
Genetic Variation on Chromosome 6 Influences F Cell
Levels in Healthy Individuals of African Descent and HbF
Levels in Sickle Cell Patients
Lisa E. Creary1, Pinar Ulug1, Stephan Menzel1, Colin A. McKenzie2, Neil A. Hanchard2, Veronica Taylor3,

Martin Farrall4, Terrence E. Forrester2, Swee Lay Thein1,5*

1 King’s College London School of Medicine, Division of Gene and Cell, Based Therapy, James Black Centre, Denmark Hill Campus, London, United Kingdom, 2 Tropical

Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, Kingston, Jamaica, 3 National Blood Transfusion Centre, Kingston,

Jamaica, 4 Department of Cardiovascular Medicine, Wellcome Trust Centre for Human, Genetics, University of Oxford, Oxford, United Kingdom, 5 King’s College Hospital,

Department of Haematological Medicine, Denmark Hill, London, United Kingdom

Abstract

Fetal haemoglobin (HbF) is a major ameliorating factor in sickle cell disease. We investigated if a quantitative trait locus on
chromosome 6q23 was significantly associated with HbF and F cell levels in individuals of African descent. Single nucleotide
polymorphisms (SNPs) in a 24-kb intergenic region, 33-kb upstream of the HBS1L gene and 80-kb upstream of the MYB
gene, were typed in 177 healthy Afro-Caribbean subjects (AC) of approximately 7% European admixture, 631 healthy Afro-
Germans (AG, a group of African and German descendents located in rural Jamaica with about 20% European admixture), 87
West African and Afro-Caribbean individuals with sickle cell anaemia (HbSS), as well as 75 Northern Europeans, which served
as a contrasting population. Association with a tag SNP for the locus was detected in all four groups (AC, P = 0.005, AG,
P = 0.002, HbSS patients, P = 0.019, Europeans, P = 1.561027). The association signal varied across the interval in the African-
descended groups, while it is more uniform in Europeans. The 6q QTL for HbF traits is present in populations of African
origin and is also acting in sickle cell anaemia patients. We have started to distinguish effects originating from European and
African ancestral populations in our admixed study populations.
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Introduction

The persistence of fetal haemoglobin (HbF, a2c2) production

beyond early childhood provides a major clinical benefit in patients

with sickle cell anaemia (HbSS) and b-thalassaemia. HbF is restricted

to a sub-population of erythrocytes, called F cells[1], the abundance

of F cells, and HbF, is subject to strict genetic control[2]. Various

studies in diverse populations have established the influence of the b
globin gene cluster (HBB) on chromosome 11p15 and the Gc
promoter on HbF; the causal variant here is thought to be a single-

base substitution (T/C) at position 2158 of the Gc globin gene,

termed XmnI Gc site[3]. Two other loci influencing F-cell levels have

recently been discovered[4–6]; the HMIP locus (HBS1L-MYB

Intergenic Polymorphism) on chromosome 6q was first discovered in an

Asian-Indian family with b thalassaemia and persistence of HbF, and

subsequently mapped in European samples to the interval between

two genes, the MYB oncogene and the putative HBS1L[4]. The third

major locus is the oncogene BCL11A on chromosome 2[5,6].

In Europeans, these three genetic loci contribute nearly half of all

F-cell variability: the XmnI Gc site on chromosome 11p15 accounts

for 10% of the variance; the HMIP locus on chromosome 6q, 19%;

and BCL11A on chromosome 2p, 15%[5]. At the HMIP locus, the

genetic variants reside in three linkage disequilibrium (LD) blocks,

HMIP-1, 2 and 3. Genetic variants in the three blocks completely

account for the variance in FC levels due to the 6q QTL, but most of

the effect is concentrated in HMIP-2. This block is characterised by

eleven SNPs, which can not be resolved genetically in European

subjects, because they are in strong LD with each other and show

equal strength of association with the F-cell trait[4]. We decided to

investigate these SNPs in African-descended populations to test

whether an effect is present, and whether the haplotype make-up in

African-descended populations might facilitate further resolution

and eventual fine-mapping of the causative genetic variation

underlying HbF and FC levels in the 6q QTL.

Here, we present results showing that an effect of the HMIP-2

block on F cell levels can be detected in two healthy African-

descended populations from Jamaica, and that the same locus also

influences HbF levels in HbSS patients of African descent. Associa-

tion across the 24-kb region is far more varied in African than in

European haplotypes, which suggests that future fine-mapping studies

will be able to pinpoint functionally active sequence variation.

Methods

Ethics Statement
Ethical approval was given by the University Hospital of the

West Indies/University of the West Indies Faculty of Medical

Sciences Ethics committee (study #21) and the Ministry of Health
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of Jamaica Ethics Committee (study #150); and the local King’s

College Hospital Ethics committee (No. 01-083).

All participants provided written informed consent

Participants
Three population samples were recruited and phenotyped in

Jamaica: 177 healthy blood donors from Kingston (Afro-

Caribbean group, AC); 631 healthy subjects composed of families

and unrelated individuals (Afro-German group, AG) from Seaford

Town, Westmoreland; and 75 healthy European expatriates. The

AC group is mostly of African descent, with an approximately 7%

of European genetic ancestry[7]. The AG group is from a small

population with additional European ancestry originating from

19th century German immigrants, with about 20% European

admixture[7], but otherwise similar to the AC group. All

individuals were screened for sickle cell disease and b thalassaemia

by haemoglobin electrophoresis and those who were affected were

excluded from further analysis.

In a separate study, 87 HbSS patients (49 female, 38 male) of

Afro-Caribbean and West African descent were recruited from the

specialist clinic in the Haematology Outpatient Unit of King’s

College Hospital in South London. Our patient group is ethnically

heterogeneous; about a third is of African-Caribbean decent and the

rest of West-African origins. The extent of European admixture has

not yet been measured. At the time of the study, the patients ranged

from 11 to 64 years of age, with an average age of 30 years. Dates of

blood transfusion were noted and no patient had been transfused

during the preceding three months, or had been receiving

hydroxycarbamide at the time when the HbF values were obtained.

Phenotyping
In most healthy individuals fetal haemoglobin levels are low,

with a considerable proportion of subjects having values below

0.3% HbF; in this range current HPLC measurements are very

imprecise, and the traits better represented by F cells in normals. A

major determinant of HbF levels is the number of HbF carrying

cells, referred to as F cells which shows 89% heritability[2]. We

have previously shown that there is a strong correlation between

HbF and F cell levels in the range encountered in healthy

individuals (Tatu, T., DPhil Thesis 2001, University of Oxford;

Creary, L., PhD Thesis 2007, University of London). The

proportion of F cells among erythrocytes was estimated by flow

cytometry[8] using an anti c globin antibody. For our group of

HbSS patients, F-cell data are not available, but the HbF

proportion of total haemoglobin is routinely measured for all

patients visiting our clinic by high pressure liquid chromatography

(HPLC) on a BioRad Variant II system. HbF levels encountered in

HbSS patients are between 1% to 30%, values that can be

measured accurately and precisely by HPLC. HbF and FC values

were log transformed for the study.

Genotyping
Genotyping for XmnI Gc (rs7482144) was performed by PCR/

restriction enzyme analysis[9], and for all HMIP-2 markers, by

TaqMan (Applied Biosystems, Foster City, Ca), a hybridisation

based procedure. Some primers and fluorescent MGB probes were

purchased from Applied Biosystems as pre-designed assays (with

the assay number in brackets): for rs9376090 (C___3119885_10),

rs11759553 (C___3119886_10), rs9376092 (C__27440941_10),

rs9389269 (C__27440940_10), rs9402686 (C___2737531_10),

and rs11154792 (C___3119892_10). Other Taqman assay primers

and probes were custom designed: rs4895440 (Forward: 59–

GCTGGTTATGGGAATAGAGAGTGATG–39, Reverse: 59–

CTCACTTACTCAGTTCTCTGCTCAT–39, CTTTACAAA-

GAGTCTTTCC–VIC, TTTACAAAGAGACTTTCC–FAM),

rs9399137 (Forward:59–CATCACCTTAAAAGGCGGTATTG-

TATG–39, Reverse: 59–GATTCCACTTTCAGAACTTATCC-

CAAGA, AAAAACTGTGAATAACC–VIC, AAAAAACTG-

TAAATAACC–FAM), rs9402685 (Forward:59–TGAGATTAC-

AGGCGCATGCAA–39, Reverse:59–ACTGAGGCAGGTGGA-

TTGC–39, TTCGAGAGCAACCTGA–VIC, TCGAGAGCAG-

CCTGA–FAM), rs35959442 (Forward:59–CCCAGAGCGTCC-

AAGGG–39, Reverse:59–CAAAGAACAGGTGCCTCTAGTT-

GT–39, CTACAGCAGGCTTCAG–VIC, CTACAGCAGCCT-

TCAG–FAM), and rs4895441 (Forward:59–GCTGGTTATGG-

GAATAGAGAGTGATG–39, Reverse:59–GTTATCTCCCTC-

ACTTACTCAGTTCTC–39, CTCTTTGTAAAGTGATACA-

TG–VIC, TCTTTGTAAAGTGGTACATG–FAM). Primers

and probes were designed at the Centre National de Génotypage

in Evry, France[4].

Statistical methods
Genetic association of FC and HbF traits with HMIP-2 marker

alleles was tested by multiple regression (SPSS v.12) including

covariates age, sex, and additive effects of the beta globin gene

locus (i.e., the XmnI Gc polymorphism).

Linkage disequilibrium (LD) between markers and the presen-

tation of marker haplotypes was investigated with Haploview

v.3.31[10] and Phase v2.1.1[11]. The effective number of

haplotypes[12] was calculated as ne = 1/Spi
2, where pi are the

individual haplotype frequency estimates.

Results

Eleven SNPs which mark the HMIP-2 block define two

complementary haplotypes in European expatriates (Figure 1A); each

SNP’s minimum allele frequency (MAF) is approximately 30% in this

population of European descent (Table 1). By contrast, MAFs in the

African-descended populations ranged from 2–38% (Table 1) and

there was more haplotype diversity (effective number of haplotypes

ne = 3.7 and 3.3 in AC and AG groups, compared to 1.9 in

Europeans), with the region subdivided into two extended blocks

(Figure 1B & 1C). SNP I-02 (rs9399137), which tags the European

HMIP-2 block[4], is relatively infrequent in African-descended

populations (MAF#9%) compared to Europeans (MAF = 29%).

All 11 SNPs show strong association (P#761027) with FC levels

in the European sample (Table 1) in a pattern consistent with a

previous analysis of a European British population[4]. Multiple

SNPs showed association (P-values range from 1.161025–0.045)

with FC and HbF levels in both healthy individuals and patients with

HbSS of African descent (Table 1 and 2); unlike the European

population, association was considerably variable within and

between these populations. The variability in the strength of

association was also evident in the magnitude of the beta-coefficients

(Table 1 and 2). SNP I-02 (rs9399137) shows association with FC

levels in healthy AC and AG participants (P = 0.005 and 0.002,

respectively) and with HbF levels (P = 0.019) in the group of HbSS

patients. Six out of eleven markers show no significant association in

the AC population. In the AG population, a wide spectrum of

association was observed, one marker (I-03) showed no association

while markers in the distal part of the block showed strong

association with P-values in the region of 1025 (I-09 to I-11, Table 1).

In the HbSS patients, just two markers (I-02 and I-07) showed

significant association with HbF (Table 2).

To examine the importance of the very strong European-tagged

association in our admixed Caribbean study subjects, we repeated

the above association analysis after excluding individuals who

carry the C allele of the rs9376090 (I-01) marker. According to

6q and HbF in African People
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HapMap data[13], this marker is invariant (MAF = 0) in Yoruba

subjects from Nigeria and is a frequent polymorphism in

populations of European (C allele frequency = fC = 22%), Chinese

(fC = 29%) and Japanese (fC = 34%) descent. Since association at

the HMIP-2 locus in European chromosomes is efficiently

captured by the I-01 dimorphism[4], elimination of carriers of

the C allele should eliminate the influence of non-African genetic

variants at this locus. Association detected with the remaining

subjects will then be derived mainly from the action of other alleles

that are common in Africans, i.e. that reflect genetic variability

within the African lineage or ancient alleles that are prevalent in

multiple continental ancestry groups.

Figure 1. Linkage disequilibrium patterns and haplotype blocks in the Afro-Caribbean, Afro-German and Caucasian populations.
Pairwise linkage disequilibrium, measured by D9, of the SNPs in the 24-kb intergenic region and common haplotype structures in the Afro-Caribbean
(A), Afro-German (B), and Caucasian (C) populations. The location of each genotyped SNP located on chromosome 6q is shown on the white bar at
the top of each diagram. The magnitudes of LD between respective pairs of SNPs are shown in each square. Squares without values represent
complete LD (D9 = 1). The standard colour scheme of Haploview was used to display the strength of LD. Where, for LOD.2 complete LD is shown as
bright red (D9 = 1), and runs through to pink (D9,1) then to white (D9 = 0). LOD,2 are represented as white squares. Haplotypes with a frequency
greater than 1% are shown. Within each haplotype (H1 to H7), blue blocks represent the reference allele, whereas red blocks represent the alternative
allele. Numbers next to each haplotype block are haplotype frequencies. Bold lines joining haplotypes from each block represent combined
haplotypes with frequencies .0.1%, and thin lines are for frequencies ,0.1%. In the crossing areas between haplotype blocks, a value of multi-allelic
D9 is shown to represent the level of recombination between blocks.
doi:10.1371/journal.pone.0004218.g001
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After elimination of individuals with the C allele at the I-02 marker,

association was largely reduced, but a strong association signal

persisted in the distal portion of the HMIP-2 region (in the combined

AC+AG groups: I-09, P = 6.561024; I-10, P = 4.4610204; and I-11,

P = 0.003, Table 1). Marginally significant variation also remained in

the HbSS patients (P = 0.049 at I-02, Table 2).

Discussion

We report on the association of genetic variation in a 24-kb

HBS1L-MYB intergenic fragment, termed HMIP-2, with fetal

haemoglobin traits in three admixed populations of predominant

African heritage. Association with Fcell levels was detected in two

healthy population samples from Jamaica and with HbF levels in a

small group of patients with sickle cell anaemia from the UK. The

latter result confirms a recent replication of the HMIP-2 locus in

patients with sickle cell disease from the US and Brazil[14].

Dominance effects were largely not detected (with the exception of

I-11 in the AG group), which is likely due to a lack of statistical

power and of homozygotes for the minor allele in African-

descended populations.

A strong effect of this genomic region was originally seen in

Europeans[4,6]. The replication of these results in individuals of

African descent is significant for two reasons. First, a large

proportion of people with sickle cell disease, a disease which

benefits from raised HbF, have predominantly African ancestry.

Second, the study of multiple populations, especially those from

Africa, offers insights into genetic mechanisms and might help

reduce the size of the region of causative variation. Investigating

healthy individuals, in addition to patients with HbSS, removes

some of the confounding factors and genetic complexity that

contribute to the HbF phenotype in sickle cell disease patients.

In our efforts towards fine-mapping the HMIP-2 region, the

analysis of African-descended populations has provided suggestive

but not conclusive answers. Our data suggest that a distinct

association signal originating from African chromosomes is marked

by SNPs in the distal proportion of HMIP-2 (I-09 to I-11). While

strength of association for indirect markers is not indicative of the

specific location of the true functional variants, our eleven SNPs

should also be evaluated as potentially functional variants themselves.

In this respect it appears that I-03, which has virtually no effect in any

of the African-descended populations, is unlikely to be a causative

variant. Genetic admixture tends to confound fine-mapping through

the introduction of extended LD and additional allelic heterogeneity.

We have addressed this problem by excluding individuals with non-

African active haplotypes at the HMIP-2 locus; ultimately the

investigation of a much larger sample size of individuals with

exclusively African ancestry may be a better approach.

On the other hand, admixed populations offer specific mapping

opportunities for genetically complex diseases that vary in

prevalence across the ancestral populations[15,16]. It can also

allow the observation of known functional genetic variation in a

different population background. Alleles may differ between

similar populations, not only in frequency, but also in effect size:

the relatively small effect of I-01-tagged European haplotypes in

AG (b= 0.16, compared to 0.5 in Europeans and 0.53 in the AC

group) is unexplained and might be due to a specific founder effect

connected with the history of this community. Another interesting

feature of the I-01 marker is that its allele C, which increases the

number of F cells, has a lower frequency in the AC population

when compared to the Europeans, yet the AC population has

higher F cell levels than in the European population. In

conclusion, genetic effects on F cells in admixed populations

might differ from their assumed parental populations in ways that

cannot be predicted easily.

We have also included in this report our first evaluation of HbF

levels in a sickle cell patient population. While HbF and F cells are

closely related traits, the genes that regulate each might differ,

especially in the strength of their relative effects. Encouraging in this

context is the fact that genome-wide association studies of F cell levels

in non-anaemic individuals[5] and of HbF[6] have identified the

same set of three major loci, including HMIP-2. We and others have

now shown that the F cell locus HMIP-2 also influences HbF levels in

patients with HbSS[14]. The statistical power provided by our small

and heterogeneous group of HbSS patients does not allow much

more than simple detection of the effect of the overall locus. The

drop in association seen after exclusion of non-African effects seems

to indicate that European alleles contribute to the variance of FC

levels in admixed patients, but the independent association with

African-derived polymorphism remains.

With this study we have shown that the HMIP-2 locus appears to

influence HbF-related traits in healthy individuals and in patients

with sickle cell anaemia of African origin. Our initial results suggest

that further extended studies of these populations complemented by

studies of participants from the African continent itself may be a

powerful approach for identifying loci involved in the determination

of HbF persistence and other quantitative traits.
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Table 2. British patients with sickle cell anaemia (HbSS): Test
for association of HbF levels with HMIP-2 markers.

HMIP-2 marker All Patients
Exclusion of non-African
haplotypes

(n = 87) (n = 81)

MAF b P = MAF b P =

I-01 (rs9376090) 0.02 0.567 0.226 n_a n_a n_a

I-02 (rs9399137) 0.07 0.642 0.019 0.05 0.629 0.049

I-03 (rs9402685) 0.31 20.010 0.937 0.29 0.030 0.834

I-04 (rs11759553) 0.38 0.190 0.109 0.36 0.204 0.096

I-05 (rs35959442{) 0.36 0.154 0.212 0.33 0.168 0.196

I-06 (rs4895440) 0.35 0.146 0.245 0.33 0.157 0.230

I-07 (rs4895441) 0.06 0.554 0.027 0.04 0.559 0.071

I-08 (rs9376092) 0.16 0.053 0.730 0.13 0.061 0.773

I-09 (rs9389269) 0.04 0.471 0.156 0.01 0.420 0.452

I-10 (rs9402686) 0.04 0.446 0.181 0.01 0.398 0.477

I-11 (rs11154792) 0.12 0.238 0.244 0.1 0.163 0.457

The regression is as in Table 1. Again, the analysis was repeated after exclusion
of individuals who carry the C allele of rs9376090 (I-01, 4 heterozygotes), and 2
individuals with unknown genotype at this SNP. No significant dominance
effect were detected in the patients.
doi:10.1371/journal.pone.0004218.t002
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