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Background. Chronic infection with hepatitis B virus (HBV) is a leading cause of cirrhosis and hepatocellular carcinoma. By
traditional Chinesemedicine (TCM) pattern classification, damp heat stasis in themiddle-jiao (DHSM) and liver Qi stagnation and
spleen deficiency (LSSD) are twomost common subtypes of CHB.Results. In this study, we employed iTRAQproteomics technology
to identify potential serum protein biomarkers in 30 LSSD-CHB and 30 DHSM-CHB patients. Of the total 842 detected proteins,
273 and 345 were differentially expressed in LSSD-CHB and DHSM-CHB patients compared to healthy controls, respectively.
LSSD-CHB and DHSM-CHB shared 142 upregulated and 84 downregulated proteins, of which several proteins have been
reported to be candidate biomarkers, including immunoglobulin (Ig) related proteins, complement components, apolipoproteins,
heat shock proteins, insulin-like growth factor binding protein, and alpha-2-macroglobulin. In addition, we identified that
proteins might be potential biomarkers to distinguish LSSD-CHB from DHSM-CHB, such as A0A0A0MS51 HUMAN (gelsolin),
PON3 HUMAN, Q96K68 HUMAN, and TRPM8 HUMAN that were differentially expressed exclusively in LSSD-CHB patients
and A0A087WT59 HUMAN (transthyretin), ITIH1 HUMAN, TSP1 HUMAN, CO5 HUMAN, and ALBU HUMAN that were
differentially expressed specifically in DHSM-CHB patients. Conclusion. This is the first time to report serum proteins in CHB
subtype patients. Our findings provide potential biomarkers can be used for LSSD-CHB and DHSM-CHB.

1. Introduction

Chronic hepatitis B virus (CHB) infection is a leading cause of
cirrhosis and hepatocellular carcinoma (HCC) and, in addi-
tion to morbidity and mortality, creates significant economic
and social burdens [1, 2]. It is estimated that approximately
240 million people have CHB infection worldwide and
CHB infection should be responsible for 650,000 cases of
hepatocellular carcinoma [2, 3]. Due to the pathogenicity of

CHB, early detection ofCHB infection is the goal of treatment
to diagnose and prevent the progression [4]. To this end,
several hepatitis B virus (HBV)markers have been identified,
including antigens (hepatitis B surface antigen, HBsAg; hep-
atitis Be antigen, HBeAg; hepatitis B core antigen, HBcAg),
antibodies (hepatitis surface antibody, anti-HBs; hepatitis Be
antibody, anti-HBe; hepatitis B core antibody, anti-HBc), and
immunoglobulin (Ig) G and immunoglobulin M; however,
unequivocal diagnosis requires more biomarkers [5].
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By traditional Chinese medicine (TCM) pattern clas-
sification, CHB infected patients are accordingly classified
into six subtypes [6]: (1) damp heat stasis in the middle-
jiao (DHSM), (2) liver Qi stagnation and spleen deficiency
(LSSD), (3) Yang deficiency of spleen and kidney (YDSK), (4)
Yin deficiency of liver and kidney (YDLK), (5) blood stasis
into collateral (BSIC), and (6) damp heat complicated with
blood stasis (DHBS). Among themDHSM and LSSD are two
most common CHB subtypes and have unique syndromes
in clinic. For example, LSSD patients always have main
syndromes, such as (Mi) flank pain and (Mii) abdominal
distension and loose stools, and secondary symptoms, includ-
ing (Si) depression and boredom, (Sii) body tired fatigue,
and (Siii) pale tongue with teeth marks. DHSM patients
have another two main syndromes, such as (M1) abdominal
distension and (M2) yellow greasymoss, and three secondary
syndromes, including (S1) nausea, being tired of the oil, and
poor appetite, (S2) jaundice, bright color, and dark urine, and
(S3) viscous stool foul smell. However, these syndromes are
diagnosed by TCM doctors according to their experiences
and the molecular biomarkers remain unclear.

Proteomics is a powerful technology recently developed
to enhance our study on the diagnosis, treatment, and
prevention of human diseases [7]. Among the proteomics
technologies iTRAQ (isobaric Tags for Relative and Absolute
Quantitation) has become popular for protein identification
and quantification due to its sensitivity, accuracy, and high
throughput [8]. It has been used to identify biomarker
proteins for different stages of hepatitis B related diseases in
patients and cellular models [9–12]. Several serum proteins
have been reported to be potential biomarkers for CHB, such
as actin [13], apolipoproteins A-I and A-IV [14], complement
component [15], immunoglobulin related proteins [15, 16],
haptoglobins 𝛽 and 𝛼2 chain [14], and transferrin [17].

In this study, we employed iTRAQ combined with LC-
ESI-MS/MS analyses to investigate protein biomarkers in
the serum samples of two CHB subtype patients (LSSD
and DHSM). Compared to healthy controls we found a
number of proteins differentially expressed in both LSSD
and DHSM CHB subtypes, such as actin, apolipoprotein,
complement component, and immunoglobulin related pro-
teins. In addition, we identified some proteins differentially
expressed exclusively in one of LSSD and DHSM groups,
such as gelsolin (GSN), likely SNC73 protein, and transient
receptor potential cation channel subfamily M member 8
(TRPM8) that were found with different expression in LSSD-
CHB patients only and transthyretin (TTR), tubulin, and
keratin types I and II that were differentially expressed in
DHSM-CHB patients only. Our findings not only validate
previously reported CHB protein biomarkers but also report
for the first time protein biomarkers for LSSD and DHSM
CHB subtypes. The output of this study gives a valuable
resource for future HBV associated studies and provides new
insights of traditional Chinese medicine on molecular level.

2. Materials and Methods

2.1. Ethics Statement. This study was conducted in compli-
ance with the Declaration of Helsinki, the ethics approval

was granted by the research medical ethics committee of
Chengdu University of Traditional Chinese Medicine, and
signed informed consent was obtained from all participants.

2.2. Patients and Serum Collection. A total of 104 CHB
patients were enrolled from West China Hospital, Sichuan
University, and filtered with strict clinical evaluation
described below. For iTRAQ proteomics analysis, we
obtained blood samples from 30 LSSD-CHB patients, 30
DHSM-CHB patients, and 20 healthy controls (HCTL). For
western blot analysis, 9 LSSD-CHB patients, 9 DHSM-CHB
patients, and 6 HCTL participants were enrolled. Serum
was collected from blood sample (4mL) following the
manufacture’s protocol. Briefly, blood sample was incubated
at room temperature for 2 h in vacutainer blood handling
tube (Becton Dickinson, New Jersey, USA) and centrifuged
for 10min at 3,000 rpm and 4∘C. Serum sample, which
is the result supernatant, was transferred into a clean
polypropylene tube and stored at −80∘C.

2.3. Clinical Evaluation. The viral markers HBsAg, HBeAg,
anti-HBs, anti-HBc, and anti-HBewere determined routinely
in serum samples using standard procedures (AxSYM�;
Abbott Laboratories, Rungis, France), as well as other molec-
ular diagnostic markers like ALT (alanine transaminase),
AST (aspartate aminotransferase), STB (serum total biliru-
bin), CB (conjugated bilirubin), UCB (unconjugated biliru-
bin), and HBV-DNA. Participants, who have hepatitis B
history or HBsAg positive history for more than six months,
were diagnosed as chronic HBV infection if they were posi-
tive to HBsAg and/or HBV-DNA. We used both western and
Chinese medicine criteria to divide CHB patients into two
groups. First, participants were satisfied with the following
requirements: (1) serum HBsAg positive for over 6 months;
(2) HBV-DNA positive; (3) continuous or repeated elevated
serumALT in last 12months; (4) being 18∼60 years old; (5) no
planed move during the test. Then, LSSD-CHB and DHSM-
CHB patients were diagnosed using the clinical symptoms
mentioned before. CHB patients were diagnosed as LSSD-
CHB when they met the criteria: (1) Mi and Mii; (2) Mi, Sii,
and Siii; (3) Mii and Si. DHSM-CHB patients were diagnosed
as follows: (1) M1 and M2; (2) M1, S1, and S2; (3) M2 and
two of the secondary symptoms. We also filtered the patients
when they satisfied one of the following criteria: (1) being
associated with other types of hepatitis viruses or human
immunodeficiency virus (HIV); (2) cirrhosis, malignancy;
(3) being diagnosed with fulminant hepatitis (including
acute, subacute, and chronic severe hepatitis); (4) being
associated with drug or toxic liver, autoimmune hepatitis,
and genetic-metabolic liver disease; (5) heart, lung, kidney,
endocrine, blood, and other serious diseases; (6) pregnant
women and lactating women; (7) mental disorders, in line
with Chinese Classification of Mental Disorders Diagnosis
(CCMD-3) standard; (8) other individuals not suitable for the
cohort study.

2.4. Protein Preparation. Serum sample (200𝜇L) from each
patient was processed to reduce the complexity by using
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ProteoMiner� Kits (Bio-Rad Laboratories, Hercules, CA,
USA). Then, the sample was eluted using Lysis buffer at
pH 8.5 (2M Thiourea, 7M Urea, 4% CHAPS, and 40mM
Tris-HCl), reduced using 10mM DTT at 56∘C for 1 h, and
alkylated using 55mM IAM in darkness for 1 h. After being
precipitated within chilled acetone (4 × volume) at −20∘C
overnight, the protein sample was centrifuged at 30,000×g
for 15min at 4∘C; the pellet was next dissolved in 500 𝜇L of
0.5M triethylammonium bicarbonate (Applied Biosystems,
Milan, Italy) and sonicated at 200W in ice for 15min. Finally,
the samples were centrifuged again at 30,000×g for 15min
at 4∘C, and the supernatant was quantified using Bradford
Protein Assay Kit (CWBIO, Beijing, China) and stored at
−80∘C for subsequent analysis.

2.5. iTRAQ Sample Labelling, SCX Fractionation, and LC-
ESI-MS/MS Analysis. Proteins isolated from 10 individuals
in the same group were pooled for iTRAQ labelling. Pooled
protein samples (100 𝜇g) were digested using Trypsin Gold
(Promega, Madison, WI, USA) at 37∘C for 16 h (protein:
trypsin = 30 : 1). Digested peptideswere dried by vacuumcen-
trifugation, reconstituted in 0.5M triethylammonium bicar-
bonate (Applied Biosystems, Milan, Italy), and processed 8-
plex iTRAQ (Applied Biosystems) labelling following the
protocols. Samples were labelled with the iTRAQ tags as
follows: LSSD-CHB (113, 115, and 117), DHSM-CHB (114, 116,
and 118), and HCTL (119 and 121). After being incubated at
room temperature for 2 h, all the peptide mixtures were then
pooled and dried by vacuum centrifugation. Strong cation
exchange (SCX) chromatography was performed using the
LC-20AB HPLC Pump system (Shimadzu, Kyoto, Japan), as
previously described [18].

SFX fractions were resuspended in buffer A (2% ACN,
0.1% FA), followed by a centrifugation at 20,000 g for 10min.
Then, 10 𝜇L of the supernatant was loaded onto a 2 cm C18
trap column on a LC-20AD nanoHPLC (Shimadzu, Kyoto,
Japan) by the autosampler and eluted onto a 10 cm analytical
C18 column (inner diameter 75 𝜇m) packed in-house. At
300 nL/min the samples were loaded with buffer B (98%
ACN, 0.1% FA) as the following procedural: 5% B for 1min,
a 44min gradient from 2 to 35% B, a 2min linear gradient
to 80%, and 80% B for 4min. Finally, the chromatographic
conditions were restored in 1min. Data acquisition was per-
formed with anQ EXACTIVE (Thermo Fisher Scientific, San
Jose, CA) coupled online to the HPLC, as described [19, 20].

2.6. Database Search and Protein Quantification. Database
search and protein quantification were performed using
Mascot (Matrix Science, London, UK; version 2.4.0). Briefly,
raw data files acquired from the Orbitrap were converted into
mascot generic format (MGF) files using msconvert tool of
ProteoWizard (http://proteowizard.sourceforge.net/) [21]. To
identify expressed proteins and quantify them, all 20 MGF
files were merged and searched against UniProtHUMAN
(2016 04, 152,544 sequences) database using Mascot with
parameters: quantification: iTRAQ 8plex (Applied Biosys-
tems iTRQA� 8-plex); enzyme: trypsin; fixed modification:
carboxymethyl (C), iTRAQ8plex (N-term) and iTRAQ8plex
(K); variable modifications: dioxidation (M), oxidation (M),

and iTRAQ8plex (Y), mass values: monoisotopic; peptide
mass tolerance:±15 ppm; fragmentmass tolerance:±20mmu;
max missed cleavages: (1) The charge states of peptides were
set to +2 and +3. Specifically, an automatic decoy database
search was performed in Mascot by choosing the decoy
checkbox in which a random sequence of database is gener-
ated and tested for raw spectra as well as the real database.
To reduce the probability of false peptide identification,
only peptides at the 95% confidence interval by a Mascot
probability analysis greater than “identity” were counted as
identified. And each confident protein identification involves
at least one unique peptide.

2.7. Protein Different Expression and Functional Analysis. To
identify differentially expressed proteins in LSSD-CHB and
DHSM-CHB compared to HCTL, we set a cut-off for fold
change (>1.2) of protein abundance provided byMascot and𝑝
value (<0.05) calculated by edgeR [22]. Venn diagram of up-
and downregulated proteins was analyzed by InteractiVenn
(http://www.interactivenn.net/) [23]. To annotate potential
functions of proteins, UniProt IDs of candidate proteins
were submitted to DAVID Bioinformatics Resources 6.7
(https://david.ncifcrf.gov/home.jsp) [24] and STRING v10
(http://string-db.org/) [25], GeneOntology (GO), andKEGG
pathway were selected, and we used false discovery rate
(FDR) to control the results. Protein-protein interaction
networks were analyzed by STRING.

2.8. Western Blot Analysis. Protein samples obtained from
serum of 9 LSSD-CHB patients, 9 DHSM-CHB patients,
and 6 healthy individuals were resolved by 12% SDS-PAGE
using Miniprotean II electrophoresis unit (Bio-Rad) run at
constant 120V for 1 h and transferred to a PVDF membrane
(Amersham Biosciences) under a constant voltage of 15 V
for 20min. The membranes were blocked with 5% skim
milk powder in Tris-buffered saline with 0.05% Tween-20
(TTBS) for 1 h and probed in TTBS with primary anti-
bodies (1 : 500, Santa Cruz Biotechnology, CA, USA), anti-
PSMA7 (sc-166761), anti-PF4V (sc-367359), anti-PSMA6 (sc-
271187), anti-SERPING1 (sc-377062), anti-ACTB (sc-8432),
anti-AHSG (sc-137102), anti-CTSC (sc-74590), anti-PLTP
(sc-271596), and anti-ALB (sc-46293), followed by incubation
with secondary antibody (1 : 1000) for 1 h in darkness. All
antibody incubations were carried out using gentle orbital
shaking at room temperature. Western blots were washed
five times in TTBS (5min × 2 and 10min × 3) after each
incubation step and visualized with enhanced chemilumi-
nescence (ECL, GE Healthcare) following the manufacturers’
instructions. Band intensities on the Western blots were
quantified using ImageJ (Wayne Rasband, National Institutes
of Health). Albumin was used as reference to calculate the
relative intensity of each protein. Then, mean ± SD values of
each protein in HCTL and patients were calculated and com-
pared using GraphPad Prism (http://www.graphpad.com/).

2.9. Statistical Analysis. Statistical analysis including the
calculation of mean value, standard deviation (SD), and
students’ 𝑡-test was performed by using GraphPad Prism (v

http://proteowizard.sourceforge.net/
http://www.interactivenn.net/
https://david.ncifcrf.gov/home.jsp
http://string-db.org/
http://www.graphpad.com/
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Table 1: Clinical diagnosis of patients who participated in this study.

Diagnosis Unit LSSD-CHB (𝑛 = 30) DHSM-CHB (𝑛 = 30) HCTL (𝑛 = 20) 𝑝 value
Sex
Male 24 15 10
Female 6 15 10
Age

Years
17∼56 18∼60 24∼56

Mean age 30.8 36.83 36.15
Standard deviation (SD) 10.526 11.885 11.554
Hepatitis B surface antigen (HBsAg)
Positive 28 29
Negative 0 0
Hepatitis surface antibody (anti-HBs)
Positive 2 0
Negative 25 29
Hepatitis Be antigen (HBeAg)
Positive 21 19
Negative 7 9
Hepatitis Be antibody (anti-HBe)
Positive 9 12
Negative 19 16
Hepatitis B core antibody (anti-HBc)
Positive 28 29
Negative 0 0
Alanine transaminase (ALT) IU/L 13.8∼627 34∼673 1.0
Mean ALT level 190.153 187.393
SD 161.231 177.618
Aspartate aminotransferase (AST) IU/L 26.5∼345 28∼556 0.9999
Mean AST 96.74 142.427
SD 71.699 153.539
Serum total bilirubin (STB) umol/L 10.1∼48.63 6.5∼109.5 1.0
Mean STB 19.208 20.643
SD 8.926 18.127
Conjugated bilirubin (CB) umol/L 2.4∼16.4 2.3∼99.2 1.0
Mean CB 6.923 9.408
SD 3.542 17.208
Unconjugated bilirubin (UCB) umol/L 6∼34.13 3.3∼29.3 1.0
Mean UCB 12.284 11.182
SD 5.951 4.921
HBV-DNA IU/mL 5.12𝐸 + 03∼1.12𝐸 + 08 6.34𝐸 + 04∼9.40𝐸 + 08 0.0096
Mean HBV-DNA 2.521𝐸 + 07 5.655𝐸 + 07

SD 3.221𝐸 + 07 1.717𝐸 + 08

6.02). The Holm-Sidak method was used to calculate the
statistical significance of multiple clinical diagnostic values.

3. Results
3.1. Diagnosis of the Patients. To study serum protein
biomarkers in LSSD and DHSMCHB patients, we obtained a
total of 80 participants, including 30 LSSD-CHB, 30 DHSM-
CHB patients, and 20 healthy volunteers. As shown in Table 1
and Table S1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2016/3290260, mean ages of LSSD-
CHB, DHSM-CHB, and HCTL were 30, 36.8, and 35.5 years,

respectively. Except missing information of three, all patients
were positive to HBsAg and anti-HBc.There were two LSSD-
CHB patients positive to anti-HBs, and 9 LSSD-CHB and
12 DHSM-CHB patients positive to anti-HBe. HBV-DNA
levels in the blood samples of LSSD-CHB and DHSM-CHB
patients were ranged from 5.12𝐸+03∼1.12𝐸+08 IU/mL and
6.34𝐸+04∼9.40𝐸+08 IU/mL, respectively. It is interesting that
hepatitis B viral load (HBV-DNA copies) was significantly
different (𝑝 = 0.0096) in LSSD-CHB and DHSM-CHB
patients. Next, we examined ALT, AST, STB, CB, and UCB
levels in the blood samples of CHB patients. Mean values of

http://dx.doi.org/10.1155/2016/3290260
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Figure 1: Identification and analysis of serum proteome of CHB infected patients. (a) Distribution of protein mass of identified proteins. (b)
Number of peptides that match to proteins as indicated by MASCOT 2.4.0. (c) Coverage of identified proteins in CHB patient serum. (d)
Correlation between samples calculated by corrplot.

these diagnosis biomarkers in the blood samples of LSSD-
CHB and DHSM-CHB patients were similar. In addition, the
levels of ALT and AST remained at a high level, compared
to healthy individuals [26, 27], which confirmed their CHB
infection.

3.2. Protein Identification and Quantification by iTRAQ.
Next, we quantified the serum proteins in these LSSD-CHB
and DHSM-CHB patients using iTRAQ. Initially, a total of
371,034 spectra were generated by liquid chromatography
coupled to mass spectrometry (LC-MS/MS) analysis. Of
them, 98,243 spectra (5,591 unique peptides) were aligned
to 842 proteins from 666 families. The mass distribution of
identified proteins (Figure 1(a)) suggested byMascot revealed
170 (98.69%) were above 10 kDa, of which 170 (20.19%)
and 141 (16.75%) were 10 to 20 kDa and above 100 kDa,
respectively. We also counted the proteins aligned with

significant peptides, shown in Figure 1(b), and 547 (64.96%)
proteins were aligned by two and more peptides. In addition,
the distribution of protein sequence coverage is shown in
Figure 1(c). Protein sequence coverage with 40∼100%, 30∼
40%, 20∼30%, 10∼20%, and under 10% variation accounted
for 8.79%, 14.25%, 17.70%, 23.28%, and 35.99%, respectively.
In Figure 1(d), we showed correlation between two samples
and found LSSD-CHB samples were closer to DHSM-CHB
samples than HCTL.

3.3. Identification of Differentially Expressed Proteins. Dif-
ferentially expressed proteins were defined as those showed
greater than 1.2-fold change in relative abundance and a 𝑝
value < 0.05. Compared to HCTL we identified a total of
392 proteins differentially expressed (Table S2), of which 273
were identified in LSSD-CHB group and 345 in DHSM-
CHB group. As shown in the volcano plots, we identified 172
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Figure 2: Identification of differentially expressed proteins in LSSD-CHB and DHSM-CHB patients compared with HCTL. (a) Volcano plot
of differentially expressed proteins between LSSD-CHB and HCTL groups. (b) Volcano plot of differentially expressed proteins between
DHSM-CHB and HCTL groups. (c) Venn diagram of up- and downregulated proteins in LSSD-CHB and DHSM-CHB groups.

upregulated and 101 downregulated proteins in LSSD-CHB
group (Figure 2(a)) and 199 upregulated and 146 downreg-
ulated proteins in DHSM-CHB group (Figure 2(b)), com-
pared to HCTL group. Venn diagram (Figure 2(c)) revealed
LSSD-CHB and DHSM-CHB shared 142 upregulated and 84
downregulated proteins; 30 and 57 proteins were exclusively
upregulated in LSSD-CHB and DHSM-CHB, respectively; 17
and 62 proteins were exclusively downregulated in LSSD-
CHB and DHSM-CHB, respectively; and no protein was
identified with upregulation in one CHB subtype but with
downregulation in another.

3.4. Potential Biomarkers for CHB. The identification of
proteins differentially expressed in LSSD-CHB and DHSM-
CHB groups relative to the HCTL group was of interest as

these could provide leads for potentially useful diagnostic
and prognostic biomarkers. First, we examined those 142
commonly upregulated and 84 commonly downregulated
proteins. As shown in Table 2, the largest upregulated protein
family was immunoglobulin related protein, showing 20
upregulated and 3 downregulated proteins identified. In
clinical immunology, levels of immunoglobulins especially
IgG can be used to characterize viral hepatitis in patients
[28, 29]. Four IgG subclasses (IgG1 to IgG4) differ in their
heavy chain constant regions and have different effects on
virus-cell fusion inhibition, virus neutralization, and overall
course of infection, as have been reported for various viruses
including HIV [30] and HBV [31]. Highly expressed pro-
teins encoding heavy chains for immunoglobulins including
IGHG1, IGHG3, IGHG4, and IGH@ have been reported
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Figure 3: Gene Ontology annotation for shared differentially expressed proteins in LSSD- and DHSM-CHB groups: (a) cellular component,
(b) biological process.

with upregulation in HBV [32, 33] and HCC patients [34].
Other upregulated protein families such as heat shock pro-
tein, histone, ras-related protein, and von Willebrand factor
identified in current study have also been reported in patients
infected by HBV or hepatitis C virus (HCV) [35–38]. The
largest downregulated protein family was complement, 15
complement proteins downregulated in LSSD-CHB with
0.82- to 0.37-fold change and in DHSM-CHB with 0.77-
to 0.31-fold change. Other protein families like insulin-like
growth factor binding protein and serum amyloid protein
were also decreased in CHB patients in comparison to HCTL
group. In addition, several known upregulated proteins
from other families in patients infected by HBV or HCV
(Table 2), such as apolipoproteins (APOA2, APOB, and
APOB-variant) [39, 40], A2M (alpha-2-macroglobulin) [41],
alpha-actinin-3 (ACTN3) [42, 43], vimentin (VIM) [38], and
putative uncharacterized proteins (DKFZp686N02209 and
DKFZp686I04196) [34, 44, 45], were identified in LSSD-
CHB and DHSM-CHB groups. The different expression of
proteins in the serum of CHB patients indicates they may
have functions in response of HBV and CHB processing and
can be used as biomarkers in clinical diagnosis.

We next analyzed the potential functions of commonly
differentially expressed serum proteins in LSSD-CHB and
DHSM-CHB groups using DAVID Bioinformatics Resources
6.7 [24] and STRINGv10 [25]. Cellular component annotation

(Figure 3(a)) showed 63 and 7 proteins were “extracellular
region” (GO: 0005576, GO: 0005615, and GO: 0044421)
and “lipids” (GO: 0032994 and GO: 0034358), respec-
tively. However biological process annotation (Figure 3(b))
showed most of the differentially expressed proteins asso-
ciated with immune response, including “acute inflamma-
tory response” (GO: 0002526), “response to wounding”
(GO: 0009611), “inflammatory response” (GO: 0006954),
“complement activation” (GO: 0006956), “defense response”
(GO: 0006952), “humoral immune response mediated by
circulating immunoglobulin” (GO: 0002455), “immune effec-
tor process” (GO: 0002252), “B cell mediated immunity”
(GO: 0019724), and “activation of immune response” (GO:
0002253). It has been well studied that immunological events
are necessary to control hepatitis B virus (HBV) infection
[46, 47]. In addition, KEGG pathway analysis also showed
differentially expression proteins functionmainly in the path-
ways of “complement and coagulation cascades” (hsa04610),
“systemic lupus erythematosus” (hsa05322), “focal adhesion”
(hsa04510), and “viral carcinogenesis” (hsa05203). Overall,
differentially expressed proteins in both LSSD-CHB and
DHSM-CHB groups have potential ability to be used as
biomarkers.

3.5. Dysregulated Proteins Detected Exclusively in LSSD-
CHB and DHSM-CHB. Next, we examined differentially
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expressed proteins exclusively in LSSD-CHB and DHSM-
CHB groups. A total of 30 upregulated and 17 downreg-
ulated proteins were specifically identified in LSSD-CHB
patient serum samples (Table 3). Among them 11 upreg-
ulated immunoglobulin related proteins, gelsolin (GSN),
serum paraoxonase/lactonase 3 (PON3), likely SNC73 pro-
tein, transient receptor potential cation channel subfam-
ily M member 8 (TRPM8), and several uncharacter-
ized proteins (DKFZp686M08189, DKFZp686C02220, and
DKFZp686K04218) attracted our attention due to their high
abundance. Serum PON3 concentrations have been reported
to increase in patients with CHB or cirrhosis and showed
significant direct correlations with the degree of peripor-
tal abnormalities including fibrosis and with serum FAS
(a marker of antiapoptosis) concentrations [48]; however,
serum gelsolin level has been reported to reduce signifi-
cantly in patients with acute liver failure (47%), myocardial
infarction (69%), sepsis (51%), and myonecrosis (66%) [49].
Among the specifically downregulated serum proteins in
LSSD-CHB patients fibulin-1 (FBLN1) is a tumor suppressor
in hepatocellular carcinoma [50]. Proteins specifically dif-
ferentially expressed in LSSD-CHB patients were predicted
to function mainly in biological processes of “protein acti-
vation cascade” (GO: 0072376), “regulation of response to
wounding” (GO: 1903034), “blood coagulation, fibrin clot
formation” (GO: 0072378), “negative regulation of response
to stimulus” (GO: 0048585), and “acute-phase response”
(GO: 0006953).

We also identified 57 upregulated and 62 downregulated
proteins exclusively in DHSM-CHB patients (Table 4). Two
IGL@proteins (Q6GMX4 HUMANandQ6PIQ7 HUMAN)
were specifically upregulated in DHSM-CHB patients with
1.27-fold change. Transthyretin (TTR), upregulated 1.34-fold
in DHSM-CHB, can be induced by hepatitis C virus and
activate TGF-𝛽 signaling pathway with furin [51]. Interest-
ingly, we found three members of tubulin (TUBA4A, TUBB1,
and TUBB8) were upregulated only in DHSM-CHB patients
compared with HCTL. Although there are few reports about
tubulin and HBV, it is well known that 42 kDa tubulin
alpha-6 chain fragment in well-differentiated hepatocellular
carcinoma tissues is from patients infected with HCV [52].
In addition, we found actinin, alpha 1 (ACTN1), which can
directly interact with HCV [53], GAPDH, which can bind
to the HBV posttranscriptional regulatory element [54], and
polymeric immunoglobulin receptor (PIGR), themain trans-
porter of IgA [55], were upregulated in DHSM-CHB but not
in LSSD-CHB. Among DHSM-CHB specifically downregu-
lated proteins we identified three members of keratin type I
(KRT9, KRT10, and KRT14) and another three members of
keratin type II (KRT1, KRT2, and KRT6B). Although there
is no evidence showing relation between these six keratin
proteins with CHB or other liver diseases, variant keratins
are associated with progression of fibrosis during chronic
hepatitis C infection [56]. Differentially expressed proteins
exclusively detected in DHSM-CHB patients were predicted
to be involved in the biological processes of “immune system
process” (GO: 0002376), “response to stress” (GO: 0006950),
“defense response” (GO: 0006952), “immune response” (GO:

0006955), and “single-organism metabolic process” (GO:
0044710).

Compared to HCTL group up- and downregulated pro-
teins exclusively in LSSD-CHB and DHSM-CHB patients
showed their potential ability of being biomarkers for these
two subtypes of HBV induced CHB. Some of them have been
reported in other studies; however, more experiments need to
be performed to investigate their functions and validate their
specificity and accuracy in clinical trials.

3.6. Validation of the Quantitative Proteomic Analysis. To
validate the results obtained by proteomics analysis, eight
randomly selected proteins and internal control albumin
with altered expression profile were monitored by western
blotting in an independent group of samples. Figures 4(a)
and 4(b) showed the western blots for eight proteins and
internal control albumin. PSMA6 (20S proteasome alpha6),
PSMA7 (20S proteasome alpha7/alpha8) were upregulated
and PF4V (platelet factor 4 variant) was downregulated in
LSSD-CHB group compared to HCTL (Figure 4(c)). Except
SERPING1 (plasma protease C1 inhibitor), AHSG (fetuin-A),
ACTB (actin), CTSC (cathepsin C), and PLTP (phospholipid
transfer protein) were upregulated in the serum of DHSM-
CHB patients (Figure 4(d)). Although the difference between
patients and healthy participants was not significant by
western blotting analysis, their regulations in patients and
healthy group were consistent with iTRAQ. The original
images of western blots (see Figure S1) might contain some
differences due to brightness and contrast settings.

4. Discussion
Quantitation of serum or plasma proteins using comparative
proteomics has recently been suggested as a suitable approach
for the detection of liver disease biomarkers [17, 57–59].
The iTRAQ technology has been proposed as a powerful
alternative to common tools (e.g., ELISA) and a flurry of
applications emerged in the literature.

In this study, iTRAQ LC–MS/MS proteomics was used
to detect serum protein as biomarkers of LSSD-CHB and
DHSM-CHB patients. We compared the proteomics pro-
file of LSSD-CHB and DHSM-CHB patients with healthy
individuals and indicated 142 upregulated and 84 down-
regulated proteins shared by these two CHB subtype dis-
eases. Protein-protein interaction network (Figure 5) showed
several significant proteins might function in response to
HBV, such as actins (ACTA2, ACTB, ACTBL2, ACTN3,
and ACTN4), apolipoproteins (APOA2, APOA5, APOB,
APOC3, and APOC4), heat shock proteins (HSP90AA1 and
HSP90AB1), and proteasome subunit proteins (PSMA1 and
PSMA4). It has been reported that HBV core proteins can
interact with the C-terminal region of actin-binding protein
[60] and HBV X protein (HBx) can block filamentous actin
bundles by interaction with eEF1A1 (eukaryotic translation
elongation factor 1 alpha 1) [61]. In addition, ACTA2 is a
marker of hepatitis stellate cells and correlated significantly
with necroinflammatory grades and fibrotic stages in CHB
or CHC [13]. Apolipoproteins are supposed to enhance the
infectivity of hepatitis virus during the infection [39, 62] and
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Figure 4:Western blot analysis. (a)Western blot analysis for PSMA7, PSMA6, and PF4V in LSSD-CHB patients. (b)Western blot analysis for
AHSG, ACTB, CTSC, PLTP, and SERPING1 in DHSM-CHB patients. Box plots of the relative intensity of candidate proteins in LSSD-CHB
(c) and DHSM-CHB (d) groups.

are identified to interact with HBx as well [63]. Among the
apolipoproteins APOA2 is a considerable biomarker because
its expression is increased on both mRNA and protein levels
in CHB patients [14, 64]. HBx protein also interacts with
heat shock proteins and enhances HBx-mediated apoptosis
[65]. A HBV-specific peptide (TVATAMG) is associated with
heat shock protein and has potential for engineering tumor
vaccines against hepatocellular carcinoma and chronic HBV
infection [66]. Heat shock proteins like HSP27, HSP90, and
GRP78 are upregulated in HBV related hepatocellular car-
cinoma, associated with vascular invasion and intrahepatic
metastasis and have potential to be prognosis markers [67,
68]. Commonly downregulated complement proteins are
important mediators of inflammation and contribute to the
regulation of the immune response. C4, a predisposing factor
to autoimmune chronic active hepatitis [69], is expressed
lowly in chronic hepatitis C patient compared to that in
controls [70]. Low serum levels of complement in viral
hepatitis are associatedwith high titers of hepatitis-associated
antigen [71]. It is said that complement proteins are related
to hepatitis B vaccine and C4AQ0 (mutant C4) probably

contribute to inefficient complement activation and failure
of B cells to secret anti-HBs [72]. Our results confirmed
the potential of previously reported proteins in diagnosis of
patients infected by HBV.

LSSD-CHB and DHSM-CHB are two subtypes of CHB
according to traditional Chinese medicine pattern classifi-
cation. In this study we identified 47 and 119 differentially
expressed proteins exclusively in LSSD-CHB and DHSM-
CHB, respectively, which could be used as biomarkers for
LSSD-CHB and DHSM-CHB patients. We showed top 5
highly expressed proteins with different expression in LSSD-
CHB and DHSM-CHB patients compared to HCTL group
in Figure 6. Using relative expression ratio calculated by
MASCOT we found mean expression levels of some pro-
teins were close in LSSD-CHB and DHSM-CHB but with
different 𝑝 values, such as CFH (complement factor H), F2
(prothrombin), and FGA (fibrinogen alpha chain). As we
know, prothrombin time is one of themarkers of liver test; it is
usually lower inHBV infected patients than in healthy people
and a goodmarker for liver fibrosis [73, 74]. CFH functions as
a cofactor in the inactivation ofC3b by factor I [75], which can
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Figure 5: Protein-protein interaction network of commonly differentially expressed proteins in LSSD-CHB and DHSM-CHB patients
compared with HCTL group.

interact with IgG and ismoderately depressed in the serum of
patients with viral hepatitis [71]. FGA has a major function in
hemostasis as one of the primary components of blood clots
[76]. Fibrinogen-like protein 2 (FGL2) has been identified
as a potential biomarker for severity of CHC infection [77].
Other proteins also have been reported to be associated
with HBV infection. LGALS3BP (lectin galactoside-binding
soluble 3 binding protein isoform 1) were downregulated in
LSSD-CHB patients (fc = 0.71, 𝑝 value = 2.49𝐸 − 06) and
DHSM-CHB patients (fc = 0.89, 𝑝 value = 0.061). Previous
studies about LGALS3BP inCHBandHCC found its different
expression on transcriptional level [78], while in current

study we identified its protein was differentially expressed in
CHB patients and had the potential to be a good marker for
LSSD-CHB subtype. PON3 (serum paraoxonase/lactonase
3), which was upregulated exclusively in LSSD-CHB, might
play a hepatoprotective role against histological alterations
and hepatic cell apoptosis leading to liver disease [48].

DHSM-CHB specifically differentially expressed proteins
like ITIH1 (inter-alpha-trypsin inhibitor heavy chain H1),
THBS1 (thrombospondin-1), C5 (Complement C5), and ALB
(albumin) have been also reported in hepatitis viral related
diseases. The expression level of ITIH1 in HCTL group was
similar to that in LSSD-CHB patients (fc = 0.99, 𝑝 value =
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Figure 6: Top 5 highly expressed proteins differentially expressed in LSSD-CHB and DHSM-CHB compared to HCTL. Fold changes (fc) and
𝑝 values (𝑝) of them were shown in red and blue for LSSD-CHB and DHSM-CHB, respectively.

0.227) but was downregulated significantly in DHSM-CHB
patients (fc = 0.81, 𝑝 value = 0.012). The low expression of
ITIH1 indicated it can be used to differ DHSM-CHB from
LSSD-CHB. In addition, it has been experimented to be
downregulated in HCV infected patients [79] and hepatitis
C associated hepatocellular carcinoma patients [80]. It is
reported that HCV viral proteins act directly or indirectly
on THBS1 in TGF-𝛽 pathway [81]. By noninvasive imaging
the gene expression of THBS1 was upregulated in liver
cancer [82]. Interestingly, ALB has been reported as an
important factor to score the risk of HCC in CHB patients
[83]. In our study, ALB was downregulated in both CHB
subtypes but significantly exclusively in DHSM-CHB. Our
results confirmed its different expression inCHBpatients and
revealed that the criteria of ALB expression in CHB patients
required more patients and experiments.

Due to the fact that hepatitis B viral load in DHSM-
CHB patients was significantly higher than that in LSSD-
CHB patients, we assume HBV-DNA might be related to
CHBpatientswith different syndromes and it requires further
experiments. To our knowledge, this study appears to be
the first iTRAQ based approach aimed at identifying leads
for potential useful biomarkers of patients of CHB subtypes.
The candidates identified in this study await rigorous clinical
validation using large cohorts of patient samples and more
experimental function analysis.
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