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A B S T R A C T   

Background: OA (osteoarthritis) is a common joint disease characterized by damage to the articular cartilage and 
affects the entire joint tissue, with its main manifestations being joint pain, stiffness, and limited movement. 
Currently,we know that OA is a complex process composed of inflammatory and metabolic factors.It is reported 
that the occurrence and development of OA is related to the change of tryptophan metabolism.Therefore, the 
study of tryptophan metabolism and OA related genes is hopeful to find a new therapeutic target for OA. 
Methods: Differentially expressed genes (DEGs) in GSE55235 were gained via differential expression analysis (OA 
samples vs normal samples). The tryptophan metabolic related DEGs (TMR-DEGs) were obtained by overlapping 
tryptophan metabolism related genes (TMRGs) and DEGs. Further, biomarkers were screening via Least absolute 
shrinkage and selection operator (LASSO), naive bayes (NB) and supportvector machine-recursive feature 
elimination (SVM-RFE) algorithm to establish a diagnostic model. Afterward, Gene Set Enrichment Analysis 
(GSEA) and drug prediction were performed based on diagnostic biomarkers by multiple software and databases. 
Eventually, expression level of biomarker public databases was verified using real-time quantitative polymerase 
chain reaction (RT-qPCR). 
Results: Three tryptophan metabolism related biomarkers (TDO2, AOX1 and SLC3A2) were identified in OA. 
GSEA analysis demonstrated that biomarkers were associated with the function of ‘FoxO signaling pathway’, 
‘spliceosome’ and ‘ribosome’. There were seven drugs with therapeutic potential on TDO2 and AOX1. Ultimately, 
compared with normal group, expression of AOX1 and SLC3A2 in OA group remarkable lower. 
Conclusion: Overall, three tryptophan metabolic related diagnostic biomarkers that associated with OA were 
obtained, which provided a original direction for the diagnosis and treatment of OA.   

1. Introduction 

OA (osteoarthritis) is a joint disease characterized by cartilage 
destruction and bone fragmentation caused by aging, strain, trauma and 
so on factors. It always occurs in weight-bearing joints and high activity 
joints. More than 50 % of patients with knee pain are diagnosed with 
OA, and the prevalence of OA is high in the middle-aged and elderly 
population. [1]. It causes pain, loss of function and reduced quality of 
life and is the leading cause of disability in older adults [2]. The cost of 
treatment for the disease poses a significant economic burden to patients 

and society. Joint damage, abnormal development of joints or limbs, 
altered genetic background, and working in jobs that require 
weight-bearing have been reported as risk factors for OA [3]. Currently, 
OA is often clinically diagnosed by pathography, physical examination, 
and characteristic OA metabolites in plasma, urine, synovial fluid and 
serum such as alanine and lysophosphatidylcholine [4]. Traditional 
treatment options include a variety of options, such as oral medications, 
physical therapy, lifestyle changes, physical methods, injections, and 
surgery. In recent years, an improved understanding of the underlying 
mechanisms, diagnosis and management of OA has led to many 
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potential therapeutic advances [5]. Whereas, in spite of currently 
effective treatments and advances in research, the medical need for OA 
treatment remains unmet. To date, there are no effective drugs that can 
stop the progression of the disease [6]. In the face of this public health 
crisis, rigorous, high-quality OA clinical studies are urgently needed to 
ensure that patients receive safe and effective treatment. A growing 
body of research indicate that many diseases can be treated with tar-
geted drugs [7,8]. At present, there are few reports on the therapeutic 
targets of OA [9]. Therefore, exploring potential biomarkers of OA and 
their therapeutic targets is crucial to understand the pathogenesis of OA. 

Tryptophan (Trp) is one of the eight indispensable amino acids. It 
and its metabolites play a key role in regulating cell proliferation and 
maintaining cell activity [10]. It has been reported that the occurrence 
and development of OA are related to the change of amino acid meta-
bolic profile. Functional amino acids, including Trp, have a variety of 
benefits in the treatment of OA, such as anti-oxidation [11]. Liyile et al. 
established the relationship between gut microbiome related Trp 
metabolism and diseases in OA, which showed that the change of Trp 
metabolism may promote the activation and synthesis of Aryl hydro-
carbon receptor, and then accelerate the progress of OA [12]. However, 
the expression changes and biological functions of TMRGs in OA 
development were currently unknown. 

This study purposed to recognize differentially expressed TMRGs in 
OA, identify key genes by using a variety of machine learning algo-
rithms, and the potential biological pathways and molecular regulatory 
mechanisms were explored through multiple algorithms in the R pack-
age. The targeted drugs of key genes and molecular docking were 
analyzed via Autodock Vina and Pymol software. To provide a reference 
for the mining of potential biomarkers and the exploration of thera-
peutic targets in OA. 

2. Materials and methods 

2.1. Data acquisition 

The datasets associated with OA were collected from Gene Expres-
sion Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) (Additional 
file 1). GSE55235 was used as training set, which included ten Synovial 
tissue samples from osteoarthritic joint and ten synovial tisssue from 
healthy patients joints. The GSE55457, as a validation set, consisted of 
ten synovial membrane tissue samples from Osteoarthritis patients and 
ten synovial membrane tissue samples from healthy patients. Totally, 45 
TMRGs were derived from MsigDB database [10]. 

2.2. Differential and enrichment analysis 

Differentially expressed genes (DEGs) were collected between 
normal group and OA group in GSE55235 using ‘limma’ package [13]. 
The p.adj <0.05 and |log2FC| > 0.5 were determined as the threshold. 
Further, Tryptophan metabolism related DEGs (TMR-DEGs) were ob-
tained through overlapping DEGs and TMRGs. Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was 
established via ‘clusterProfiler’ [14] with p < 0.05 and count >1. 

2.3. Protein interaction (PPI) network and machine learning methods 

Spearman correlation analysis was performed between TMR-DEGs. 
PPI network was applied to explore the interaction between these 
genes through GeneMANIA database (http://genemania.org). After-
ward, Least absolute shrinkage and selection operator (LASSO), naive 
bayes (NB) and supportvector machine-recursive feature elimination 
(SVM-RFE) algorithm were applied to screen important genes in 
GSE55235. The diagnostic biomarkers were obtained through over-
lapping three algorithms. Moreover, a receiver operating characteristic 
(ROC) curve was plotted using the pROC to evaluate the diagnostic value 
of the biomarkers and the model [15]. GSE55457 was regarded as an 

external verification set for the diagnostic value. 

2.4. Gene Set Enrichment Analysis (GSEA) 

GSEA was proceeded to detect the feasible KEGG pathways associ-
ated with diagnostic biomarkers through ‘clusterProfiler’ package [16] 
with p.adjust <0.05. 

2.5. Construction of ‘mRNA-transcription factors (TFs)’ and ‘mRNA- 
miRNA-circRNA’ networks 

The TF associated with diagnostic biomarkers were anticipated via 
NetworkAnalyst (http://www.networkanalyst.ca/faces/home.xhtml) 
and Cistrome (http://cistrome.org/db/) databases. The mRNAs and 
circRNAs associated with miRNAs were forecasted by Starbase database 
(http://starbase.sysu.edu.cn). Moreover, the results of ‘mRNA-TF’ and 
‘mRNA-miRNA-circRNA’ network were optimize via Cytoscape software 
[17]. 

2.6. Potential drug prediction and molecular docking 

The targeting drugs were identified through DGIdb database 
(https://dgidb.org/) to discover the potential therapeutic drugs for 
diagnostic biomarkers in OA. To evaluate the affinity of potential drugs 
for biomarkers, the molecular structure of the drugs was obtained from 
the PubChem (https://pubchem.ncbi.nlm.nih.gov/) database. Crystal 
structure of the target proteins were downloaded from the uniprot 
database. Autodock Vina (v.1.2.2) was selected for molecular docking. 
The energy range default was 3, and the exhaustiveness default was 8. 
Every ligand and receptor engages in 20 simulated docking cycles. The 
ideal outcome was the one with the lowest binding energy, and Pymol 
software (V3.4) was used to show the ideal outcome. 

2.7. The analysis of the expression of diagnostic biomarkers 

In order to confirm the expression of diagnostic biomarkers in OA, 
we implemented RT-qPCR. Then, five normal and five OA tissue samples 
were obtained from patients with their knowledge and consent from 
Anhui Public Health Clinical Center, and this study was licenced by the 
ethics committee of Anhui Public Health Clinical Center. Following the 
manufacturer’s instructions, the total RNA from ten samples was sepa-
rated using TRIzol (Ambion, Austin, USA). Total RNA was reverse- 
transcribed to cDNA using the first strand CDA-synthesis-kit (Service-
bio, Wuhan, China) according to the producer indicator. Then, qPCR 
was carried out utilizing the 2xUniversal Blue SYBR Green qPCR Master 
Mix (Servicebio, Wuhan, China) according to the manual. The primer 
sequences for PCR were tabulated in Table 1. GAPDH was utilized as an 
internal reference gene, and the expression was calculated according to 
the 2− ΔΔht method [18]. 

2.8. Statistical analysis 

All P value < 0.05 was considered statistically significant. 

Table 1 
The primer sequences used in the real time quantitative polymerase 
chain reaction (RT-qPCR).  

primer sequence 

TDO2 F GTCATACAGAGCACTTCAGGGAG 
TDO2 R CATCTTCGGTATCCAGTGTCG 
AOX1 F GTTCACATTTATCTTGATGGCTCTG 
AOX1 R GACATTCGACATTGGCATTCTTA 
SLC3A2 F GAGCCTACTCGAATCCAACAAAG 
SLC3A2 R GGTAGAGTCGGAGAAGTTGAGCC 
GAPDH F CGAAGGTGGAGTCAACGGATTT 
GAPDH R ATGGGTGGAATCATATTGGAAC  
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3. Results 

3.1. Identification of TMR-DEGs in OA 

The 1600 DEGs were identified in OA, including 630 down-regulated 

and 970 up-regulated genes (Fig. 1A and B). Furthermore, seven TMR- 
DEGs associated with OA were retained by overlapping DEGs and 
TMRGs (Fig. 1C). Further, functional enrichment analysis was pro-
ceeded to uncover potential mechanisms for TMR-DEGs. Accordingly, 
67 GO items and eight KEGG pathways were gained. We observed that 

Fig. 1. Identification of the tryptophan metabolic related differentially expressed genes (TMR-DEGs) in OA. Differentially expressed genes (DEGs) normal group and 
OA group in GSE55235 dataset were shown by (A) volcano map, The different colour dots on the left and right sides represent 630 up- and 790 down-regulated DEGs, 
respectively. The heatmap (B) plot of up- and down-regulated DEGs, red and blue grids indicate up- and down-regulated DEGs, respectively. The top diagram of heat 
map indicates the gene expression density. (C) Venn plot for the TMR-DEGs shared by DEGs and tryptophan metabolism related genes (TMRGs). Results of (D, E) 
Gene Ontology (GO) and (F, G) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis of TMR-DEGs. 
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the genes mentioned above were mainly related to the ‘amine metabolic 
process’ and the ‘amine catabolic process’ (Fig. 1D and E). Meanwhile, 
KEGG showed that DEGs were chiefly filled in the ‘Tryptophan meta-
bolism’ and ‘Histidine metabolism’ (Fig. 1F and G). 

3.2. Interaction analysis of TMR-DEGs 

The correlation between the seven TMR-DEGs was shown in Fig. 2A. 
We found that AOX1 was negative associated with TDO2, while it was 
positive associated with MAOA. The interaction between these seven 
TMR-DEGs was shown in Fig. 2B. We found that MAOB interacted with 
multiple TMR-DEGs at the same time. 

3.3. Establishment of tryptophan metabolism related diagnostic model for 
OA 

To further dig out the key genes, LASSO, NB and SVM-RFE algorithm 
were performed on TMR-DEGs to unearth the optima. LASSO regression 
analysis identified five significant genes, including TDO2, AOX1, 
SLC3A2, SLC7A5 and KMO (Fig. 3A and B). Then, six feature genes were 
obtained via SVM-RFE, including ALDH3A2, MAOA, SLC3A2, AOX1, 
SLC7A5 and TDO2 (Fig. 3C). Meanwhile, six feature genes were obtained 

via NB, including MAOA, TDO2, ALDH3A2, AOX1, SLC3A2 and KMO 
(Fig. 3D). Eventually, three tryptophan metabolism related biomarkers 
(TDO2, AOX1 and SLC3A2) were obtained by intersecting the genes 
obtained by the three machine learning algorithms (Fig. 3E). 

We establish a diagnostic model of OA composed of these diagnostic 
biomarkers. The AUC value of diagnostic model and biomarkers was 
greater than 0.7, indicating that the these genes and the model had good 
accuracy (Fig. 4A–C). Next, we further validated the diagnostic value in 
the external validation set (GSE55457) (Fig. 4B–D). The similar results 
was observed in GSE55457. 

3.4. Functional enrichment analysis 

To further investigate the feasible roles of TDO2, AOX1 and SLC3A2 
in OA, we performed single-gene GSEA on diagnostic biomarkers. KEGG 
results indicated that ‘spliceosome’, ‘ribosome pathway’ and ‘FoxO 
signaling pathway’ were enriched in the groups with high-expression of 
TDO2, AOX1 and SLC3A2 (Fig. 5A–C). 

3.5. Analysis of regulatory network 

The 26 TFs were identified from the intersection of NetworkAnalyst 

Fig. 2. Interaction analysis of seven TMR-DEGs. (A) The correlation heatmap among seven TMR-DEGs, red represents positive correlation, blue represents negative 
correlation (B) Protein-protein interactions (PPI) network of seven TMR-DEGs. Functional associations between targets were investigated using GeneMANIAGenes. 
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and Cistrome databases (Fig. 6A). The ‘mRNA-TF’ network was estab-
lished to explore the regulatory mechanism of TDO2, AOX1 and SLC3A2 
(Fig. 6B). There were complex interrelationships in this network, in 
which SIN3A was associated with AOX1. ZNF384 might regulate the 
expression of TDO2. Meanwhile, ‘mRNA-miRNA-circRNA’ network was 
established, which had three mRNAs, seven miRNAs and fifteen circR-
NAs. In the network, hsa-miR-495–3p affected the expression of TDO2, 
and hsa-miR-31–5p regulated the expression of AOX1 (Fig. 6C). The hsa 
circ 0075 924 might affected the expression of SLC3A2 through hsa-miR- 
490–3p. 

3.6. Biomarkers-drug interaction network 

We explored the potential therapeutic drugs for TDO2, AOX1 and 
SLC3A2. There were seven drugs with therapeutic potential on TDO2 
and AOX1 (Fig. 7A). Drugs targeting TDO2 was DEXAMETHASONE and 
INSULIN (Fig. 7B). Drugs targeting AOX1 was ALLOPURINOL, 
AZATHIOPRINE, FEBUXOSTAT, ISOVANILLIN and MENADIONE 
(Fig. 7C). Molecular docking results suggested that the binding energies 
of these drugs to their biomarkers were less than − 5 (Fig. 7D–Table 2). 

3.7. Expression validation of the diagnostic genes 

The expression level of AOX1, SLC3A2 and TDO2 was analyzed in the 
GSE55235 dataset (Fig. 8A). At the transcriptional level, compared with 
the normal group, AOX1 and SLC3A2 had a lower expression in OA 
group. While TDO2 showed the opposite expression trend. Further, 
expression trend was verified by RT-qPCR experiments (Fig. 8B). This 
was consistent with the results of the public database. 

4. Discussion 

OA is the most familiar joint disease, which is characterized by 
complex structural changes in the knee joint, leading to joint pain, 
stiffness, physical dysfunction and even disability, which brings a huge 
burden to social and economic health [19,20]. Moreover, there are few 
studies on the expression changes and biological functions of TMRGs in 
development of OA. Therefore, the elucidation of TMRGs related to OA 
is of great significance for OA treatment. This bioinformatics analysis 
study for the first time used different machine learning algorithms to 
obtain three tryptophan metabolism-related diagnostic biomarkers 
(TDO2, AOX1 and SLC3A2) associated with OA based on OA 

Fig. 3. Screening of tryptophan metabolism related diagnostic genes in OA. (A) Five significant genes were identified in the least absolute shrinkage and selection 
operator (LASSO) model. The relationship between lambda values and corresbonding cross-validated error rate was plotted to subject the optimal lambda for the 
LASSO model. (B) Cross-validation for tuning parameter selection in the LASSO model. The plot illustrates the trajectory of each OA-related feature’s coefficient in 
the LASSO coefficient profiles as the lambda value changes in the LASSO algorithm. (C) The relationship between generalization error and feature number in support 
vector machine-recursive feature elimination (SVM-RFE), and the error rate of this mode is the lowest when the feature number reaches 6. (D) The relationship 
between prediction accuracy and various number in naive Bayes (NB), and the accuracy of this mode is the highest when the feature number reaches 6. (E) Venn 
diagram of three tryptophan metabolism related biomarkers shared by three machine learning algorithms. 
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transcription data from two large public GEO databases. The OA pre-
diction model was constructed and verified. Seven effective drugs 
related to TDO2 and AOX1 were found in DGIDB database, and the 
binding information between the drugs and the corresponding proteins 
of the genes was analyzed. The results showed that the expression levels 
of these three core genes were significantly different between the normal 
group and the disease group. Among them, TDO2 has an up-regulated 
role in the disease, while AOX1 and SLC3A2 played a down-regulated 
role in the development of the disease. In addition, the OA prediction 
model we constructed showed high predictive validity on the validation 
set. Overall, we have obtained the diagnostic biomarkers related to 
tryptophan metabolism in OA, which lays a better outlook for the 
diagnosis and treatment of OA. 

The tryptophan-2, 3-dioxygenase2 (TDO2) was located at 8p11. 21, 
encoding 10 exons, a total of 81 437 nucleotides, which was a heme- 
containing dioxygenase, which has the enzymatic activity of decom-
posing tryptophan and was related to inflammation-related diseases 
[21]. Studies have shown that the level of TDO2 in patients with OA was 
remarkably higher than these without arthritis. Further analysis found 
that the level of TDO2 in knee joint synovial membrane and synovial 
fluid of OA patients was positively correlated with clinical manifesta-
tions, KL grade and proinflammatory cytokine levels [22]. Recently, the 
expression of TDO2 has been reported to be highly upregulated in joint 
tissues of rheumatoid arthritis patients and rats with help-induced 
arthritis [23]. In this study, we found similar results, among the three 
core genes, only TDO2 was highly expressed in the disease tissues, and 

Fig. 4. Construction of the tryptophan metabolism related diagnostic model for OA. (A) Receiver operating characteristic curve (ROC) curve and prediction matrix of 
the diagnostic model in train set (GSE55235) for OA. (B) ROC curve and prediction matrix of the diagnostic model in test set (GSE55457) for OA. (c,d) ROC curve of 
single diagnostic genes for predicting OA in train set (GSE55235) (C) and test set (GSE55457) (D). 
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we applied TDO2 to the prediction model, which provided a simple 
method for the diagnosis of arthritis. Alcohol oxidase gene I (AOX1) was 
an alcohol oxidase with a wide range of substrates, including a variety of 
aromatic heterocycles and aldehydes. Beyond that, it has been impli-
cated in the bioactivation of prodrugs, the regulation of oxygen ho-
meostasis in vivo, the production of nitric oxide, and lipogenesis. [24]. 
Our study found that AOX1 was strongly expressed in the normal patient 
group, but the reliability of this core gene was not supported by the 
verification of gene expression in the GEO external validation dataset. 
The relationship between AOX1 and the occurrence and progression of 
arthritis needs to be further studied. Solute carrier family 3 member 2 
(SLC3A2), also known as 4F2hc, CD98hc, was an 85 kDa type II trans-
membrane glycoprotein [25]. It usually acted as a chaperone and het-
erodimerises with some amino acid transporters (e.g. SLC7A5, 
SLC7A11) to play a role at the plasma membrane [26]. A bioinformatics 
analysis study found that SLC3A2 was related to ferroptosis related 
functions, and the expression of SLC3A2 was remarkably 
down-regulated in the cartilage damage of knee OA patients, and the 
expression of SLC3A2 was also down-regulated in the cartilage damage 
area of OA patients. The study also elaborated that the clinical factors 
such as K-L grade, obesity grade and BMI [27]. Some scholars have 
proposed that the mechanism of SLC3A2 in OA might be that when 
cystine was inhibited, the uptake of cystine was limited, thereby 
blocking the manufacture of GSH, leading to a decrease in cellular 
antioxidant capacity and promoting ferroptosis, which leaded to irre-
versible degeneration of joint structure and finally arthritis [28]. 
SLC3A2 deficiency was found to promote ferroptosis by upregulating the 
expression of mTOR and P70S6K in another study of laryngeal cancer. 
[29]. In a study of vascular smooth muscle cell apoptosis, it was found 

that HCMV-miR-US33–5p binds to the 1′-untranslated region of EPAS3 
to inhibit its expression. This results in the inhibition of SLC3A2 
expression, which ultimately promotes cell apoptosis and inhibits cell 
proliferation. [30]. Previous studies have shown that down-regulation of 
SLC3A2 inhibited cell proliferation and increases cellular oxidative 
senescence, which may play a role in joint development. 

In previous studies, the binding energy between effective molecule 
and SARS-CoV-2 Mpro protein was calculated by density functional tight 
binding (DFTB), and the free-energy surfaces/thermodynamics of large 
biochemical systems was accurately and efficiently predicted using 
GPU-based DFTB approach [31,32]. Although DFTB was used to un-
derstand large biomolecular systems, the molecular docking was per-
formed in this study. The predicted drugs were DEXAMETHASONE; 
INSULIN; MENADIONE; AZATHIOPRINE; FEBUXOSTAT; ALLOPU-
RINOL and ISOVANILLIN, among which AOX1 had the best docking 
with FEBUXOSTAT, followed by TDO2 and DEXAMETHASONE drug, 
AOX1 and MENADIONE drug. This was consistent with a study that 
FEBUXOSTAT can significantly relieve the symptoms and reduce the 
inflammatory response in patients with knee arthritis [33], but 
FEBUXOSTAT was often used in the treatment of gout and gouty 
arthritis in clinical practice [34]. The appropriate dose of DEXAMETH-
ASONE has been widely accepted for the treatment of arthritis [35,36]. 
Previous studies have shown that MENADIONE drugs played a positive 
role in anti-oxidation of joint structure and cartilage recovery, thereby 
preventing the progression of arthritis [37]. The current literature re-
view suggests that the results of the present study confirm and extend 
previously known results, and that these findings provide promising 
evidence and potentially attractive directions for future research into 
new targets for OA diagnosis and immunotherapy. 

Fig. 5. Gene Set Enrichment Analysis (GSEA) of three diagnostic biomarkers. (A) TDO2, (B) AOX1 and (C) SLC3A2. The top 10 enriched items were demonstrated by 
the lines in each figure. 
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Based on the GEO public database data, this study intends to mine 
the key biomarkers in OA through a series of bioinformatics methods, 
and construct a stable and reliable prediction model, which provides a 
theoretical foundation for the diagnosis, treatment and pathogenesis of 
OA. Nevertheless, this study has certain limitations. Firstly, these data 
used in the current work were obtained from public databases and the 
reliability of the data could not be verified. Second, the sample size 
included in the validation of core gene expression was small, and more 
studies with larger sample sizes are needed to probe differences in AOX1 
levels between different sub-types of OA. The difference in AOX1 was 
found to be non-significantly differentially expressed in the OA and 
control groups as verified by qRT-PCR, which may be due to the vari-
ability of the samples. However, due to time and resource constraints, 
we were unable to conduct relevant experiments immediately. In future 
studies, we will include more experiments to investigate the specific 
mechanism. Finally, although we observed differential gene expression 

between OA and normal groups, in vivo and animal studies were not 
performed to further investigate the underlying mechanisms. 
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Table 2 
Molecular docking results of potential therapeutic drugs for TDO2 and AOX1.  

Gene Drug Binding Energy(kcal/mol) 

TDO2 DEXAMETHASONE − 7.4 
TDO2 INSULIN − 5.6 
AOX1 MENADIONE − 7.4 
AOX1 AZATHIOPRINE − 6.9 
AOX1 FEBUXOSTAT − 8.1 
AOX1 ALLOPURINOL − 6.4 
AOX1 ISOVANILLIN − 5.6  
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