capable of improving gastrointestinal functionalities. This medical appli-
cation of EHW was specified officially for the first time in 1965 by the Ministry of Health, Labour and Welfare 
of Japan1; currently, EHW is recognized national wide in Japan. Additional health benefits, such as antidiabetic 
effects2,3, antiaging effects4,5, anticancer effects6–10, anti-arteriosclerosis effects11, anti-inflammation effects12 
and anti-neurodegenerative effects13, have also been reported for EHW soon after physiological studies were 
performed. Platinum (Pt) has entirely been utilized as the electrocatalyst for the electrolysis of EHW. Certain 
amounts of Pt clusters and/or Pt nanoparticles are released from the Pt-based electrocatalysts (electrodes) dur-
ing the electrolysis of EHW4. These free Pt clusters and/or Pt nanoparticles are capable of converting hydrogen 
molecules (H2) into reductive hydrogen species (H·) via Pt/H2 catalytic interactions14,15, thus introducing distin-
guishing reductive properties to EHW.
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Performance vs. cost has always been the topmost priority encountered in Pt/H2 industries16. In 2005, General 
Motors (GM) Corporation reported a record Pt cost by achieving a Pt loading ratio down to 0.6–0.8 mg cm−2 in 
their innovated Pt/H2 systems17. In 2017, the U.S. Department of Energy has set a goal for further reducing the 
total Pt group metal in Pt/H2 industries down to 0.125 mg cm−218,19.

The so-called top-coating (plating) method has long been the cornerstone in preparing Pt based electrocata-
lysts (electrodes) and is used to achieve high-performance/low-cost goals20,21. A thin Pt layer is established over 
the top (the surface) of a suitable substance (commonly, a metal plate), where the top-coated Pt functions as the 
electrocatalyst, while its ultimate weight (cost) is largely reduced. However, achieving the goal of 0.125 mg cm−2 
in industry still remains a large challenge.

In this study, we report a novel approach to establishing high-performance/low-cost Pt-based electrocatalytic 
electrodes. Nanosized Pt particles are electrochemically immobilized in a monolayered manner on both surfaces 
of a titanium-based plate; the Pt loading ratio is reduced down to 0.0215 mg cm−2 while the electrocatalytic effi-
ciency remains excellent.

Results and Discussion
Three types of the Pt/Ti electrodes (Ti-plate top-coated with nano-sized Pt), denoted as Type I, Type II and Type 
III, are prepared; Fig. 1 shows typical SEM images, the thickness of the top-coated Pt layer on the Ti-based plate 
is found to be approximately 100 nm for type I (Fig. 1a), 200 nm for type II (Fig. 1b) and 750 nm for type III 
(Fig. 1c). The average diameter of the Pt nanoparticles is approximately 100 nm (Supplementary Information, 
Figure S1), Type I is nearly a monolayered type, Type II is a few-layered type, and Type III is a multilayered Pt 
top-coated electrode. Figure 1d shows the X-ray diffraction (XRD) patterns for each type of the Pt top-coated Pt/
Ti electrodes. Characteristic diffraction peaks of face-centered cubic (fcc) Pt, which can be indexed to the (111), 
(100) and (110) planes (JCPDS No. 87–0647), are observed. EDX elemental analysis was performed for the Type 
I Pt/Ti electrode in different areas, showing the pure composition of Pt and Ti for the top-coated electrode layer 
and the substrate layer, respectively (Supplementary Information, Figure S2).

The electrocatalytic activities of the Pt top-coated Pt/Ti electrodes are evaluated via the electrolysis of acidic 
water and tap water. The activities of the pure Ti electrodes and a commercially available Pt/C electrode (the 
state-of-the-art electrocatalytic electrode) are also examined for comparison. Figure 2 shows the typical exper-
imental data obtained by linear sweep voltammetry (LSV) measurements performed in 0.5 M H2SO4 at room 
temperature. Figure 2a shows the HER polarization curves obtained for all the Pt top-coated Pt/Ti electrodes, 
namely, Type I, Type II and Type III, which show excellent electrocatalytic activities toward the HER. Among the 
Type I, Type II and Type III electrodes, Type I showed the highest electrocatalytic activity, followed by Type II and 
then Type III. An increase in the thickness of the top-coated Pt layer resulted in a decrease in the electrocatalytic 
activity of the Pt top-coated Pt/Ti electrodes. The detrimental effect of the thickness of the top-coated Pt layer 
was also observed in previous studies21. The linear Tafel plots (Fig. 2b) are fit well by the Tafel equation (η = b log 
j + a, where j is the current density, and b is the Tafel slope). The following three steps (reactions) are the essential 
reactions involved in the hydrogen evolution reaction under acidic conditions on the metal electrode surfaces via 
the electrocatalyst22:

+ ++ − −Volmer step: H O e H O H(ad) (Tafel slope 120 mV dec ) (1)3 2
1

Tafel step: 2H(ad) H (g) (Tafelslope 30 mV dec ) (2)2
1−

+ + → ++ − −Heyrovsky step: H(ad) H O e H (g) H O(Tafel slope 40 mV dec ) (3)3 2 2
1

where e- denotes metal-bound electrons, and H(ad) and H2(g) represent a hydrogen atom and a hydrogen 
molecule being adsorbed on the surface of a metal atom, respectively. The Tafel slopes are estimated to be 29 mV 
dec−1, 49 mV dec−1 and 57 mV dec−1 for the Type I, Type II and Type III Pt/Ti electrodes, respectively, suggesting 
that the Tafel step is most likely to be the rate-determining step for the Type I electrode; meanwhile, for the Type 
II electrode and Type III electrode, the Heyrovsky step is the rate-determining step. The Type I Pt/Ti electrode 
exhibits a Tafel slope of 29 mV dec−1 and is comparable or even better than many recently reported metal-/
carbon-based HER catalysts (the detailed comparison is listed in Supplementary Table S1). The state-of–the-art 
Pt/C electrode shows a Tafel slope of 31 mV dec−1, which is in consistent with the value reported in previous 
studies23.

The specific electrocatalytic activity of each electrode was calculated from the polarization curves by nor-
malizing the current with the geometric area of the electrode. The specific electrocatalytic activity is found to be 
27.5 mA cm−2 for Type I, 24.9 mA cm−2 for Type II, and 18.2 mA cm−2 for Type III (Supplementary Figure S3) at 
an overpotential of 0.15 V. By normalizing based on the Pt loading mass (Fig. 2c), the electrocatalytic activity was 
found to be 1.28 A mg−1 for the Type I electrode at an overpotential of 0.15 V. The electrocatalytic activity of the 
Type I electrode is 2.1 times higher than that of the Type II Pt/Ti electrode (0.58 A mg−1) and is approximately 
11.3 times greater than that of the Type III Pt/Ti electrode (0.11 A mg−1). The Type I electrode showed the best 
cost/performance among all the types of the Pt/Ti electrodes. A video is recorded to demonstrate the visible elec-
trocatalytic activity of the Type I electrode during the experiment. Plenty of H2 bubbles were steadily coming out 
from the electrode surface (video file). Figure 2d shows the uniformity of the nanosized Pt particle that was firmly 
immobilized on the surfaces of the Ti substrate.

The charge transfer resistance (Rct), which reflects the electrocatalytic kinetics24, is also calculated 
(Supplementary Figure S4) and found to be 2.0 ohms for Type I, 2.3 ohms for Type II and 2.4 ohms for Type III.
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Making electrolyzed hydrogen water (EHW) from real tap water via electrocatalytic interactions remains a 
large challenge, even today. It is well known that under a higher pH (cathode, pH > 10), Mg2+ and Ca2+ ions, 
the two common divalent cations involved in tap water, tend to form insoluble hydroxides on the electrode sur-
faces25. This difficulty is also encountered for Pt/Ti electrodes in the long-term electrolysis of tap water. After 
the long-term electrolysis of tap water, the electrode surface is found to be partially covered with precipitates 
due to the divalent cations in the tap water, which is confirmed by XPS (Supplementary Figure S5). Figure 3 
summarizes the experimental data obtained for the long-term (1000 hours of the electrolysis of tap water) stabil-
ity studies performed at a constant current density of 0.05 A cm−2. The linear sweep voltammetry (LSV) curves 
obtained initially and after 1000 hours of the ISTEP measurements are shown in Fig. 3a. Figure 3b shows the 
ISTEP measurements obtained during the 1000 hour EHW electrolysis process (4 cycles, each performed for 
250 hours) performed at a current density of 0.05 A cm−2 in tap water. The overpotential increased constantly 
with a ratio of 3.2 mV h−1 during the 1000 hours of tap water electrolysis; this in turn is in an increase in energy 
consumption, which is denoted as kWh per kg of H2. The energy consumption for the electrolysis of 1 kg H2 is 
calculated to be 85.7 kWh (the calculation method is given in Supplementary Table S2). The HER polarization 
curves and the corresponding electrochemical impedance spectra observed for the electrolysis of tap water with 
a pH of 6.8 are shown in Supplementary Figure S6. The HER polarization curve obtained in a sea water with a 

Figure 1.  Morphological observation of the three types of Pt/Ti electrodes (Ti-plate top-coated with nanosized 
Pt), denoted as Type I (a), Type II (b) and Type III (c), as observed by SEM at an angle of 70 degrees. The 
underlying images of each SEM observations are the corresponding cross-sectional microstructures, showing 
the layered structure. The XRD patterns obtained for each type of Pt top-coated Pt/Ti electrode and the pure Ti 
substrate are shown in (d).
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pH of 8.0 (the Tafel slope is estimated to be 198 mV dec−1) for the Type I Pt top-coated Pt/Ti electrode is shown 
in Supplementary Figure S7. The amount of H2 produced via the electrolysis of tap water was quantified by an 
H2 analyzer. Abundant H2 and O2 bubbles were observed on the electrode surface, and they dissipated quickly 
into the tap water. The results of the mole number of H2 are shown in Fig. 3c. The Type I Pt/Ti electrode gave an 
HER Faradaic efficiency (FE) of 92% (Fig. 3d)26. A calculated 0.14 mmol of H2 per minute can be produced by the 
electrolysis of real tap water via the Type I Pt/Ti electrode.

The cross-sectional microstructures of the Pt-top-coated Pt/Ti electrodes were evaluated by electron backs-
catter diffraction (EBSD). Figure 4a shows an inverse pole plot of the Type III Pt/Ti electrode. In the color leg-
end, the three corners of the triangle represent the three basal planes of Pt. The facets (111), (001) and (101), 
which are located on the side-lines, are vicinal (or stepped) planes, while the inside of the triangle represents 
high-index (or kinked) planes27. The EBSD images indicate that all the Pt catalyst grains in the scanned area are 
high-index orientations of distinctly different structures. Comparing the cross-sectional structures observed in 
the SEM images (Figure b and c) with the EBSD results, four main grains can be identified, which are denoted 
as green, yellow, red and blue. In addition, the main grains grow vertically toward the Pt-Ti interface, which are 
labeled A, B, C, D and E. The inverse pole figure (IPF) maps obtained along the [010] direction of the scanning 
area display that the crystallographic direction located at the (111) facet represents the highest texture density 
(Supplementary Figure S8). Other domains at different locations have also been identified in the same way, as 
shown in Supplementary Figure S9.

A model, as shown in Fig. 5, is proposed to illustrate the key characteristics of EHW produced via the 
Pt-top-coated Pt/Ti electrodes based the electrocatalytic interactions. The key concepts of this model are summa-
rized as follows: i) the three essential species of water, i.e., water molecules (H2O), hydronium ions (H3O+), and 
hydroxyl ions (OH−), are adsorbed properly on the Pt (111) facet28; ii) on the cathode, hydronium ions receive 
electrons and decay into hydrogen (H*) and water (H2O), namely, by the Volmer step; iii) H* is highly reactive 
but can be stabilized either via penetration into Pt or the formation of hydrogen molecules (H2)29; iv) the reactive 
H* species that have penetrated into Pt can be stored for a long period of time30,31 v) a certain amount of the 
nanosized Pt particles in which H* species are stored escaped to the EHW (EHW was reported to contain 12 ppb 
Pt nanoparticles14, and the amount of Pt in the ERW increased along with the intensity of electrolysis32); vi) EHW 
retains part of the biological activity, i.e., the anti-cardio-renal injury effect33 and scavenging activity of reactive 
oxygen species in cells32, even after de-H2 gas treatment, in contrast to the hydrogen water produced by bubbling 
hydrogen gases; vii) the distinguishing properties, namely, the healthy beneficial effects of EHW, are attributed to 
the highly reductive properties of the H*-Pt nanoparticles in the EHW.

Figure 2.  The HER polarization curves obtained for the Type I, Type II and Type III Pt top-coated Pt/Ti 
electrodes and the pure Ti substrate, as acquired by linear sweep voltammetry performed with a scan rate of 5 
mVs−1 in 0.5 M H2SO4 at room temperature (a). The linear Tafel plots of the three types of Pt/Ti electrodes (b). 
Mass activities of the Pt/Ti electrodes at 0.15 V (versus RHE) (c). Uniformity of the nanosized Pt particles being 
coated (immobilized) on the surfaces of the Ti substance (d).
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It is noted here that titanium (Ti) is a desirable underlying substance for the creation of the Pt-top-coated elec-
trocatalytic electrodes. Strong metal-support interactions (SMSIs) exist between the Pt atoms and the Ti substrate, 
which has been demonstrated to occur preferentially in the case of noble metals highly dispersed with small Pt 
particles34–37. The use of a Ti substrate with a large surface area (porous structure, as seen in the cross-sectional 
EBSD image) offers a strong metal-support interaction, which plays a crucial role in enhancing the activity and 
the stability of our Pt-top-coated Pt/Ti electrodes. The so-called density functional theory (DFT) is used to quan-
titatively evaluate the effect of the substrate-induced interfacial discrepancy on the electronic structure of the 
Pt/Ti electrodes. A useful descriptor of these changes in the electronic structure is the hydrogen binding energy 
(HBE), a parameter that depends strongly on the HER activity. Table 1 summarizes the HBE on the Pt (111), Ti 
(111), and Pt (111) surfaces of the Type I Pt/Ti electrode. Ti enhanced the adsorption ability of Pt for hydrogen 
atoms, thus finally facilitating the process of the HER.

The top-coated Pt/Ti electrodes were scaled up to 7.5 × 11.5 cm and were used for mass production of EHW. 
Inductively Coupled Plasma/Mass Spectrometry (ICP-MS) was used for quantitating the amount of Pt nanopar-
ticles detached from the Pt/Ti electrode in EHW; Table 2 summarizes the analytical data. The as-produced EHW 
was directly analyzed and 3.3 ± 0.2 ppb (n = 3) Pt was detected. A small amount of concentrated HCl was spiked 
to EHW (concentration of HCl in the final EHW sample is approximately 5.0%), the sample was then directly 
analyzed and 5.1 ± 0.1 ppb (n = 3) Pt was detected. The as-produced EHW was filtrated through a 20 nm pored 
alumina filter and the filtrate was detected; 1.1 ± 0.1 ppb (n = 3) Pt was detected. Tap water was used for making 
the EHW and no Pt was detected. A small amount (0.15 ppb, average of 3 measurements) of Pt was found also in 
the oxygen-contained electrolyzed water.

Supply of Pt nanoparticles into EHW in a constant manner is the key to store the reactive hydrogen (·H*) with 
a longer time. Life span which means the electrocatalytic efficiency decayed to 70% of the initial efficiency of the 
7.5 × 11.5 cm sized top-coated Pt/Ti electrodes is approximately 3500 kg-EHW per electrode.

Water is the most important and abundant element to life. Drinking of the nano-Pt contained EHW shall be a 
direct solution to promote healthier life. The pH for EHW for drinking is restricted in the range of pH 9.5 ± 0.3. 
Our top-coated Pt/Ti electro-catalytic electrodes are recommended solely for use in EHW production.

In summary, we have demonstrated experimentally that the loading ratio of Pt can be reduced down to 
0.0215 mg cm−2 while maintaining excellent electrocatalytic performances. Top-coating Pt nanoparticles on the 
surfaces of Ti plates is the key technology for achieving this goal. EHW produced via the Pt top-coated Pt/Ti 

Figure 3.  Long-term (1000 hours of the electrolysis of tap water) stability measurements performed with 
the Type I Pt/Ti electrodes for the electrolysis of tap water. The linear sweep voltammetry (LSV) curves were 
recorded using a scan rate of 5 mVs−1, initially and after 1000 hours of the ISTEP measurements (a). ISTEP 
measurements obtained during the 1000-hour EHW electrolysis process performed at a current density of 
0.05 A cm−2 in tap water, and four continuous cycling tests of 1st, 2nd, 3rd, 4th ISTEP experiment are noted 
(b). The resultant amount of H2, denoted in mmol, obtained by the electrolysis of tap water, as quantified by 
TRIlyzer mBA-3000 system (c), and the HER Faradic efficiency (FE) of the Type I Pt/Ti electrode (d).
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Figure 4.  Cross-sectional electron backscatter diffraction (EBSD) image of the Type III Pt/Ti electrode, where 
the main grains grow vertically toward the Pt-Ti interface and are labeled A, B, C, D and E (a). Cross-sectional 
SEM images of the Type III Pt/Ti electrode (b, c). In the color legend, the three corners of the triangle represent 
the three basal planes of Pt, the (111), (001) and (101) facets, along the cross-sectional direction (d).

Figure 5.  Production of EHW via the Pt-top-coated Pt/Ti electrodes. The EHW near the cathode is hydrogen-
rich water, whereas the EHW near the anode contains oxygen (a). Chemical reactions on the surface of the 
Pt/Ti electrodes. The solvated protons (H3O+) in the electrolyte have been transported into the water and the 
hydrogen atoms and/or molecules. The hydrogen molecules have been further transformed into the reactive 
hydrogen over the Pt nanoparticles. The reactive hydrogen species penetrate into the Pt clusters, and the 
desorption takes place simultaneously (b).

Surface HBE [eV]

Ti (111) −1.23

Pt (111) −0.49

Type I Pt/Ti −0.52

Table 1.  *DFT-calculated hydrogen binding energies (HBEs) estimated based on DFT for the Ti, Pt, and Pt of 
the Type I Pt-top-coated Pt/Ti surfaces. *See the Experimental Section for more details on the HBE calculations.

https://doi.org/10.1038/s41598-020-67107-1
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electrodes contains certain numbers (approximately 12 ppb) of free Pt nanoparticles. The highly reductive hydro-
gen (H*) species penetrate into Pt nanoparticles, where they are stored for a long period of time. The biological 
features of EHW, especially the distinguishing reductive properties, can be attributed to the intrinsic properties 
of Pt-H*. Hydrogen is the first and the lightest element in the periodic table. Hydrogen atoms, even hydrogen 
molecules, are small enough to penetrate and/or pass through most naturally occurring or even human-made 
substances. Hydrogen, once it is activated, i.e., the H* species obtained via the hydrogen/platinum catalytic inter-
action, is a particularly important species. H* can penetrate into any part of our body and is capable of selectively 
reacting with reactive oxygen species (ROS). An illustration showing the potential health benefits of H* is given 
in Fig. 6: a dreamful mermaid is fully recharged and is, right now, going to explore the fascinating new world by 
drinking the Pt-H*-containing EHW.

Experimental Section
Preparation of Pt/Ti electrodes.  The Ti plate, used as the cathode, and Pt/Ti plate, used as the anode, 
are immersed in a platinum plating solution and connected to a power supply used for energizing to prepare 
various types of the Pt-coated Pt/Ti electrodes. Three types of the Pt-coated Pt/Ti electrodes (Ti-plate top-coated 
with nanosized Pt), denoted as Type I, Type II and Type III, are prepared. Thickness of the top-coated Pt layer is 
approximately 100 nm, 200 nm, and 750 nm for Types I, II and III, respectively. A ratio of 1.0 μm/30 min is opti-
mized and is used to prepare all the Pt-coated Pt/Ti electrodes throughout this study. Nihon Trim Co. Ltd. is will-
ing to donate the Pt-coated Pt/Ti electrodes, but the donation is surely subject to the academic studies on EHW.

Preparation of Pt/C electrodes.  Glassy carbon electrodes (GCEs) (inner diameter (ID): 3 mm, outer 
diameter (OD): 6 mm, area: 0.07 cm2) obtained from CHI Instruments were used. The GCEs were polished with 
polishing diamond (1.0 μm from CHI Instruments) suspended in distilled water on a diamond polishing pad and 
alumina powder (0.05 μm from CHI Instruments) suspended in distilled water on an alumina polishing pad (CHI 
instruments). After the first and second stages of cleaning, the electrodes were thoroughly rinsed with deionized 
water. Before being loaded with Pt, the electrodes were also cleaned by immersing them in an isopropanol solu-
tion and sonicating for approximately 10 s. The electrodes were dried overnight at ambient conditions for further 
use. Ag/AgCl (with 3 M NaCl as the filling solution) and platinum foil were used as the reference and counter 
electrode, respectively. Typically, 4 mg of the Pt nanosized powders were dispersed in a 600 μl mixture of water 
and ethanol (17:13, v/v), and then, 400 μl of a Nafion solution (0.5 wt % in water) was added. This suspension was 

Samples
Tap 
water EHW

EHW + 5.0% 
HCl

Filtered 
EHW

Pt (ppb) ND 3.3 ± 0.2 5.1 ± 0.1 1.1 ± 0.1

Table 2.  Quantitative detection of Pt in electrolyzed hydrogen water (EHW) samples (n = 3) via ICP-MS 
(Parkin Elmer Elan DRC-e). The calibration curve was obtained by using the standard samples of 15, 7.5, 5.0, 
2.0, and 1.0 ppb Pt contained 5.0% HCl. The 20 nm pored alumina filter was obtained from Whatman. *ND: Not 
detectable.

Figure 6.  An illustration (created by a scientific illustrator, Shinichiro Kinoshita) showing the effects of Pt-H* 
on health benefits. A dreamful mermaid is used to illustrate the springtime of life; the mermaid has been fully 
recharged by drinking the Pt-H*-containing EHW. The wavy metal plate is used to show the monolayered 
platinum nanoparticles, which are the key for generating and storing H* species. The ocean is used to represent 
the eco-environments of all life.
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immersed in an ultrasonic bath for 30 min to prepare a homogeneous ink (4 mg ml−1). The Pt/C electrode was 
prepared by depositing 12.5 μl of the Pt-containing ink onto the GCE (the Pt loading ratio is 0.14 mg cm−2, and 
the ultimate Pt loading value is 0.01 mg for each Pt/C electrode).

Electrochemical measurements.  The HER activity of various Pt-coated Pt/Ti electrodes (with sizes of 
1 cm ×0.5 cm) was tested in 0.5 M H2SO4 (pH = 0.18), tap water (Tokyo, pH = 6.8) and sea water (Izu seawa-
ter, pH = 8.0) at room temperature using a standard three electrode setup on an electrochemical workstation 
(CHI608C, CHI Instrument). Tap water was purified by TRIM TI-5HX (NIHON TRIM) before use. During 
the analysis, the Pt-coated Pt/Ti electrode was clamped by a customized crocodile-clip-electrode with sizes of 
0.5 cm  × 0.5 cm immersed in the electrolyte solution.

To condition the electrodes, 50 CV cycles were conducted between 0.0 V (vs. the normal hydrogen electrode, 
RHE) and 0.5 V at 100 mVs−1. Tafel curves were then obtained by performing linear sweep voltammetry using a 
scan rate of 5 mVs−1. EIS measurements were conducted in a static solution at an initial potential of −0.26 V (vs. 
Ag/AgCl). The amplitude of the sinusoidal wave was 5 mV, and the frequency scan range was from 100 kHz to 
0.1 Hz. Each of the samples was measured at least three independent times, and the average is used. Unless other-
wise stated, all the experiments were performed at ambient temperature (23 ± 2 °C), and the electrode potentials 
were converted to the RHE scale using E(RHE) = E(Ag/AgCl) + 0.197 V + 0.059*pH.

ICP-MS analysis of EHW.  Quantitative detection of Pt in electrolyzed hydrogen water (EHW) samples 
(n = 3) via ICP-MS (Parkin Elmer Elan DRC-e) were analyzed for elements present in the samples. TW refers to 
tap water, EHW + 5% HCl refers to that the concentration of HCl in the final EHW sample is approximately 5%, 
and Filtered EHW refers to the filtrate of EHW, which was purified by filtration.

Detection of H2.  The amount of H2 gas generated by a sealed electrocatalytic cell was measured by using a 
TRIlyzer system (mBA-3000, TAIYO Instrument). The Faradaic yield was calculated from the total charge Q(C) 
that passed through the cell and the total amount of hydrogen produced nH2 (mol). Q = t/1,000 (C), where t is the 
time (s) under a constant reduction current. Assuming that two electrons are needed to produce one H2 molecule, 
the Faradaic efficiency can be calculated as follows26:

η =
∗F n
Q

4 H2

where F is the Faraday constant, and nH2 is the number of moles of H2.

Computational method.  Our calculations are performed based on DFT calculations, as implemented in 
the Vienna ab initio package38,39. The general gradient approximation of Perdew–Burke–Ernzerhof is adopted 
for the exchange-correlation functional40. Moreover, the electron wave functions were expanded by a plane wave 
cutoff of 550 eV. The (4 × 4 × 1) supercell containing 48 Ti atoms and 64 Pt atoms was constructed by a peri-
odic boundary condition, and the vacuum layers were set to be larger than 20 Å to avoid periodic interactions. 
Reciprocal space was represented by the Monkhorst-Packspecial k-point scheme, and 4 × 4 × 1 grid meshes were 
used to represent the structure relaxation of the Pt/Ti system. Atomic relaxation was performed until the total 
energy variation was smaller than 10−6 and all the forces on each atom were less than 0.01 eV/Å.
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