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Predicting within-city spatiotemporal variations  
in daily median outdoor ultrafine particle  
number concentrations and size in Montreal  
and Toronto, Canada
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Shoma Yamanouchib, Eric Lavignec, Marianne Hatzopouloub, Scott Weichenthala,d,*

Background:  Epidemiological evidence suggests that long-term exposure to outdoor ultrafine particles (UFPs, <0.1 μm) may have 
important human health impacts. However, less is known about the acute health impacts of these pollutants as few models are 
available to estimate daily within-city spatiotemporal variations in outdoor UFPs.
Methods:  Several machine learning approaches (i.e., generalized additive models, random forest models, and extreme gradient 
boosting) were used to predict daily spatiotemporal variations in outdoor UFPs (number concentration and size) across Montreal and 
Toronto, Canada using a large database of mobile monitoring measurements. Separate models were developed for each city and all 
models were evaluated using a 10-fold cross-validation procedure.
Results:  In total, our models were based on measurements from 12,705 road segments in Montreal and 10,929 road segments in 
Toronto. Daily median outdoor UFP number concentrations varied substantially across both cities with 1st–99th percentiles ranging 
from 1389 to 181,672 in Montreal and 2472 to 118,544 in Toronto. Outdoor UFP size tended to be smaller in Montreal (mean [SD]: 
34 nm [15]) than in Toronto (mean [SD]: 44 nm [25]). Extreme gradient boosting models performed best and explained the majority of 
spatiotemporal variations in outdoor UFP number concentrations (Montreal, R2: 0.727; Toronto, R2: 0.723) and UFP size (Montreal, 
R2: 0.823; Toronto, R2: 0.898) with slopes close to one and intercepts close to zero for relationships between measured and predicted 
values.
Conclusion:  These new models will be applied in future epidemiological studies examining the acute health impacts of outdoor 
UFPs in Canada’s two largest cities.
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Introduction
Outdoor air pollution is a global public health concern and con-
tributes to millions of deaths around the world each year.1 While 
fine particulate matter (PM2.5, <2.5 μm) is known to contribute 
to cardiovascular and respiratory morbidity and mortality, less is 
known about other outdoor air pollutants such as ultrafine par-
ticles (UFP, <0.1 μm) that can be present in high number concen-
trations in urban environments and vary greatly across both space 
and time.2–4 While existing evidence suggests potentially important 
health impacts of long-term exposures to outdoor UFPs,5–8 less is 
known about the acute health impacts of these pollutants given 
the relative absence of high-resolution exposure models capable 
of estimating daily spatiotemporal variations across major urban 
centers. Indeed, most existing studies of short-term exposures to 
outdoor UFPs have relied on a small number of fixed-site monitors 

What this study adds:
Epidemiological evidence to date suggests that long-term expo-
sures to outdoor UFPs may contribute to increased risks of 
adverse cardiovascular and respiratory outcomes. However, less 
is known about the acute health impacts of outdoor UFPs as 
few models have been developed to estimate high-resolution 
within-city spatiotemporal variations in these pollutants. In this 
study, we developed and evaluated new models to predict daily 
outdoor UFP number concentrations and UFP size in Canada’s 
two largest cities using a unique database of mobile measure-
ments. These models will be applied in future epidemiological 
analyses to examine the acute health impacts of these pollutants.

aDepartment of Epidemiology, Biostatistics, and Occupational Health, McGill 
University, Montreal, Canada; bDepartment of Civil and Mineral Engineering, 
University of Toronto, Toronto, Canada; cEnvironmental Health Science Research 
Bureau, Health Canada, Ottawa, Canada; and dAir Health Science Division, 
Health Canada, Ottawa, Canada

The research described in this article was conducted in part under a contract 
to the Health Effects Institute (HEI), an organization jointly funded by the United 
States Environmental Protection Agency (EPA) and certain motor vehicle and 
engine manufacturers. The contents of this article do not necessarily reflect the 
views of HEI or its sponsors, nor do they necessarily reflect the views and policies 
of the EPA or motor vehicle and engine manufacturers. This study also received 
funding from Health Canada.

The data used to develop our models is available upon reasonable request.

Supplemental digital content is available through direct URL citations in 
the HTML and PDF versions of this article (www.environepidem.com).

*Corresponding Author. Address: Department of Epidemiology, Biostatistics, 
and Occupational Health, School of Population and Global Health, McGill 
University, 2586 St. Zotique East, Montreal, QC H1Y 1C7, Canada. E-mail: scott.
weichenthal@mcgill.ca (S. Weichenthal).

Copyright © 2024 The Authors. Published by Wolters Kluwer Health, Inc. 
on behalf of The Environmental Epidemiology. All rights reserved. This is an 
open-access article distributed under the terms of the Creative Commons 
Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it 
is permissible to download and share the work provided it is properly cited. The 
work cannot be changed in any way or used commercially without permission 
from the journal.

Environmental Epidemiology (2024) 8:e323

Received 15 March, 2024; Accepted 17 June, 2024

Published online 22 July 2024

DOI: 10.1097/EE9.0000000000000323

22July2024

8

4

www.environepidem.com
mailto:scott.weichenthal@mcgill.ca
mailto:scott.weichenthal@mcgill.ca
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Venuta et al.  •  Environmental Epidemiology (2024) 8:e323	 Environmental Epidemiology

2

that cannot capture high-resolution spatiotemporal variations and 
have produced inconsistent results.9–12

Over the past decade, mobile monitoring has been used to 
collect data for outdoor UFP number concentrations for the 
purpose of developing exposure models for use in epidemiolog-
ical studies.4,13,14 However, many previous exposure modeling 
studies have important limitations with regard to the spatial 
domain covered and/or the duration and time periods captured 
by mobile monitoring (e.g., focusing only on rush hour peri-
ods).13,14 Moreover, existing studies primarily focus on modeling 
spatial variations in annual average outdoor UFP concentra-
tions with little attention paid to modeling daily spatiotempo-
ral variations. In this study, we developed new high-resolution 
exposure models for daily spatiotemporal variations in outdoor 
UFP number concentrations and UFP size in Canada’s two larg-
est cities (Montreal and Toronto) using a unique mobile mon-
itoring database covering all days of the week, months of the 
year, and most times of the day.2 We examined several different 
machine learning models previously used to estimate spatio-
temporal variations in environmental pollutants15 and our final 
models are available to support future epidemiological analyses 
examining the acute health impacts of outdoor UFPs.

Methods

Mobile monitoring data

This study was conducted in Montreal and Toronto, Canada, 
which have populations of 1.9 million and 2.9 million, respec-
tively. Data collection took place on the island of Montreal (431.5 
km2) and within the formal city boundaries of Toronto (630.2 
km2). The mobile monitoring campaign designed to collect out-
door UFP data is described in detail elsewhere.2 Briefly, mobile 
monitoring was conducted on predefined routes in both cities 
using gasoline vehicles equipped with either a naneos Partector 
2 nanoparticle dosimeter (Montreal) or a Testo DiSCmini hand-
held nanoparticle counter (Toronto). These devices each sam-
pled UFP number concentrations (particles/cm3) and mean UFP 
size (nm) at 1-second intervals. Each instrument has an internal 
pump and the sampling tube for each instrument was positioned 
out the rear passenger window of the vehicle used for mobile 
monitoring. Both instruments operate using the same under-
lying measurement principle and all instruments were factory 
calibrated prior to field data collection and were zero checked 
weekly to verify proper instrument function. All UFP measure-
ments were time-synchronized to a Geographic Positioning 
System monitor that recorded the latitude and longitude of 
the vehicles during mobile monitoring. Predefined monitoring 
routes were selected using a clustering algorithm designed to 
capture the range of land use and traffic characteristics present 
across each city.2 These routes were monitored over a 14-month 
period between June 2020 and August 2021. Additional mobile 
monitoring data were also collected in Toronto during summer 
2023 (May–August) using the same routes and study design. 
Monitoring was carried out from Monday through Sunday 
(i.e., all days of the week were sampled over the study period), 
between 7 am and 11 pm. All monitoring routes were random-
ized by route location, day of the week, and time of day to bal-
ance weather conditions across routes.

Land use and meteorological variables

Information on land use and traffic data (including distance to 
railways, length of major roads/area of land use types within a 
buffer [100 m, 200 m, or 300 m], number of bus routes or bus 
stops within a buffer, etc.) was extracted for each road segment 
along monitoring routes using ArcMap 10.8.1 (ESRI, Redlands, 
CA). These data were obtained from DMTI Spatial (Richmond 
Hill, CA), EMee (INRO, Montreal, Canada), City of Montreal, 

City of Toronto, Canadian National Pollution Release Inventory, 
Statistics Canada, Toronto Transit Commission, and Société de 
Transport de Montreal. Night light levels16 (higher traffic areas 
tend to have more light at night) and land coverage17 (urban 
and trees) data were obtained from satellite data using Google 
Earth Engine. Using an approach from a previous air pollution 
modeling study,3 the number of bird species spotted in a given 
area was obtained from a Cornell Lab of Ornithology data-
base (areas with greater human activity typically have greater 
air pollution and may have fewer distinct species of birds).18–20 
Additionally, meteorological variables (hourly averages) during 
mobile monitoring were obtained from central monitoring 
stations located in each city including temperature (°C), wind 
speed (m/s), relative humidity (%), atmospheric pressure (kPa), 
and precipitation (mm). Outdoor PM2.5 concentrations (µg/m3) 
were also compiled from fixed-site monitors in each city during 
mobile monitoring (using the closest hourly average to the time 
of mobile monitoring) to capture potential temporal patterns 
in regional air pollution episodes that could influence outdoor 
UFPs on a broad spatial scale.

Data processing

All monitoring routes were divided into 100 m road segments 
and median UFP measurements (i.e., number concentration and 
size) were aggregated to the centroids of each 100 m road seg-
ment for each monitoring day. UFP number concentrations were 
log-transformed to achieve a normal distribution. To eliminate 
extreme daily values, all UFP number concentration data were 
trimmed to exclude data outside the 1st and 99th percentiles. In 
addition, road segments with fewer than 5 samples on a given 
day were also excluded (<5 seconds of monitoring time). This 
was a pragmatic decision meant to balance spatial coverage 
across each city and the number of samples available for any 
given road segment. The mean number of daily samples per road 
segment was 32 in Montreal and 17 in Toronto. Geographic 
information system variables were linked to road segment cen-
troids (based on latitude and longitude coordinates) and daily 
meteorological variables were joined by matching on date and 
time rounded to the nearest hour. All predictor variables were 
standardized for model development.

Statistical analysis

In total, 78 land use variables were extracted for potential 
inclusion in the final models. We first examined single-variable 
linear models and excluded variables that were not associated 
with UFPs (i.e., 95% confidence interval [CI] included the null). 
Next, highly correlated predictors (r > 0.7) were identified, and 
we retained the predictor that was most strongly correlated with 
UFP measurements from each correlated pair. A list of the vari-
ables retained for the final models is provided in Table S1; http://
links.lww.com/EE/A292. All models were developed separately 
for each city.

Machine learning models

Three machine learning algorithms were examined in predicting 
daily spatiotemporal variations in outdoor UFP number concen-
trations (particles/cm3) and UFP size (nm) including generalized 
additive models (GAMs), random forest models, and extreme 
gradient boosting models (XGBoost). All machine learning 
models were developed using the mlr (v2.19.0) package in R 
(version 4.3.1). The GAM model was developed using a gam-
boost algorithm, which learns an ensemble of GAMs to make 
final predictions and is designed to exclude variables that are 
not informative as part of the modeling process.21 The selec-
tion of model hyperparameters for random forest and XGBoost 
models was based on 1000 random iterations over a predefined 
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hyperparameter search space (Tables S2 and S3; http://links.
lww.com/EE/A292) with optimal hyperparameters and model 
predictors selected based on a 10-fold cross-validation proce-
dure. Feature importance plots were examined for random 
forest and XGboost models and plots of model errors versus 
number of trees were examined to verify that a sufficient num-
ber of trees were employed during training. Feature importance 
plots provide a relative ranking of variable importance in terms 
of how useful each variable was in constructing decision trees 
used in the model. The fact that a given variable was important 
in constructing the decision tree model does not imply a strong 
linear correlation between the two variables. All final mod-
els were evaluated using a 10-fold cross-validation procedure 
across the entire database within each city (i.e., not stratified by 
specific times/locations within each city) and R2 and root mean 
square error values from this procedure are reported. Within 
each city, the same dataset was used for training all models to 
facilitate model comparisons. Model residuals were mapped for 
all final models to examine the potential spatial clustering of 
model errors.

Results
In total, our analytical database included approximately 12,705 
road segments in Montreal (51,174 samples) and 10,929 road 
segments in Toronto (70,402 samples). Descriptive statistics for 
daily median outdoor UFP number concentrations and UFP 
size are shown in Table 1. Overall, daily median outdoor UFP 
number concentrations and UFP size varied substantially across 
Montreal and Toronto with a slightly larger range of outdoor 
UFP number concentrations observed across Montreal and a 
larger range of outdoor UFP sizes observed in Toronto. UFP size 
was inversely correlated with UFP number concentrations in 
both cities (Montreal: r = −0.69; Toronto: r = −0.53). Outdoor 
PM2.5 mass concentrations were weakly correlated with UFP 
number concentrations in Montreal (r = 0.086) and Toronto (r = 
−0.0532) whereas stronger correlations were observed between 
outdoor PM2.5 and UFP size (Montreal: r = 0.30; Toronto:  
r = 0.43). Ambient weather conditions captured during mobile 
monitoring reflected seasonal variations typical of these cit-
ies with daily outdoor temperatures ranging from −24 to 33 
°C in Montreal and −1 to 31 °C in Toronto. Daily mean out-
door PM2.5 concentrations were typically low in both cities but 
tended to be higher in Toronto (2020–2021: mean = 7.3 µg/
m3; SD = 3.2 µg/m3; summer 2023: mean = 23.3 µg/m3; SD = 
14.1 µg/m3) than in Montreal (mean: 6.4 µg/m3; SD: 4.6 µg/m3). 
Outdoor PM2.5 concentrations in Toronto during summer 2023 
were higher than normal because of wildfire smoke occasionally 
impacting the region.

Machine learning model performance is summarized in 
Table 2. The XGBoost models performed best for both UFP 
number concentrations and UFP size with similar model per-
formance observed in both cities. Scatter plots of measured 
versus predicted values from the XGBoost models are shown 
for Montreal and Toronto in Figure 1 and illustrate the strong 
relationships between measured and predicted values in both 

cities. Feature importance plots for the XGBoost models for 
UFP number concentrations and UFP size are shown in Figures 
S1–S4; http://links.lww.com/EE/A292. For both UFP number 
concentrations and size, the most important predictors included 
a combination of spatial (e.g., highways within 300 m, NOx 
emissions within 100 m) and temporal (weather/PM2.5) vari-
ables. Maps of XGBoost model residuals are shown in Figures 
S5–S8; http://links.lww.com/EE/A292 and did not suggest any 
obvious spatial clustering of model errors. Additional scatter 
plots of measured and predicted values (Figures S9–S16; http://
links.lww.com/EE/A292) and maps of model residuals (Figures 
S17–S24; http://links.lww.com/EE/A292) are available in the 
Supplemental Material for the GAM and random forest mod-
els that did not perform as well in predicting outdoor UFP 
number concentrations or UFP size. The shapes of relation-
ships between standardized predictor variables and outdoor 
UFP number concentrations and UFP size in the GAM models 
are also shown in Figures S25–S28; http://links.lww.com/EE/
A292. While similar predictors were generally selected by the 
gamboost algorithms in each city, the shapes of associations 
were sometimes different (although the magnitudes of asso-
ciations for any individual predictor were generally small). In 
general, lower wind speeds and higher NOx emissions within 
100 m were associated with higher UFP number concentra-
tions (although a “U” shaped relationship was observed for 
temperature in Toronto) whereas higher outdoor PM2.5 con-
centrations, higher relative humidity, higher temperature, and 
fewer highways within 300 m were associated with larger UFP 
size.

Maps of predicted daily median outdoor UFP number con-
centrations from the final XGBoost models are shown in 
Figure 2 for days across all four seasons. Figure 2 highlights 
substantial spatial variations in outdoor UFP number concen-
trations across each city and how these variations are expected 
to change across a range of seasonal weather conditions. In 
particular, outdoor UFP concentrations in Montreal tended to 
be greatest in winter whereas Toronto had higher concentra-
tions in summer. This pattern is consistent with relationships 
observed between temperature and UFP number concentrations 
in each city in the GAM models (Figures S25 and S26; http://
links.lww.com/EE/A292) whereby an inverse linear relationship 
was apparent between temperature and outdoor UFP number 
concentrations in Montreal and a U-shaped relationship was 
observed in Toronto. Maps of predicted spatial variations in 
daily median outdoor UFP size from final XGBoost models are 
shown in Figure S29; http://links.lww.com/EE/A292 and high-
light substantial spatial variations across a range of seasonal 
weather conditions.

Discussion
Increasing evidence suggests that outdoor UFPs may have 
important long-term health impacts,5–8 but less is known about 
the short-term consequences of population exposures to these 
pollutants. In this study, we developed new machine learning 
models to predict high-resolution spatiotemporal variations 

Table 1.

Descriptive data for daily median outdoor UFP number concentrations (particles/cm3) and UFP size (nm) in Montreal (2020–2021) and 
Toronto, Canada (2020–2021, summer 2023)

Pollutant No. road segments No. samples Mean (SD) Median 1st–99th percentile

Montreal
 � UFPs 12,705 51,174 22,562 (36,177) 12,743 1389–181,672
 � UFP size 34 (15) 31 10–77
Toronto
 � UFPs 10,929 70,402 18,352 (24,162) 11,878 2472–118,544
 � UFP size 44 (25) 38 14–154

http://links.lww.com/EE/A292
http://links.lww.com/EE/A292
http://links.lww.com/EE/A292
http://links.lww.com/EE/A292
http://links.lww.com/EE/A292
http://links.lww.com/EE/A292
http://links.lww.com/EE/A292
http://links.lww.com/EE/A292
http://links.lww.com/EE/A292
http://links.lww.com/EE/A292
http://links.lww.com/EE/A292
http://links.lww.com/EE/A292
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in outdoor UFP number concentrations and UFP size across 
Canada’s two largest cities. These models explained the major-
ity of spatiotemporal variations in outdoor UFP number 
concentrations and UFP size without obvious spatial cluster-
ing of model errors in either city. In particular, the XGBoost 
models performed best likely owing to the use of a series of 
decision trees with each subsequent tree in the series trying to 

“correct the errors” of the previous tree. Spatial patterns in daily 
median outdoor UFP number concentrations were apparent in 
both cities with higher concentrations in the eastern portion 
of Montreal and the western portion of Toronto, which is con-
sistent with the spatial distribution of major combustion sources 
in each city (i.e., industry, traffic). Seasonal differences in out-
door UFPs varied between cities, with Montreal having higher 

Table 2.

Machine learning model performance in predicting daily median outdoor UFP number concentrations and UFP size in 10-fold cross-
validation procedures

City Pollutant Model

Results of 10-fold cross-validation

Slope (95% CI) Intercept (95% CI) R2 Root mean square error 

Montreal Log(UFPs) GAM 1.15 (1.14, 1.15) −1.42 (−1.55, −1.28) 0.312 0.841
Random forest 1.24 (1.23, 1.25) −2.26 (−2.39, −2.13) 0.377 0.801
XGBoost 1.06 (1.06, 1.07) −0.572 (−0.626, −0.519) 0.727 0.530

UFP size (nm) GAM 1.21 (1.20, 1.23) −7.17 (−7.69, −6.65) 0.327 12.4
Random forest 1.40 (1.39, 1.42) −13.7 (−14.2, −13.2) 0.436 11.3
XGBoost 1.04 (1.03, 1.04) −1.25 (−1.40, −1.10) 0.823 6.33

Toronto Log(UFPs) GAM 1.42 (1.40, 1.43) −3.91 (−4.09, −3.73) 0.229 0.739
Random forest 1.41 (1.40, 1.43) −3.88 (−4.02, −3.73) 0.322 0.693
XGBoost 1.07 (1.07, 1.08) −0.684 (−0.731, −0.638) 0.723 0.443

UFP size (nm) GAM 1.08 (1.07, 1.08) −3.33 (−3.69, −2.97) 0.518 17.4
Random forest 1.05 (1.05, 1.06) −2.38 (−2.62, −2.15) 0.719 13.3
XGBoost 1.02 (1.02, 1.03) −0.899 (−1.03, −0.773) 0.898 8.01

Figure 1.  Measured versus predicted values in 10-fold cross-validation procedures for outdoor UFP number concentrations (log [particles/cm3]) and UFP size 
(nm) in Montreal (A) and Toronto (B), Canada using the XGBoost models.



Venuta et al.  •  Environmental Epidemiology (2024) 8:e323	 www.environmentalepidemiology.com

5

concentrations in winter and Toronto having higher concentra-
tions in summer. These patterns were consistent with the shapes 
of concentration–response relationships observed between UFPs 
and weather variables in GAM models and could be partially 
explained by more severe winters in Montreal, which promote 

higher UFP concentrations.22 It is also possible that differences 
exist between cities/seasons in the secondary formation of out-
door UFPs, but we did not specifically examine this question 
and this should be the focus of future work. Nevertheless, our 
new models address an important knowledge gap in predicting 

Figure 2.  Predicted daily median outdoor UFP number concentrations across Montreal (A) and Toronto (B) for weather conditions observed in different seasons 
(winter: temperature = 0 °C; relative humidity = 30%; wind speed = 0 m/s; pressure = 101 kPa; precipitation = 5 mm; PM2.5 = 7 µg/m3; spring: temperature = 10  
°C; relative humidity = 80%; wind speed = 0 m/s; pressure = 101 kPa; precipitation = 5 mm; PM2.5 = 7 µg/m3; summer: temperature = 30 °C; relative  
humidity = 55%; wind speed = 3 m/s; pressure = 101 kPa; precipitation = 5 mm; PM2.5 = 7 µg/m3; fall: temperature = 30 °C; relative humidity = 30%; wind  
speed = 0 m/s; pressure = 101 kPa; precipitation = 0 mm; PM2.5 = 7 µg/m3; average: temperature = 15 °C; relative humidity = 65%; wind speed = 3 m/s; pressure = 101  
kPa; precipitation = 0 mm; PM2.5 = 7 µg/m3).
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short-term population exposures to UFPs and will serve as a 
resource for future epidemiological studies examining the acute 
cardiorespiratory health impacts of outdoor UFPs in Canada.

To date, several studies have evaluated the acute cardiorespira-
tory health impacts of outdoor UFPs and have reported inconsis-
tent results. For example, Stafoggia et al9 examined the association 
between short-term variations in outdoor UFP concentrations and 
mortality in eight European cities using data from fixed-site mon-
itors and generally reported null results once other air pollutants 
were included in the models. Similar results were also reported 
for five cities in Germany, Czech Republic, Slovenia, and Ukraine 
based on fixed-site monitors in each location.12 Conversely, 
Bergmann et al10 examined associations between short-term vari-
ations in outdoor UFP concentrations and cardiorespiratory mor-
bidity/mortality using data from a single background monitor 
in Copenhagen and observed positive associations, particularly 
for chronic obstructive pulmonary disease mortality and hospi-
tal admissions for asthma. Similarly, a time-series study of daily 
outdoor UFP concentrations and mortality in three German cities 
(including data from six fixed-site monitors) reported positive asso-
ciations between outdoor UFPs and respiratory mortality but not 
for cardiovascular mortality.11

Finally, a meta-analysis of studies of short-term variations in 
outdoor UFP concentrations and respiratory morbidity noted 
substantial heterogeneity in existing studies and recommended 
expanded research and harmonized exposure assessment pro-
cedures in future investigations.16 Studies of the acute health 
impacts of outdoor UFPs utilizing high-resolution exposure 
models to capture within-city spatiotemporal variations were 
not identified, but our new models address this important 
knowledge gap and can be applied in future studies to improve 
our understanding of the acute-term health impacts of these pol-
lutants. Importantly, we also developed models to predict daily 
spatial variations in outdoor UFP size, which has not tradition-
ally been considered in epidemiological studies of outdoor UFPs. 
Indeed, it is possible that outdoor UFP size is independently 
associated with morbidity/mortality (i.e., different UFP sizes 
could have different health impacts for a given UFP number 
concentration) and our new models can be used to explore this 
question in future studies.

Our study had several important strengths including use of 
a large database of mobile UFP measurements collected across 
two major Canadian cities reflecting all seasons of the year, 
all days of the week, and most times of the day. However, it 
is important to recognize several limitations. First, while our 
best-performing models slightly overestimated observed UFP 
concentrations, clear spatial patterns in model errors were not 
identified suggesting that spatial contrasts in exposures used 
in future epidemiological analyses should not be impacted by 
systematic differences in model performance across the spatial 
domain. In addition, our monitoring data did not include over-
night periods (11 pm–7 am) and omission of this data could 
contribute to bias in our exposure estimates. In particular, if 
outdoor UFP number concentrations tend to be lower during 
overnight periods (and mean UFP sizes tend to be larger), our 
predictions may tend to overestimate daily median outdoor 
UFP number concentrations (and underestimate UFP size). 
Moreover, the number of daily measurements per road seg-
ment was small, and thus our estimates of daily median values 
on each road segment are likely imprecise. However, this trade-
off is characteristic of mobile data whereby increased spatial 
coverage comes at the cost of fewer measurements in any indi-
vidual location. While this limitation certainly contributes to 
errors in our predictions, there was no clear spatial clustering 
of model errors across each city. This is an important consid-
eration as it suggests that the magnitude of exposure measure-
ment error will be similar for populations across each city in 
future applications of our models in epidemiological analyses. 
Finally, as noted above, our models did not include predic-
tors to explicitly capture secondary UFP formation or terms 

for total daily traffic counts or heavy-duty vehicles. Instead, 
we used road-segment level NOx emissions to estimate spatial 
variations in vehicle emissions, but future studies should aim 
to include a wider range of traffic characteristics as well as 
potential predictors of secondary UFP formation when pos-
sible. In summary, we developed new models to predict daily 
spatiotemporal variations in outdoor UFP number concentra-
tions and UFP size across Canada’s two largest cities. These 
models are now available to support epidemiological analyses 
in these locations to improve our understanding of the acute 
health impacts of outdoor UFPs.
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