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Abstract: Benzotriazole UV stabilizers (BUVs) have gained popularity, due to their absorption prop-
erties in the near UV range (200–400 nm). They are used in the technology for manufacturing plastics,
protective coatings, and cosmetics, to protect against the destructive influence of UV radiation. These
compounds are highly resistant to biological and chemical degradation. As a result of insufficient
treatment by sewage treatment plants, they accumulate in the environment and in the tissues of
living organisms. BUVs have adverse effects on living organisms. This work presents the use of
peracetic acid in combination with d-electron metal ions (Fe2+, Co2+), for the chemical oxidation of
five UV filters from the benzotriazole group: 2-(2-hydroxy-5-methylphenyl)benzotriazole (UV-P),
2-tert-butyl-6-(5-chloro-2H-benzotriazol-2-yl)-4-methylphenol (UV-326), 2,4-di-tert-butyl-6-(5-chloro-
2H-benzotriazol-2-yl)phenol (UV-327), 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV-328),
and 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol (UV-329). The oxidation procedure
has been optimized based on the design of experiments (DoE) methodology. The oxidation of benzo-
triazoles follows first order kinetics. The oxidation products of each benzotriazole were investigated,
and the oxidation mechanisms of the tested compounds were proposed.

Keywords: benzotriazole UV stabilizers; peracetic acid; advanced oxidation processes; iron ions;
cobalt ions

1. Introduction

UV stabilizers are, widely, used to prevent the degradation of polymeric products. UV
radiation has a destructive effect on the structure of plastics, by changing the mass, color,
gloss, and other properties, leading to a constant demand for compounds protecting them
against UV degradation. As a result of their massive production, the global UV absorbers
market is expected to reach a value of USD 669 million in 2020 and USD ~920 million by
2027 [1]. Benzotriazoles (BTRs) constitute a vast group of heterocyclic chemicals, including
those with anti-corrosive and anti-icing properties as well as UV stabilizers (BUVs). The
last group of BTRs are compounds containing an additional phenolic ring attached to the
benzotriazole molecule (Figure 1).
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BUVs are used in the following products and fields: adhesives, engineering thermo-
plastics (UV-P), engineering plastics, sealants, wood lacquers (UV-326), coatings, fibers,
films, lacquers (UV-327), automotive and industrial coatings, carpets, enamels, packag-
ing, paints, photographic coating, plastics, stain, textiles, thermosetting acrylic enamels
(UV-328), gel coats, glazing materials, marine and auto applications, molded articles, pho-
toproducts, sheets, and signs (UV-329) [2]. The practical use of benzotriazoles dates back to
the early 1960s, when the first patent for the use of benzotriazoles, as stabilizers for polymer
products, was obtained [3]. BUVs are capable of absorbing UV light (300–400 nm) [4], and
their protective properties have, also, used the production of cosmetics [5,6]. Benzotriazoles
are expected to dominate the market for UV filters, due to their excellent spectral coverage
and high molar extinction coefficient [1]. According to the OECD Existing Chemicals
Database, UV-P, UV-328, and UV-329 are designated as high production volume chemicals
(HPVC), with production >1000 tons per year [7]. Based on the SPIN database (Substances
In Preparations In Nordic Countries), the total use of BUVs in Denmark, Finland, Norway,
and Sweden are 0.4–11.6, 4–10, 0.1–0.9, 0.1–4.5, and 0.6 t/a for UV-P, UV-326, UV-327,
UV-328, and UV-329, respectively [8].

Benzotriazoles are a serious environmental threat, due to their high resistance to both
biological and chemical degradation. BUVs end up in the environment, as a result of
direct rain runoff and snowmelt [9]; however, the largest contamination source is run-off
from sewage treatment plants [10–16]. Due to their resistance to the degradation processes,
benzotriazole-based UV absorbers accumulate and persist in the environment. The presence
of benzotriazoles in aquatic environment, such as marine organisms, river and lake waters,
and sediments, is a major threat [17–23]. In addition, UV-P, UV-326, UV-327, and UV-328
were detected in house dust [24,25]. BUVs were also determined in PM10 outdoor air, from
industrial areas in Tarragona, Spain [26]. Benzotriazoles trends to accumulate in the tissues
of living organisms [22,27–31] and were detected in human breast milk [32–34]. Exposure to
benzotriazoles via food packaging seems insignificant but is, potentially, harmful. Dietary
exposure to benzotriazoles, based on maximum concentrations in foods (ng/kg bw/day),
are 9.5–29.7 and 38.7–120.4 for UV-326 and UV-329, respectively [35]. The concentrations of
BUVs in various samples are presented in Table 1.

Table 1. Concentration of target benzotriazoles in environmental and biological samples.

Sample Location UV–P UV–326 UV–327 UV–328 UV–329 Determination
Method Ref.

Breast milk
(ng/g lipid wt.)

South Korea 19.2 1.77 10 64.3 4.54 GC-MS [32]
Japan 21 0.08 n.d. 0.2 3.8

UHPLC-
MS/MS

[33]Philippines 16/71 a 34/64 n.d. 2.4/1.9 n.d.
Vietnam 91/3.9/32 0.53/n.d./2.1 n.d./n.d./1.6 0.9/0.48/0.47 9.6/2.6/6

Mussels (ng/g) Asia-Pacific
coastal waters – 150 68 130 – GC-MS [36]

WWTP (ng/L) China 9.9–37.1
(7.2–15.9) b – – 2.6–2.9 (0.60) 3.8 LC-MS/MS [16]

Rivers in India
(ng/L)

Water 0.2–2.3 1.5–3.7 3.3–4.3 0.5–3.4 8.1–13.7
GC-MS [21]Sediment 0.1–0.3 0.2–0.5 0.6–2 0.2–0.9 0.9–1.41

Fish 2.2–6.9 0.6–1.6 1.0–3.2 0.2–1.6 3.0–7.4
House dust

(ng/L) Philippines – 53/6.2 28/10 50/18 – UHPLC-ESI-
MS/MS [24]

Blood plasma of
water animals

(pg/g)
North America – – – 240–776 <640 UPLC-MS/MS [22]

a—the concentration after the slash applies to different locations; b—concentration in influent (effluent).

Benzotriazoles raise concerns about the safety of living organisms and their surround-
ing environment. Only two of the benzotriazoles studied in this work are regulated by law.
The European Chemicals Agency (ECHA) has classified UV-327 and UV-328 as substances
with high bioaccumulation potential and strong resistance to degradation. UV-327 is on
the list of substances considered as persistent organic pollutants (POPs). The Japanese
government, also, classified UV-327 as a Monitoring Chemical Substance because of its
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high bioaccumulative characteristics [37]. The 16th meeting of the Persistent Organic Pol-
lutants Review Committee of the Stockholm Convention (January 2021) concluded that
UV-328 satisfies all the criteria to be included in the convention’s Annex D (Screening
criteria for persistent organic pollutants), namely due to is persistence, bioaccumulation,
potential for long-range environmental transport, and adverse effects on humans and/or
the environment [38].

All benzotriazoles presented in this study raise doubts about their safety because they
may contribute to adverse antiandrogenic effects [39]. Feng et al. [40] has proven that UV-P
shows partial estrogenic activity against the human breast cancer MVLN cell line, while
UV-329 is not estrogenic. In vitro experiments with human liver microsomes (HLMs) were
performed, to identify the phase I metabolites of UV-327 and UV-328, which can be used
as potential biomarkers for exposure to these compounds [41,42]. UV-328 metabolites are,
also, detected in human urine and blood [43,44]. Detection of metabolites can elucidate the
pathway of metabolism and estimate the toxicity of specific metabolism products towards
living organisms. The UV-328 and UV-P metabolites have greater antiandrogenic activity
upon human CYP3A4-mediated biotransformation than their non-metabolized forms [45].
UV-328, adversely, affects the thyroid hormone pathway of the zebrafish, Danio rerio [46].
Chronic exposure to low concentrations of this UV stabilizer causes oxidative stress and
liver damage in zebrafish [47]. Freshwater green algae Chlamydomonas reinhardtii subjected
to UV-328 show increased production of reactive oxygen species, while prolonged contact
with UV-234 caused an increase in lipid peroxidation [48]. Knowledge about concentrations
that cause negative effects on living organisms is limited, with only a few studies available
for the toxicity assessment of BUVs (Table 2.).

Table 2. Acute toxicity of selected benzotriazoles on living organisms.

BUVs Route Living Organism Acute Toxicity LD50/LC50 Ref.

UV-P

oral Freshwater crustacean
(Daphnia pulex) >10 mg/L [49]

oral mice >5–>10 g/kg

[50]

oral rats >15 g/kg
oral rats >5 g/kg

inhalation rats 1420 mg/m3

dermal rabbits >2 g/kg
dermal Guinea pigs >3 g/kg

UV-328

oral Rat 7750 mg/kg
[51]inhalation Rat 400 mg/m3

dermal rabbit 1100 mg/kg

direct Algae
Raphidocelis subcapitata EC50 > 0.016 mg/L [52]

The aim of the presented work was to develop a new approach to the removal of
BUVs as persistent environmental pollutants from aqueous solutions, based on the use of
advanced oxidation. The literature review shows that, until now, no attempt has been made
to use chemical oxidants to degrade and dispose of BUVs. This work presents the study on
the oxidation process of five benzotriazole UV stabilizers that use peracetic acid activated
with d-electron metal ions. Peracetic acid (PAA) is a long-known disinfectant and effective
oxidant of organic micropollutants [53–56]. In recent studies, UV irradiation [57–60],
d-electron metal ions [61–64], or heterogeneous activators [65–71] have been used as PAA
activators. So far, no information is available on the removal procedures of benzotriazole
UV stabilizers. Liu et al. [72] reported that sorption on sludge plays a dominant role in
the removal of benzotriazole UV absorbers in municipal wastewater treatment plants.
Chen et al. [73] described the photodegradation process of UV-P in coastal seawaters. The
neutral form of UV-P is photodegraded more slowly than both the cationic and the anionic
form. Singlet oxygen, hydroxyl radical, and dissolved organic matter have a positive effect
on indirect UV-P photodegradation, in coastal seawaters. One of the latest reports appeared
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on the reductive photodegradation of BUVs in visible light, using tetraacetylated riboflavin
(RFTA) as a photocatalyst [74].

2. Results and Discussion
2.1. Optimization of the UV Stabilizers Oxidation Process

Twenty experiments, including six repetitions under the same conditions in the central
point, were carried out for three selected factors that affect oxidation efficiency at five levels.
Table 3, Tables S2 and S3 present data for the individual experiments as well as for the
experimental and predicted values of removal efficiency (RE%).

Table 3. The three-factor CCD matrix, with the experimental and predicted removal efficiency values
for UV-326 degradation.

[PAA]0 (mg/L) [Me2+]0 (mol/L)
PAA/Fe2+ System PAA/Co2+ System

pH RE% (exp.) RE% (pred.) pH RE% (exp.) RE% (pred.)

1 45 3.45 × 10−4 4.6 91.01 100.00 7 57.35 63.37
2 45 3.45 × 10−4 3.4 94.13 97.24 4 76.25 77.84
3 45 1.45 × 10−5 4.6 36.99 55.25 7 73.69 72.96
4 45 1.45 × 10−5 3.4 33.35 46.27 4 55.32 60.78
5 15 3.45 × 10−4 4.6 97.44 100.00 7 66.91 64.61
6 15 3.45 × 10−4 3.4 92.99 97.24 4 75.48 79.08
7 15 1.45 × 10−5 4.6 20.10 55.25 7 75.22 74.20
8 15 1.45 × 10−5 3.4 23.84 46.27 4 49.54 62.02
9 55 7 × 10−5 4 78.68 66.76 5.5 67.55 66.21
10 5 7 × 10−5 4 93.51 66.76 5.5 65.49 68.28
11 30 1 × 10−3 4 90.15 87.04 5.5 65.51 64.61
12 30 5 × 10−6 4 41.04 53.29 5.5 55.44 66.56
13 30 7 × 10−5 5 93.50 61.48 8 64.78 76.62
14 30 7 × 10−5 3 57.71 46.51 3 58.76 63.78
15 30 7 × 10−5 4 75.96 66.76 5.5 69.46 67.68
16 30 7 × 10−5 4 76.79 66.76 5.5 77.01 67.68
17 30 7 × 10−5 4 71.59 66.76 5.5 77.37 67.68
18 30 7 × 10−5 4 72.02 66.76 5.5 77.74 67.68
19 30 7 × 10−5 4 72.57 66.76 5.5 81.38 67.68
20 30 7 × 10−5 4 78.93 66.76 5.5 76.76 67.68

exp.—experimental; pred.—predicted.

For each of the studied UV stabilizers (UV-P, UV-326, UV-327, UV-328, UV-329), a
mathematical model was developed to characterize the relationship between the degrada-
tion efficiency, PAA, metal ion concentration, and pH of the solution. Statistical analysis of
the developed regression model was performed for all benzotriazoles. ANOVA test results
for fit UV-326 removal efficiency are presented in Table 4. Data for other benzotriazoles are
included in the Supplementary Materials (Tables S4–S10).

Table 4. ANOVA results for UV-326 removal efficiency from CCD.

Source of Variation Sum of Squares DF Mean Square F-Value p-Value

PAA concentration (square) 128.572 1 128.5723 8.46121 0.033446
Co2+ concentration (linear) 103.937 1 103.9369 6.83998 0.047364
Co2+ concentration (square) 165.885 1 165.8846 10.91670 0.021380

pH (square) 308.624 1 308.6242 20.31025 0.006360
Co2+ concentration-pH interactions 585.017 1 585.0169 38.49937 0.001588

Lack of fit 507.354 9 56.3727
Pure error 75.977 5 15.1955

Total 1610.347 19
R2 = 0.63776 R2 (adjusted) = 0.50839 p < 0.05 is considered as significant
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The results obtained for UV-326 indicate that the regression model is characterized
by a low coefficient of determination (R2 = 0.638). These results prove that the model only
determines the influence of factors on the effectiveness of UV-326 removal in 64%.

Pareto charts (Figure 2, Figures S5 and S6) show a statistically significant (p < 0.05)
influence of the individual independent variables on the UV stabilizers removal process.
The presented diagrams show that the efficiency of micropollutants removal, most strongly,
depends on the concentration of metal ions. In addition, the relationship between the
concentration of the metal ion and the pH is noticeable because it determines the speciation
of the activator necessary for the oxidation process initiation. In the Co2+/PAA process,
all factors have a statistically insignificant effect on the removal efficiency of UV-327 and
UV-328. This gives the information that any amount of oxidant and activator is good for
these substances’ removal.
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Figure 3, Figures S7 and S8 present response surface plots of the removal efficiency
of UV stabilizers depending on the combination of two independent variables: PAA
concentration vs. pH, PAA concentration vs. metal ion concentration, and metal ion
concentration vs. pH, with a predetermined value of the third variable. As can be seen in
the graphs, there is no agreement as to the influence of a specific factor on the oxidation of
benzotriazoles; however, a strong dependence of RE% on the concentration of PAA and
the activator is observed. The higher the concentration of the oxidant and/or activator
is, the greater the percent of degradation. This phenomenon can be explained by the fact
that the number of radicals generated increases with an increase in PAA concentration.
After exceeding the optimal concentration values, the oxidation efficiency may drop. It
is observed that in the Fe2+/PAA process, the excess of PAA may interact with hydroxyl
radicals, leading to the formation of radicals with lower reactivity [75]:

CH3C(O)O2H + •OH→ CH3C(O)O2
• + CH3C(O)OH (1)

CH3C(O)O2H + •OH→ CH3C(O)• + H2O + O2 (2)

CH3C(O)O2H + •OH→ HO2
• + CH3C(O)OH (3)
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There may be a situation where the excess PAA can react with acetoxyl radicals,
resulting in the formation of less-reactive acetylperoxyl radicals:

CH3C(O)O2H + CH3C(O)O• → CH3C(O)O2
• + CH3C(O)OH (4)

For UV-327 and UV-328 in the Co2+/PAA process, no factor significantly contributes
to the degradation efficiency. Various combinations of the independent variables result in
the same oxidation value, of about 70%. It led to the conclusion that with any amount of
oxidant and/or activator, and at any pH, it is possible to carry out the oxidation process. In
both processes, the pH contributes to the efficiency of the UV stabilizer removal process.
The pH of the system affects the radical formation process as well as the chemical forms of
the oxidant and activators. Kim et al. [75] reported that PAA (pKa 8.2) at a pH of 3–7 exists
in the form of neutral molecules. With increasing pH, the concentration of the ionized form
increases. PAA– shows weaker oxidizing properties than PAA0, but can react more easily
with •OH radicals, thus affecting the oxidation process. At a higher pH, Fe2+ can be oxidized
more easily. Moreover, Fe3+ speciation is strongly dependent on pH; hydroxocomplexes
may form or they may precipitate. The precipitated forms of iron are unable to activate the
peracid which, in turn, reduces the concentration of radicals in the system.

Mechanisms of peracetic acid-based advanced oxidation processes are not, yet, well
understood. The radicals formed as a result of PAA activation are not highly reactive
but can be selective; therefore, optimization of the oxidation process brings different
results for individually tested organic micropollutants. Nevertheless, optimization al-
lows one to predict the success of the removal process. On the basis of the obtained
results, it was found that the optimal conditions for the oxidation of UV stabilizers were
CPAA = 25 mg/L and CFe2+ = 6·10−4 mol/L for the Fe2+/PAA process, and CPAA = 40 mg/L
and CCo2+ = 8 × 10−4 mol/L for the Co2+/PAA process. Both experiments were performed
at a pH of 4.5.

2.2. UV Stabilizers Degradation Kinetics

Degradation of UV-P, UV-326, UV-327, UV-328, and UV-329 was investigated, at a pH
of 4.5, in the Fe2+/PAA and Co2+/PAA systems. Initial benzotriazoles concentrations were
500 µg/L. In the Fe2+/PAA system, [Fe2+]0 = 6× 10−4 mol/L and [PAA]0 = 25 mg/L, while
in Co2+/PAA, [Co2+]0 = 8 × 10−4 mol/L and [PAA]0 = 40 mg/L. In the Fe2+/PAA process,
69%, 90%, 91%, 91%, and 89% degradation in 180 min was observed for UV-P, UV-326,
UV-327, UV-328, and UV-329, respectively. UV-P is the least oxidized among all tested
compounds. Similar results were obtained in the Co2+/PAA process, for the same time
frame (180 min), where 96%, 95%, 91%, 89%, and 80% of UV-P, UV-326, UV-327, UV-328,
and UV-329, respectively, were oxidized. In the case of UV-P, an immediate decrease in
concentration was noticed within 5 min. This time is too short for the oxidation of the
mentioned compound, since UV stabilizers are relatively difficult to degrade. This result
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can, potentially, be explained in two ways. In the Co2+/PAA system, either selective
oxidation of UV-P takes place with only subsequent compounds created, or there is no
oxidation process, with only the UV-P complexation reaction by cobalt ions [2,76]. The
kinetics of tested compounds decomposition are presented in Figures 4 and 5.
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Figure 4. Kinetics of BUVs’s degradation in Fe2+/PAA process. Reaction conditions:
[PAA]0 = 25 mg/L, [Fe2+]0 = 6 × 10−4 mol/L, initial pH 4.5.
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Figure 5. Kinetics of BUVs’s degradation in Co2+/PAA process. Reaction conditions:
[PAA]0 = 40 mg/L, [Co2+]0 = 8 × 10−4 mol/L, initial pH 4.5.

Pseudo-first order kinetic model was applied to determin the rate of tested organic
micropollutants. First-order kinetic constants in the Fe2+/PAA process were 0.0059 min−1,
0.0118 min−1, 0.0166 min−1, 0.0125 min−1, and 0.0121 min−1, for UV-P, UV-326, UV-327,
UV-328, and UV-329, respectively. Similar values were obtained in the Co2+/PAA process,
where k was 0.0150 min−1, 0.0107 min−1, 0.0116 min−1, and 0.0088 min−1 for UV-326,
UV-327, UV-328, and UV-329, respectively (Table 5).

Table 5. Determination coefficients (R2), first-order constant (k), and half-life time (t1/2), of BUVs’s
removal by Fe2+, for Co2+/PAA-based oxidation.

Compound
Fe2+/PAA Process Co2+/PAA Process

R2 k (min−1) t1/2 (min) R2 k (min−1) t1/2 (min)

UV-P 0.972 0.0059 117.48 – – –
UV-326 0.992 0.0118 58.74 0.992 0.0150 46.21
UV-327 0.967 0.0166 41.76 0.953 0.0107 64.78
UV-328 0.976 0.0125 55.45 0.997 0.0116 59.75
UV-329 0.991 0.0121 57.28 0.960 0.0088 78.77
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2.3. Mechanism of UV Stabilizers Degradation

Commercial peracetic acid is, typically, an equilibrated mixture of PAA, hydrogen
peroxide, acetic acid, and water, according to the reaction:

CH3CO2H + H2O2 ↔ CH3C(O)O2H + H2O (5)

For this reason, activation of peracetic leads to the generation of reactive species
involved in the oxidation of organic micropollutants. Using homogenous systems, such
as UV irradiation andd-electron metal ions, •OH, CH3C(O)OO•, CH3C(O)O•, and other
radicals can be formed [57,58,61,62,75]. In the Fe2+/PAA process, Fe2+ reacts with PAA and
H2O2. The reactions that take place are as follows [75]:

CH3C(O)OOH + Fe2+ → CH3C(O)O• + Fe3+ + OH− (6)

CH3C(O)OOH + Fe2+ → CH3C(O)O- + Fe3+ + •OH (7)

CH3C(O)OOH + Fe2+ → CH3C(O)OH + FeIVO2+ (8)

H2O2 + Fe2+ → •OH + Fe3+ + OH− (9)

H2O2 + Fe2+ → H2O + FeIVO2+ (10)

The main reactions taking place within the Co2+/PAA system are the formation of
acetylperoxy (CH3C(O)OO•) and acetoxyl (CH3C(O)O•) from both cobalt species [61,62]:

CH3C(O)OOH + Co2+ → CH3C(O)O• + Co3+ + OH− (11)

CH3C(O)OOH + Co3+ → CH3C(O)OO• + Co2+ + H+ (12)

The mechanisms of the Fe2+/PAA and Co2+/PAA processes have been investigated,
by determining the participation of individual radicals in the oxidation process of UV-
stabilizers. To evaluate the •OH radicals’ activity, tert-butyl alcohol (TBA) was used. The
participation of O2

•− radical and 1O2 was also checked, by adding 1,4-BQ and NaN3 to
the solution for superoxide anion radical and singlet oxygen, respectively. The influence
of individual reactive species, on the removal efficiency of tested UV stabilizers in the
Fe2+/PAA and Co2+/PAA systems, is shown in Figures 6 and 7.
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Figure 6. Effect of radical scavengers on UV stabilizers’ degradation in the Fe2+/PAA process
(w”—reaction with radical quencher, w/o”—reaction without radical quencher).
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There are two main sources of hydroxyl radicals in the Fe2+/PAA process. •OH
radicals are formed from the direct reaction of PAA with iron ions and from the Fen-
ton reaction taking place in the system, due to the presence of H2O2. The much higher
reaction rate constant for the formation of radicals from peracetic acid at pH of 3.0–7.1
(0.5–1.10) × 105 M−1·s−1, compared to that of Fe2+/H2O2 (k = 63–76 M−1·s−1), proves that
PAA decomposition is the predominant source of •OH radicals in Fe (II)/PAA systems [54].
As seen in Figure 1, the oxidation process of benzotriazoles takes place with a small share
of hydroxyl radicals. Sodium azide, used as 1O2 quencher, increased the removal efficiency
for almost all benzotriazoles. This phenomenon can be explained by the fact that at pH of
4–13, the N3

− ion can react with hydroxyl radicals to form azide radicals N3
•, which, in

turn, could oxidize organic compounds by electron transfer [77]:

•OH + N3 → OH− + N3
• (13)

In the Co2+/PAA process, this phenomenon is not observed because fewer •OH
radicals that can oxidize azide are produced. This result may, indirectly, prove the presence
of hydroxyl radicals in the iron (II)-activated PAA system. Superoxide anion radicals can,
also, be formed in the system, as a result of the reaction accompanying the Fenton process:

H2O2 + •OH→ HO2
• + H2O (14)

HO2
• → O2

•− + H+ (15)

O2
•− may react with CH3C(O)OO• [62], which removes radicals affecting the degra-

dation process of UV stabilizers:

CH3C(O)OO• + O2
•− → CH3C(O)OO− + O2 (16)

The removal of superoxide anion, with 1,4-BQ from the system, increased the removal
efficiency of most benzotriazoles. The use of tert-butyl alcohol does not cause any significant
changes in the efficiency of benzotriazole removal, which proves the low participation of
hydroxyl radicals in the Co2+/PAA process. •OH are not generated in the direct reaction of
PAA with Co2+ ions, although these can be formed from R-O• radicals [62]. Singlet oxygen
is produced by the decomposition of PAA [62,78]:

CH3C(O)OOH + CH3C(O)OO−(→ CH3CH(O)OH + CH3C(O)O−(+ 1O2 (17)

The effectiveness of BTA removal under the influence of singlet oxygen was assessed,
by adding NaN3 to the reaction mixture. Sodium azide did not contribute to the slowing
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down of the UV stabilizers degradation process. It follows that singlet oxygen is formed
in too small of an amount, which is not capable of efficient oxidation of organic microp-
ollutants. HO2

•/O2
•− radicals can be formed in the Co2+/PAA process, both from other

radicals and through a reaction with hydrogen peroxide [62,75]:

CH3C(O)OO• → HO2
• + CH2CO (18)

H2O2 + CH3C(O)OO• → HO2
• + CH3C(O)OOH (19)

CH3C(O)O• + H2O2 → HO2
• + CH3C(O)OH (20)

CH3C(O)OO• + H2O2 → HO2
• + CH3C(O)OOH (21)

As can be seen in the figure, superoxide anion has the greatest influence on the
oxidation process of UV-326 and UV-327.

2.4. Benzotriazole UV Stabilizers Degradation Products

ESI-MS analysis of the oxidation products of the tested benzotriazoles was performed,
and mass spectra were acquired (Figure S9). The registered spectra of post-reaction mixtures
are similar because of the similar structures analyzed BUVs, therefore, some identical
degradation products have been detected. On the other hand, the ions were characteristic,
only for products made from only one of the benzotriazoles. Based on the ESI-MS spectra
and the available literature data [79–81], the structures of the oxidation products have
been proposed (Figure 8, Table S11). Most of the structural changes occur within the
benzotriazole ring, which was discussed in previous works. When comparing the oxidation
products in the Fe2+/PAA and Co2+/PAA processes, no significant differences were noticed.
Some products contain -OH groups, resulting from the action of the hydroxyl radical.
It confirms its dominant role in the oxidation process. Generally, products with lower
molecular weights are produced. This shows that the radicals break the molecules into
smaller fragments and, probably, lead to complete mineralization.
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3. Materials and Methods
3.1. Materials and Characterizaton

Benzotriazole UV stabilizers: UV-P, UV-326, UV-327, UV-328, UV-329 were obtained
from Sigma-Aldrich (Steinheim am Albuch, Germany). Characteristics of UV stabilizers
considered within this work are included in Table S1 of the Supplementary Materials.
All standard reagents were at analytical grade. These were used to prepare a stock so-
lution that contained 1 mg/mL of each chemical in acetonitrile, that was then stored at
−18 ◦C, for no longer than one month. Working solutions, prepared by diluting the stock
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standard solution in acetonitrile, were stored at −18 ◦C, for no longer than two weeks.
Chromatography-grade pure acetonitrile, supplied by Merck (Darmstadt, Germany), was
used. Chromatography-grade pure chlorobenzene, produced by Sigma-Aldrich (Steinheim
am Albuch, Germany), was applied as the extraction solvent. Ferrous sulfate heptahy-
drate (FeSO4·7H2O) (Chempur, Piekary Śląskie, Poland) and cobalt sulfate (CoSO4) (Sigma
Aldrich, Steinheim am Albuch, Germany) were used to activate peracetic acid. Peracetic
acid was synthesized on site, according to the procedure described in Supplementary
Materials. For this purpose, pure p.a. acetic acid, hydrogen peroxide (Chempur, Piekary
Śląskie, Poland), and sulphuric acid (POCH, Gliwice, Poland) were used. Sodium thio-
sulfate (Na2S2O3), obtained from Thermo Fisher Scientific (Dreieich, Germany), was used
as a radical scavenger. Tert-butyl alcohol TBA and sodium azide NaN3, acquired from
Fisher Scientific (Merelbeke, Belgium), and 1,4-benzoquinone 1,4-BQ (Acros Organics, Geel,
Belgium) were used to study the reaction mechanisms. Deionized water from the Milli-Q
RG (Millipore, Burlington, MA, USA) purification system was stored in glass bottles.

Determination of the UV stabilizers in water samples was performed by gas chro-
matography with mass spectrometry (GC-MS). The chromatographic analysis was carried
out, using a 7890B gas chromatograph with an electronic pressure control, and was coupled
with a mass selective detector 5977A (electron impact source and quadrupole analyzer)
from Agilent Technologies, USA. This device was equipped with an HP-5MS column (5%
phenylmethylsiloxane), with dimensions of 30 m × 0.25 mm × 0.25 µm film thickness.
Helium (99.999%), at a constant flow rate of 1.0 mL/min, was used as a carrier gas. An
injector worked in splitless mode, at a temperature of 250 ◦C. The oven was operating on
the following temperature schedule: start at 120 ◦C, raise the temperature by increments of
10 ◦C/min, until reaching 290 ◦C, then, by increments of 20 ◦C, until reaching 310 ◦C. Each
temperature was maintained for 1 min, for a total run time of 19 min. The electron impact
source temperature was 230 ◦C, with electron energy of 70 eV. The quadrupole temperature
was 150 ◦C, and the GC interface temperature was 280 ◦C. The MS detector was set to
work in selected ion monitoring (SIM) mode. Target compound monitored ions are shown
in Table S1 of the Supplementary Materials. Then, calibration curves were prepared to
calculate BUVs’s concentrations during the oxidation reaction (Figure S4).

In order to identify the oxidation products, analyses were performed using an Agilent
6530 Accurate-Mass Q-TOF ESI (+) and LC/MS system, equipped with an Agilent Poroshell
120 EC-C18 column (2.7 µm × 3.0 × 150 mm). The gradient mobile phase was A: water,
B: methanol at flow rate 0.3 mL/min, for UV-P, UV-326, and UV-329: 0–5.50 min 20% A,
9.00 min 1% A, 15.00 min 1%, A 15.50 min 20% A, and 18.00 min 70% A; for UV-327 and UV-
328: 0–5.50 min 20% A, 9.00 min 1% A, 15.00 min 1% A 15.50 min 20% A, 18.00 min 70% A,
24.00 min 20% A, 29.00 min 1% A, 35.00 min 1% A 35.50 min 20% A, and 38.00 min 70% A.

Optimization of the benzotriazole oxidation process was made in Statistica 13.1 soft-
ware (Tibco Software Inc., Palo Alto, CA, USA), using the Central Composite Design (CCD)
technique from the design of experiments (DoE) method.

3.2. Procedure of Ultrasound-Assisted Emulsification Microextraction

The efficiency of BUVs’s extraction, using various organic solvents was tested. For
this purpose, the ultrasound-assisted emulsification microextraction (USAEME) process
was performed using chlorobenzene, chloroform, and toluene as extraction solvents. Addi-
tionally, USAEME, with solidification of the floating organic drop method (SFOD), using
1-undecanol and hexadecane, was used. Aliquots, of 5 mL of a water sample containing
benzotriazoles, were placed in 10 mL glass centrifuge tubes. Then, 80 µL of extractant
was added to the water sample and mixed. Immediately after, the tube was immersed
in a Sonorex Digitec 102H ultrasonic water bath, Bandelin (Germany). Extractions were
performed at 42 kHz of ultrasound frequency and 230 W of power, for 10 min at room
temperature. The solvent volume of 80 µL and extraction time of 10 min were consid-
ered optimal, based on preliminary tests. Emulsions were disrupted by centrifugation, at
4000 rpm for 5 min, in an MPW-M UNIVERSAL Med. Instruments (Poland) laboratory
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centrifuge. Then, the organic phase settled at the bottom of the conical tube. After cen-
trifugation, the organic layer was collected, using a 100 µL Agilent Technologies (USA)
syringe and transferred into a 150 µL microvial with integrated insert. Then, extracts were
subjected to GC-MS analysis. Chromatogram and mass spectra of tested benzotriazoles are
shown in Figures S1 and S2. Results obtained for UV stabilizers indicate that the optimal
extraction solvent is chlorobenzene (Figure S3), and this extractant was, then, used in all
subsequent experiments.

3.3. Degradation Experiments

The preliminary degradation experiments of benzotriazoles were carried out in glass
beakers, by mixing certain volumes of metal ions and benzotriazoles mixture, with an
initial concentration of 500 µg/L. The pH of the mixture was adjusted, by adding a few
microliters of NaOH (0.5 mol/L). Then, an appropriate volume of peracetic acid working
solution was added to initiate the reaction. The oxidation reaction was carried out for
30 min, with continuous stirring of the solution at 700 rpm. Then, 800 µL 20% sodium
thiosulfate was added, to stop the reaction. Quenching experiments were conducted by
adding 0.5 mol/L TBA, 0.1 mol/L NaN3, or 0.01 mol/L 1,4-BQ into reaction solutions,
before initiating a reaction. The experiment was carried out in dark conditions, to prevent
the PAA from being activated by light.

4. Conclusions

For the first time, a procedure for advanced oxidation of benzotriazole UV filters, us-
ing peracetic acid activated with d-electron metal ions, was developed. A CCD-based
chemometric approach was used to optimize of the oxidation process. At pH = 4.5,
[PAA]0 = 25 mg/L and [Fe2+]0 = 6 × 10−4 mol/L as well as [PAA]0 = 40 mg/L and
[Co2+]0 = 6 × 10−4 mol/L, the best oxidation efficiency of benzotriazoles was achieved.
The effectiveness of the oxidizing system depends on the ratio of the concentration of per-
acetic acid and the activator, and, also, on the type of oxidized compound. Nevertheless, a
slight advantage of the Fe2+/PAA system, over the system containing Co2+ ions as the PAA
activator, is noticeable. Iron ions generate more reactive hydroxyl radicals and, therefore,
increase the rate and efficiency of the oxidation reaction. Conducting experiments with
the use of TBA, NaN3, and 1,4-BQ confirmed the earlier reports on the dominant role of
•OH radicals in the Fe2+/PAA process, and the influence of CH3C(O)OO• and CH3C(O)O•

radicals on the oxidative activity of the Co2+/PAA system. This work extends the existing
knowledge on the use of chemical oxidants to remove persistent pollutants from water
matrices. The conducted research contributes significantly to the research on the oxidation
processes in peracetic acid/d-electron metal ions systems, as the literature to date concerns
only a few compounds exposed to these systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27103349/s1, Table S1: the chemical structure, chemical
abstract service (CAS) registry number, molecular weights (MW), octanol-water partition coefficients
(log Kow), acid dissociation constants (pKa), quantification, and identification ions (m/z) of target
benzotriazole UV stabilizers; Figure S1: chromatogram of the studied benzotriazole UV stabiliz-
ers; Figure S2: mass spectra recorded during GC-MS analysis of studied compounds; Figure S3:
comparison of the UV stabilizers peak areas depending on the different extractants; Figure S4: cali-
bration curves used to calculate temporary benzotriazole concentrations; Table S2: experimental and
predicted removal efficiency values, for benzotriazole UV stabilizers degradation in the Fe2+/PAA
process; Table S3: experimental and predicted removal efficiency for benzotriazole UV stabilizers
degradation in the Co2+/PAA process; Table S4: ANOVA results for the UV-P removal process in
the Fe2+/PAA system; Table S5: ANOVA results for the UV-326 removal process in the Fe2+/PAA
system; Table S6: ANOVA results for the UV-327 removal process in the Fe2+/PAA system; Table S7:
ANOVA results for the UV-328 removal process in the Fe2+/PAA system; Table S8: ANOVA results
for the UV-329 removal process in the Fe2+/PAA system; Table S9: ANOVA results for the UV-P
removal process in the Co2+/PAA system; Table S10: ANOVA results for the UV-329 removal pro-
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cess in the Co2+/PAA system; Figure S5: Pareto charts showing the influence of factors and their
interactions on the individual BUVs’s removal efficiency in the Fe2+/PAA process; Figure S6: Pareto
charts showing the influence of factors and their interactions on the individual BUVs’s removal
efficiency in the Co2+/PAA process; Figure S7: response surface plots of the removal efficiency of
studied BUVs in the Fe2+/PAA process; Figure S8: response surface plots of the removal efficiency of
studied BUVs in the Co2+/PAA process; Figure S9: mass spectra of post-reaction mixture; Table S11:
proposed structures of benzotriazole UV stabilizers oxidation products. Reference [82] is cited in the
supplementary materials.
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