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Abstract: The co-delivery of chemotherapeutic agents and immune modulators to their targets
remains to be a great challenge for nanocarriers. Here, we developed a hybrid thermosensitive
nanoparticle (TMNP) which could co-deliver paclitaxel-loaded transferrin (PTX@TF) and marimastat-
loaded thermosensitive liposomes (MMST/LTSLs) for the dual targeting of cancer cells and the
microenvironment. TMNPs could rapidly release the two payloads triggered by the hyperthermia
treatment at the site of tumor. The released PTX@TF entered cancer cells via transferrin-receptor-
mediated endocytosis and inhibited the survival of tumor cells. MMST was intelligently employed
as an immunomodulator to improve immunotherapy by inhibiting matrix metalloproteinases to
reduce chemokine degradation and recruit T cells. The TMNPs promoted the tumor infiltration
of CD3+ T cells by 2-fold, including memory/effector CD8+ T cells (4.2-fold) and CD4+ (1.7-fold),
but not regulatory T cells. Our in vivo anti-tumor experiment suggested that TMNPs possessed the
highest tumor growth inhibitory rate (80.86%) compared with the control group. We demonstrated
that the nanoplatform could effectively inhibit the growth of tumors and enhance T cell recruitment
through the co-delivery of paclitaxel and marimastat, which could be a promising strategy for the
combination of chemotherapy and immunotherapy for cancer treatment.

Keywords: hybrid nanoparticles; transferrin; matrix metalloproteinases; immunomodulator;
chemoimmunotherapy

1. Introduction

The role of immune system is highly regarded in oncotherapy [1,2]. The complex
interactions between tumor cells and the immune system run throughout the occurrence,
progression and the regression of the cancer, which makes it possible to cure cancer
through immunotherapy [3]. In recent years, several drugs for immunotherapy approved
by FDA have obtained exciting clinical results in cancer treatment, such as anti-PD-1/PD-L1
monoclonal antibodies and CAR-T therapy [4–6]. Notably, most of the immune therapies
are focused on T cells, which play the key role in the anti-tumor immunological effect [7]. T
cells have the robust ability to directly kill tumor cells, and can influence tumor progression
by cytokine secretion and cell interaction [8,9]. However, in the field of solid tumors,
such as breast cancer, a leading cause of cancer-related deaths in women worldwide,
immunotherapies including therapy focused on T cells still face great challenges. Breast
cancer was considered as having a poor immunogenicity malignancy and has not been
widely researched due to its insensitivity to immunotherapy [10]. The problems of high
tumor load, cell recognition and cell chemotaxis make it hard for immunotherapy alone
to obtain a satisfactory curative effect [3,11]. Chemotherapeutic agents not only kill the
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tumor cells and alleviate the tumor burden itself, but also release tumor antigens which
help T cells recognize tumor cells [12,13]. Other benefits include regulating T cell function,
reducing Treg cells and modeling the tumor environment [14–16]. Taken together, there is a
strong and developing case for combining chemotherapy and immunotherapy in breast
cancer treatment [17]. Much scientific research and many clinical trials have proven the
potency and advantages of the combination of chemotherapy and immunotherapy [18,19].
However, the problems of dosage regimen and delivery method bring new challenges.

Matrix metalloproteinase (MMPs) are the main extracellular proteinases responsible
for degrading collagen and other proteins in the extracellular matrix (ECM) [20,21]. They
have always been found to be overexpressed in tumor tissue, but not healthy tissue [22–24].
Plenty of evidence has demonstrated that MMPs not only regulate the ECM deposition
in tumor microenvironment (TME), but also play a vital role in immune regulation and
tumor immune escape [25,26]. For example, MMP-9 cleave or degrade chemokines such as
CXCL9, CXCL10 and CXCL11. These chemokines can recruit CXCR3-positive T cells to
tumor sites, which is an important step of anti-tumor immunity [27–30]. A further study
even reported that MMPs can cleave almost all human chemokines [31]. Therefore, many re-
searchers believe that modulating MMP levels in the tumor microenvironment can improve
the immune response to tumor [32,33]. Marimastat (MMST) is the first broad-spectrum
synthetic matrix metalloproteinase inhibitor [34]. It can mimic the substrates of MMPs to
inhibit their activity reversibly and potently, even at a nanomolar concentration [35,36]. In
this study, MMST was proposed to be an immunoregulator and functions by inhibiting
MMPs and reducing cytokine degradation to recruit T cells for cancer treatment.

Paclitaxel (PTX) is a first-line drug for clinical treatment of diverse solid tumors and
has been proven to be an effective cytotoxic drug for breast cancer [37,38]. The synergistic
effects of PTX with immunotherapy have also been proven by previous studies [39–41].
PTX can induce the apoptosis of tumor cells, leading to the release of large amounts of
tumor antigens which can be presented by dendritic cells to help activate cytotoxic T
lymphocytes (CTLs) [42]. It also increases the sensitivity of immunosuppressive Treg cells
to PTX-induced apoptosis and reduces their numbers [43,44]. Other immune cells such as
dendritic cells, natural killer cells (NK cells) and macrophages can benefit from PTX and
enhance their anti-tumor capability as well [45].

Therefore, we decided to combine the treatment of MMST and PTX, expecting to
achieve a synergistic effect of chemotherapy and immunotherapy to inhibit tumor growth
in breast cancer. However, the precision delivery of immunoregulator and chemothera-
peutic agents to the target site is the main challenge for the design of drug carriers [46,47].
To endow the PTX tumor cell selectivity, transferrin was used to load PTX and form a
nanocomplex (PTX@TF) which targeted the transferrin receptor (TFR) overexpressed on tu-
mor cells [48–50]. The lysolipid-containing thermosensitive liposomes (LTSLs) were chosen
as the vehicle for co-delivery of PTX@TF and MMST. This temperature-sensitive liposome is
a kind of intelligent nano-carrier that can be stabled in peripheral circulation but undergoes
phase transitions after hyperthermia treatment (HT) at the tumor site, which results in
its decomposition and facilitates the rapid localized release of encapsulated drugs [51,52].
PTX@TF assembled on the surface of MMST-loaded LTSTs (MMST/LTSLs) spontaneously
through hydrophobic interaction and formed hybrid nanoparticles (transferrin-mediated
nanoparticles, TMNPs), which were designed to co-deliver MMST and PTX, respectively,
to the TME and cancer cells for chemoimmunotherapy in breast cancer.

The preparation and theoretical mechanism of TMNPs for tumor treatment are illus-
trated in Figure 1. Benefiting from the special thermosensitive ability of the LTSLs, the
TMNPs could accumulate and disintegrate in tumors triggered by mild hyperthermia at
lesion, releasing the protein-based complexes PTX@TF and MMST in the liposomes immedi-
ately. Through inhibiting MMPs such as MMP-9, MMST can recruit CXCR3-positive T cells
to focus on tumor due to the increased chemokines in the TME, and then exhibit a syner-
gistic effect with chemotherapeutics such as PTX to achieve chemoimmunotherapy. MMST
was ingeniously employed as an immunomodulator, which may prove to be a promising
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application field for MMP inhibitors. In summary, TMNPs can deliver chemotherapeutic
drugs and immunomodulators to target cancer cells and TME, respectively, to achieve
precise and effective combination therapy.

Figure 1. Schematic diagram of preparation of TMNPs and mechanism of chemoimmunotherapy.
PTX@TF was prepared by precipitation-ultrasonication method and self-assembled on MMST/LTSLs
surface to form hybrid nanoparticles (TMNPs). TMNPs accumulated in the tumor through EPR effect
and transferrin-receptor-mediated endocytosis, and rapidly released the loaded MMST and PTX@TF
by the stimulation of local hyperthermia treatment. The released MMST inhibited the activity of
MMPs to reduce chemokine degradation and increased T cell proliferation and infiltration in the
TME. Meanwhile, the nanocomplex PTX@TF entered tumor cells via transferrin targeting, leading to
potent apoptosis of tumor cells with the facilitation of T cell recruitment.

2. Materials and Methods
2.1. Materials

PTX with more than 98% purity was purchased from Yew Biotechnology Co. Ltd.
(Wuxi, Jiangsu, China). Human transferrin (TF) with more than 98% purity was purchased
from Sigma-Aldrich Co., Ltd. (Jiangsu, China). MMST was purchased from Nanjing Adooq
Co., Ltd. (Nanjing, Jiangsu, China). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT), fluorescein isothiocyanate (FITC), and rhodamine B (RhoB) were ob-
tained from Sigma-Aldrich Co. Ltd. (St. Louis, MO, USA). 1,1-dioctadecyl-3,3,3,3-
tetramethylindotricarbocyaineiodide (DiR) was purchased from Aibixin (Shanghai, China)
Biotechnology Co., Ltd. (Shanghai, China). 1,2-Dipalmitoyl-DL-α-phosphatidylcholine
(DPPC), N-(Carbonyl-methoxypolyethylene glycol 2000)-1,2-distearoyl-sn-glycerol-3-phos
phoethanolamine, sodium salt (DSPE-mPEG2000), dialysis tube (3500 Da), ultrafiltration
device (3500 Da) and soybean phosphatidylcholine (S100PC) were purchased from Shang-
hai AVT Pharmaceutical Technology Co., Ltd. (Shanghai, China). IL-2, TNF-α and TGF-β
mouse monoclonal antibody was purchased from MULTI science biotechnology Co., ltd.
(Hangzhou, China). Phospho-STAT5 mouse monoclonal antibody was purchased from
CST (Shanghai) Biological Reagents Co., Ltd. (Shanghai, China). Alanine aminotrans-
ferase Assay Kit and Aspartate aminotransferase Assay Kit was purchased from Nanjing
Jiancheng Bioengineering Institute Co., Ltd. (Nanjing, China). CXCL-10 and MMP-9 mouse
monoclonal antibody were purchased from Abcam (Shanghai) Trading Co., Ltd. (Shanghai,
China). 4T1, fetal bovine serum, RPMI-1640, DMEM, trypsin, and penicillin-streptomycin
solution were purchased from Nanjing KeyGEN Biotech Co., Ltd. (Nanjing, China). The
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antibody for T cell sorting was purchased from BioLegend, Inc. (San Diego, CA, USA).
DAPI and Annexin V-FITC/PI staining kit were obtained from the Beyotime Institute of
Biotechnology (Haimen, China).

2.2. Cells and Animals
2.2.1. Cell Culture

4T1 cells were cultured in RPMI 1640 medium containing a combination of 10% fetal bovine
serum and 1% penicillin streptomycin, and cultured at 37 ◦C with 5% CO2 and 100% humidity.
Cells were split by 0.25% trypsin-EDTA solution when they reached 70–80% confluence.

2.2.2. Laboratory Animal Care

All the experimental animals (BALB/C mice, female, 18–20 g) were purchased from
the Beijing Vital River Laboratory Animal Technology Co., Ltd. (Beijing, China) and were
cared for in accordance with the Principles of Experimental Animal Care and Guide for
the Care and Use of Laboratory Animals. All animal experiments were approved by the
Institutional Animal Care and Use Committee of China Pharmaceutical University on
March 22, 2021 (Code: 2021-11-007).

2.3. Preparation and Characterization of TMNPs
2.3.1. Preparation of PTX@TF

PTX@TF were prepared by the solvent evaporation technique. In brief, an aqueous
solution of TF (2 mg/mL) was incubated with PTX (pre-dissolved in ethanol) at a TF/drug
molar ratio of 5:1. The mixture was treated by miniature ultrasonic probe at 200 W for
10 min, and then the complexes were centrifuged at 8000 rpm for 10 min to remove
unloaded drug precipitates and ethanol through ultrafiltration (MWCO = 3500 Da). Finally,
the solid PTX@TF were obtained after the lyophilization of the protein suspension in a
freezing dryer (FD-2D, Boyikang, China) without any cryoprotectants or additives for 36 h.
The fluorescently labeled FITC-PTX@TF and RhoB-PTX@TF were prepared via the same
method. The freeze-dried PTX@TF was used in all subsequent experiments and redissolved
with PBS (in vivo and stability experiments) and distilled water (other experiments) for
further experiments.

2.3.2. Preparation of LTSLs and Other Liposomes

LTSLs were prepared by a film hydration method according to our previous studies.
The phospholipids were weighed according to a mass ratio of DPPC/1-STEPC/DSPE-
mPEG2000 = 8.6:1:0.4 and dissolved in the organic phase. After removing the organic phase
via a rotary evaporator, PBS containing a certain amount of MMST with a pH of 6.5 was
used for hydrating. The liposome suspension was treated with an ultrasonic cell crushing
apparatus and extruded by the filter membrane with pore size of 0.22 µm. The unloaded
drug was removed through ultrafiltration (MWCO = 3500 Da) by centrifuging at 8000 rpm
for 10 min. RhoB- or DiR-loaded LTSLs (RhoB, DiR-LTSLs) were prepared in the same way.

2.3.3. Preparation of TMNPs

TMNPs were prepared by dissolving the freeze-dried PTX@TF in the MMST/LTSLs so-
lution. The mass ratio of TF/lipid was 1:3. FITC-PTX@TF/RhoB-LTSLs NPs, PTX@TF/DiR-
LTSLs NPs, RhoB-PTX@TF/LTSLs NPs and PTX@TF/RhoB-LTSLs NPs were prepared in
the same way.

2.3.4. Characterization of TMNPs

Size and PDI of TMNPs and other formulations were measured with a dynamic laser
scatter instrument (Brookhaven Instruments, Holtsville, NY, USA) at room temperature
based on the operating guidelines of DLS. The excess samples and liquid were removed
and then dried. The morphologies of the samples were observed via transmission electron
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microscopy (TEM) examination under JEM -1230 TEM (Tokyo, Japan) with an accelerating
voltage of 200 kV.

The drug loading efficiency was detected using a U-3000 HPLC system (Themo,
Waltham, MA, USA). The conditions for determination of PTX by high-performance liquid
chromatography (HPLC) have been described in previous reports [53].

2.3.5. Fluorescence Resonance Energy Transfer (FRET)

In the FRET study, FITC and RhoB were used as donors and recipients, respectively.
FITC-PTX@TF was fixed at 1 mg/mL and RhoB/LTSLs was added in different FITC/RhoB
ratios, and the FITC/RhoB ratios were 1:1, 1:2 and 1:3, respectively. The emission spectra of
these samples were recorded by a fluorescence spectrometer (RF-5301PC Shimazu, Japan)
at room temperature with an excitation wavelength of 450 nm.

To observe the serum stability of TMNPs, 1 mL FITC-PTX@TF/RhoB-LTSLs were
mixed with 4 mL 1640 medium containing 10% fetal bovine serum and incubated in
shaker (SHA-C, Jintan, China) at 100 RPM at 37 ◦C. FRET ratio was measured using the
following formula at various times by a multifunctional enzyme label meter (Polarstar
Omega, Germany).

FRET Ratio = IR/(IR + IF) × 100%

In which IR is the acceptor emission and IF is the donor emission.

2.3.6. Drug Release of TMNPs

HPLC was used to study the thermosensitive release of TMNPs. 1.0 mL of MMST/LTSLs
(containing 200 µg/mL MMST) or TMNPs was moved into a dialysis tube (MWCO 3500 Da)
and stirred with 200 mL of PBS solution (pH 7.4) in a dissolution tester (RC806D, Tian-
datianfa, China). The dissolution temperature was 37 ◦C or 42 ◦C and the stirring rate
was 100 RPM. The release of MMST at different times was measured by HPLC method.
Similarly, HPLC was used to study the drug release of PTX in TMNPs. 2.0 mL of PTX@TF or
TMNPs (containing 100 µg/mL PTX) was transferred into a dialysis tube (MWCO 3500 Da)
and stirred with 30 mL release media in a constant temperature water bath shaker (SHA-B,
Jingxianglong, Changzhou, Jiangsu, China). 0.8 M sodium salicylate solution (pH 7.4) was
used as release media [54]. The dissolution temperature was 37 ◦C or 42 ◦C and the stirring
rate was 100 RPM. The release of PTX at different times were measured by HPLC method.

2.4. TFR-Mediated Endocytosis and In Vitro Cytotoxicity
2.4.1. Transferrin-Receptor-Mediated Targeted Delivery of PTX@TF

4T1 cells (1 × 105 cells per well) were inoculated in 12-well plates and treated with PBS
or 10 mg TF in advance. After pretreating cells for 1 h, pre-heated RhoB-PTX@TF/LTSLs
with different RhoB concentrations was added into the 12-well plates. The cells were
incubated at 37 ◦C for 4 h, washed with cold PBS three times and resuspended in 500 µL of
PBS for flow cytometry analysis (Accuri C6, BD, New York, NYC, America). To confirm the
results of flow cytometry, we performed CLSM observations. 4T1 cells (1 × 105 cells per
well) were inoculated in a glass dish for 48 h and precultured for 1 h with PBS or 10 mg
TF. Pre-heated RhoB-PTX@TF/LTSLs were incubated in a serum-free 1640 medium with
0.5 µg/mL RhoB for 4 h at 37 ◦C. The cells were washed three times with cold PBS to
remove the excess formulations, and examined by CLSM (LSM800, Carl Zeiss, Germany)
after fixed at 4% paraformaldehyde for 20 min and stained with DAPI for 10 min.

2.4.2. In Vitro Cytotoxicity and Apoptosis

4T1 cells (1 × 105 cells per well) were seeded in 96-well plates and cultured at 37 ◦C
for 24 h. The cells were incubated with drug-loaded formulations and separate free drugs
at different concentrations for 48 h. 20 µL of MTT (5 mg/mL) was incubated into the
96-well plates and co-incubated for 4 h. The upper medium was carefully taken away.
Subsequently, the formazan which had deposited at the bottom of the wells was redissolved
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with 150 µL DMSO and the absorbance of each well was measured by a microplate reader
(Multiskan FC, Thermo Fisher Scientific, Waltham, MA, USA) at 570 nm.

Cell apoptosis was detected by an Annexin V-FITC/PI-staining kit (Cat: C1062M;
Beyotime). 4T1 cells (2 × 105 cells per well) were seeded in a 6-well plate and cultured
at 37 ◦C for 24 h. Then the cells were treated with different formulations for 48 h. The
concentrations of PTX and MMST in all preparations were fixed at 5 µg/mL. The cells were
washed three times with cold PBS to remove the excess formulations and culture medium.
The treated cells were suspended in a 300 µL binding buffer and then stained with 10 µL
Annexin V-FITC and 5 µL PI for 15 min in the dark. Flow cytometry was used to observe
the cell apoptosis after staining.

2.5. In Vivo Tumor Targeting Ability and Biodistribution

The BALB/C mice were inoculated subcutaneously under the axilla with 1 × 106

suspended 4T1 cells. The experiment began at 2 weeks after tumor cells were injected.
200 µL of PTX@TF/DiR-LTSLs or DiR-LTSLs or free DiR was injected into the mice at a fixed
DiR dose of 0.5 mg/kg via the tail vein. At 0.5, 1, 2, 4, 8 and 24 h after injection, fluorescence
images were obtained by an in vivo imaging system (IN-VIVO FX Pro, Carestream, Canada)
after mice were anesthetized. Finally, the mice were put down for their major organs and
tumors. Fluorescence intensity in various organs was systematically calculated by an
in vivo imaging system.

2.6. In Vivo Anti-Tumor Activity
2.6.1. T Cell Sorting

The tumor tissues were ground and filtered to obtain cell suspensions. The cells were
collected by centrifugation at 1000 RPM for 5 min and washed with PBS three times, and
the supernatant was removed by centrifugation. Then cells were fixed via a cell fixation
solution for 30 min and permeabilized by 1% Triton-100 at 37 ◦C for 10 min, followed by
antibody incubation (CD3-PE: 0.25 µg/Test; CD4-FITC: 0.25 µg/Test; CD8a-FITC: 1 µg/Test;
CD25-Cy7: 0.25 µg/Test; Foxp3-APC: 1 µg/Test, BioLegend, San Diego, CA, USA) at 37 ◦C
in the dark for 30 min. The cell phenotypes were detected by flow cytometry after 500 µL
PBS was added.

2.6.2. Enzyme Linked Immunosorbent Assay (ELISA)

IL-2, TNF-α and TGF-β levels in cell culture supernatant or tissues were measured
using mouse IL-2, TNF-α and TGF-β ELISA Kits (MultiSciences, Mouse IL-2 Elisa Kit, Cat:
70-EK202/2-96; MultiSciences, Mouse TNF-α High Sensitivity Elisa Kit, Cat: 70-EK282HS-
96; MultiSciences, Human/Mouse/Rat TGF-β1 Elisa kit, Cat: 70-EK981-96) according to
the manufacturer’s instructions.

2.6.3. Protein Expression

The protein expression was determined by Western blot. The tumor tissue was homog-
enized in cold RIPA lysate with protease inhibitor (PMSF, Sigma-Aldrich, Shanghai, China),
then the homogenate was centrifuged at 15,000 g for 20 min at 4 ◦C. The supernatant was
collected and added with loading buffer to prepare the samples. Then the protein samples
were loaded in the wells of SDS-PAGE gel, underwent electrophoresis and transferred to
PVDF membrane. The PVDF membrane was incubated with primary antibodies at 4 ◦C
overnight and a secondary antibody for 4 h, and then rinsed with Tris Buffered Saline
Tween 20 (TBST) five times. Finally, the expression of different proteins was captured by a
gel imaging system (Tanon-5200, Tanon Biotech, Nanjing, Jiangsu, China).

2.6.4. Immunohistochemistry and Image Analysis

Dissected tumors were fixed in 4% (w/v) paraformaldehyde for 24 h and embedded in
paraffin. Paraffin blocks were sectioned at 5 µm intervals using a paraffin microtome. For
paraffin sections, slides were deparaffinized and rehydrated first, followed by destroying
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endogenous peroxidase activity with H2O2 (3 mL 30% H2O2 in 200 mL methanol) for
30 min at room temperature. Then, sections were boiled in a citrate acid buffer (10 mM,
pH 6.0) via a heating mantle at 98 ◦C for 10 min for antigen retrieval. After cooling
down, 50 µL of peroxidase blocking solution (Keygen, Nanjing, Jiangsu, China) was
added to each section to block the activity of endogenous peroxidase, and the slices were
incubated at room temperature for 10 min. Subsequently, 50 µL of non-immune animal
serum (Keygen, China) was added to each section, and incubated at room temperature for
10 min. The serum was shaken and the sections were incubated with primary antibodies
(BioLegend, San Diego, CA, USA) in a biotin blocking solution at 4 ◦C overnight in a
humidified chamber. After this, the primary antibodies were aspirated and washed in PBS
for 5 min at room temperature, five times. This was followed with 50 µL biotin-labeled
second antibody (Keygen, Jiangsu, Nanjing, China) and Streptomyces antibiotin-peroxidase
solution (Keygen, Jiangsu, Nanjing, China) incubated at room temperature for 10 min.
Each section had 50 µL of freshly prepared DAB (1:200, Cat: PK6100; Vector Laboratories)
added to it, observed under a microscope for 3–5 min, washed with ultra-pure water, and
re-stained with 50 µL hematoxylin (Cat: GHS116; Sigma, Shanghai, China) for 15 s at room
temperature. Finally, the sections were dehydrated with gradient alcohol and sealed with a
neutral gum, and observed under an optical microscope (Ts2R, Nikon, Tokyo, Japan). All
the integral optical densities (IOD) were quantified by Image Pro Plus (v 5.0) [55,56].

2.7. In Vivo Anti-Tumor Activity
2.7.1. In Vivo Therapeutic Efficacy

Tumor-bearing mice were randomly assigned to each group after 10 days of being
inoculated subcutaneously under the axilla with 1 × 106 suspended 4T1 cells. Each group was
treated with different formulations via tail vein injection at a dose of 5 mg/kg PTX and/or
at 5 mg/kg of MMST seven times every 3 days. The MMST/LTSLs + HT and TMNPs + HT
group were given hyperthermia treatment after intravenous administration by keeping the
tumor site in a 42 ◦C water bath for one hour, while other parts of the body were thermally
insulated. The tumor volume was calculated according to the below formula every 2 days, and
the body weight was also measured every 2 days. At the end of the treatment, the mice were
euthanized and the tumors were collected for subsequent experiments.

Tumor volume (mm3) = (Tumor Length (mm) × Tumor Width (mm)2)/2

2.7.2. H&E and TUNEL Staining

The histomorphology and cell apoptosis of tumors was detected using H&E (Cat:
C0105S; Beyotime, Nanjing, Jiangsu, China) and TUNEL kits (Cat: C1091; Beyotime,
Nanjing, Jiangsu, China), respectively. The isolated tumor tissues were fixed in 4%
paraformaldehyde and were paraffin-embedded to prepare 5 µm sections. Then, the
H&E and TUNEL staining was performed according to the instructions. The sections were
observed and photographed by optical microscope (Ts2R, Nikon, Tokyo, Japan) to provide
a final report in the five representative fields.

2.8. In Vivo Biocompatibility of TMNPs

H&E analysis was used to investigate the biocompatibility of TMNPs in vivo. Healthy
BALB/c mice were randomly assigned to each group (n = 5). All the mice treated with
different preparations (PTX@TF, MMST/LTSLs, TF/LTSLs, and TMNPs) were injected into
tail vein (saline was used for the control group) seven times every 3 days. Finally, the mice
were euthanized to isolate the major tissues for H&E analysis. The blood was sampled
and centrifuged at 4000 RPM for 10 min to separate the serum. The levels of ALT and
AST in the serum were measured using an Alanine aminotransferase Assay Kit (Nanjing
Jiancheng, Cat: C009-2-1) and an Aspartate aminotransferase Assay Kit (Nanjing Jiancheng,
Cat: C010-2-1) according to the manufacturer’s instructions.



Pharmaceutics 2021, 13, 1990 8 of 22

2.9. Statistical Analysis

All data are shown as means ± standard deviations (SD). Statistical analysis was per-
formed by one-way ANOVA. Significant differences between groups were set at
* p < 0.05, ** p < 0.01, and *** p < 0.001 respectively. p < 0.05 was considered statistically
significant in all analyses.

3. Results
3.1. Preparation and Characterization

PTX@TF complexes were prepared by a precipitation–ultrasonication method. The
loading rate (%) of PTX in the complexes was 16.7% [57]. Film hydration was used to
prepare the MMST/LTSLs and a supersonic probe was used to disperse the liposomes [58].
TMNPs were self-assembled by PTX@TF and MMST/LTSLs through electrostatic adsorp-
tion. The encapsulation efficiency of MMST in MMST/LTSLs was 56.72% analyzed by
HPLC, with the ratio of drug to lipid being 1:10. Finally, the TMNPs were obtained by the
self-assembly of PTX@TF with MMST/LTSLs at a TF/lipid mass ratio of 1:3. As shown in
Table 1, the diameter of TMNPs was around 120 nm with a polydispersity index (PDI) of
0.23 and a slight negative surface charge of −1.62 mV. Due to the coating of PTX@TF, the
average particle size and PDI of TMNPs were slight lager than those of MMST/LTSLs (size
≈ 90 nm, PDI ≈ 0.21) (Figure 2A). The TEM showed that MMST/LTSLs and TMNPs were
symmetrical and spherical nanoparticles (Figure 2B).

Table 1. Average particle size, PDI and surface potential of PTX@TF, MMST/LTSLs and TMNPs.

PTX@TF MMST/LTSLs TMNPs

Size (nm) ± S.E.M 140.25 ± 2.5 89.07 ± 3.1 127.15 ± 3.5
PDI ± S.E.M 0.255 ± 0.02 0.211 ± 0.01 0.234 ± 0.08

Zeta potential (mV) ± S.E.M −11.43 ± 1.10 4.01 ± 1.82 −1.62 ± 0.98

Figure 2. Characterization of TMNPs. (A) Size distributions of MMST/LTSLs and TMNPs. (B) TEM images of MMST/LTSLs
and TMNPs (the scale bar was 100 nm and 200 nm, respectively). (C) Fluorescence spectra of fluorescence resonance transfer
test with different ratios of FITC-PTX@TF/RhoB-LTSLs. (D) Fluorescence emission spectra of FITC-PTX@TF/RhoB-LTSLs
with (red) and without (black) HT treatment at 42 ◦C. (E) Serum stability of FITC-PTX@TF/RhoB-LTSLs within 24 h (mean
± SEM, n = 3). (F) In vitro drug release of MMST in MMST/LTSLs and TMNPs at 42 ◦C or 37 ◦C. (mean ± SEM, n = 3,
** p < 0.01).

In general, transferrin can be modified to the surface of cationic liposomes via crosslink-
ing or electrostatic adsorption to obtain transferrin-receptor-mediated tumor targeting
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ability [59,60]. In this paper, the PTX@TF was self-assembled on liposomes via electro-
static adsorption to facilitate the dissociation of PTX@TF from LTSLs. To validate the
self-assembly effect and stability of PTX@TF and MMST/LTSLs [61,62], a measurement
of FRET was performed to determine whether PTX@TF could be self-assembled with
MMST/LTSLs.

FITC was chosen as a fluorescence donor and then combined with PTX@TF, and
RhoB was chosen as a fluorescence recipient and then encapsulated into LTSLs to pre-
pare the FITC-PTX@TF/RhoB-LTSLs nanoparticles. The fluorescence intensity of FITC-
PTX@TF/RhoB-LTSLs with various ratios were displayed in Figure 2C. The fluorescence
intensity of the recipient RhoB was increased, whereas the fluorescence of donor FITC
declined when the concentration of the RhoB/LTSLs increased, indicating that the donor
produced a profound fluorescence response energy transfer to the recipient. On the con-
trary, with the decomposition of LTSLs during mild hyperthermia, the FITC-PTX@TF and
RhoB/LTSLs separated, leading to the downward trend of receptor fluorescence and the up-
ward trend of donor fluorescence (Figure 2D). In order to verify whether the link between
the PTX@TF and MMST/LTSLs could remain stable in the peripheral blood, the binding
stability of PTX@TF and MMST-LTSL was also studied by FRET. After being stored in a
cell culture medium with 10% FBS, the FRET ratio of FITC-PTX@TF/RhoB/LTSLs showed
no obvious change within 24 h (Figure 2E), which indicated that TMNPs were stable in the
blood circulation system. In summary, the measurements of FRET further demonstrated that
the PTX@TF could be assembled on LTSLs and was stable for at least 24 h.

We hypothesized that TMNPs remained intact until they reach the tumor site after
intravenous injection. Further, after being stimulated by local hyperthermia treatment,
TMNPs released the encapsulated MMST into the tumor microenvironment to modulate
the immunosuppressive state due to the thermosensitivity of LTSLs. To investigate the
thermosensitivity of MMST/LTSLs and TMNPs, drug release experiments at 37 ◦C and
42 ◦C were performed for both MMST/LTSLs and TMNPs by HPLC to determine the
release profiles of MMST every 10 min. There was no difference between the MMST/LTSLs
and TMNPs, indicating that PTX@TF assembled on LTSLs had a negligible effect on the
release of MMST (Figure 2F). Nonetheless, due to the presence of lysolipids in the lipid
bilayer of LTSLs, both LTSLs and TMNPs showed a faster release at 42 ◦C compared
to that at normal body temperature of 37 ◦C. This demonstrated that the TMNPs and
MMST/LTSLs had similar characteristics. Apart from that, TMNPs were capable to release-
loading drugs and PTX@TF, which coated on the surface of a liposome after hyperthermia
treatment at the tumor site. The stability of PTX@TF was critical for the cellular uptake
of chemotherapy drugs. Therefore, in vitro drug release of PTX in PTX@TF and TMNPs
was performed by HPLC. As shown in Figure S1, the drug release of PTX in PTX@TF and
TMNPs at 42 ◦C or 37 ◦C had a similar release curve and release time caused for almost
36 h. Higher temperatures slightly accelerated the release of PTX. This result indicated that the
immunomodulator MMST was well encapsulated in TMNPs after injection into the circulating
system and was rapidly released at disease sites after HT treatment. At the same time, the
nano-suspension PTX@TF could be stably packaged on the LTSLs in the circulating system and
dissociated from LTSLs after HT treatment, and ensure the stability of cytotoxic drug loading.
TMNPs were proved to be a sensitive and stable nanocarrier for the separate co-delivery of
chemotherapeutic agents and immune modulators to their respective targets. The successful
construction of TMNPs was crucial for subsequent experiments.

3.2. Transferrin Receptor Mediated Uptake of PTX@TF

After the TMNPs were disrupted by HT treatment and released via the payloads
encapsulated in LTSLs, MMST and PTX@TF were dispersed into TME. PTX@TF could be
quickly internalized by cancer cells mediated by transferrin receptors. The cellular uptake
mediated by the interaction between transferrin and transferrin receptors is the key to
exert the chemotherapeutic effect of PTX@TF. To verify this hypothesis, RhoB-PTX@TF was
fabricated, incubated with 4T1 cells and monitored by a confocal laser scanning microscope
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(CLSM) and flow cytometry (Figure 3A,B). As time went on, the fluorescence intensity
became stronger and the cellular uptake of RhoB-PTX@TF by 4T1 cells were enhanced.
These results confirmed that PTX@TF was effectively taken up by 4T1 cells.

In order to study the role of transferrin receptors in cellular uptake, RhoB-PTX@TF were
incubated with transferrin receptors saturated 4T1 cells by excessive native transferrin. After
a 4 h incubation with different concentrations of TF, the cellular uptake of RhoB-PTX@TF
was measured by flow cytometry. As showed in Figure 3C, the uptake of RhoB-PTX@TF by
regular 4T1 cells was significantly higher than that of preincubated 4T1 cells with TF, when
the TF concentration was higher than 1 mg/mL. Similarly, CLSM observation also revealed a
much lower distribution of RhoB-PTX@TF (red fluorescence) in the pretreated cells than in
the untreated cells (Figure 3D). These results suggested that the uptake of RhoB-PTX@TF was
accomplished by TFR-mediated endocytosis in breast cancer cells.

Figure 3. TFR-mediated endocytosis and in vitro cytotoxicity. (A) CLSM images and (B) fluorescence intensity of RhoB-
PTX@TF in 4T1 cells after incubation for 0.5 h, 1 h, 2 h and 4 h at 37 ◦C. (C) Cellular uptake of RhoB-PTX@TF (red) with
preincubation by different TF concentrations in 4T1 cells after 4 h incubations at 37 ◦C. The fluorescence intensity was
measured by flow cytometry. (D) CLSM observation of cellular uptake. RhoB-PTX@TF (red) were treated with 4T1 cells
with or without preincubation with 10 mg/mL TF for 4 h at 37 ◦C. The scale bar is 5 µm. (E) Cell viability after treatment
with PTX, PTX@TF and TMNPs, and TMNPs by at 37 ◦C. PTX had an equal concentration to MMST in TMNPs. (F) Flow
cytometry analysis and (G) quantitative analysis of apoptosis induced by PBS, PTX, MMST, PTX@TF, MMST/LTSLs,
MMST/LTSLs with HT (MMST/LTSLs + HT), TMNPs, and TMNPs with HT (TMNPs+HT) for 48 h at 37 ◦C. All the
formulations were prepared at a PTX and/or a MMST concentration of 5 µg/mL. Cells were stained with FITC-Annexin V
and PI (mean ± SEM, n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001).
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3.3. In Vitro Anti-Tumor Effect

In contrast to free PTX, the survival rate of 4T1 cells in the PTX@TF group was similar
to the free PTX group when the concentration of PTX ranged from 1 to 10 µg/mL, which
indicated that the efficacy of the cytotoxic drugs was not affected by the interaction with
transferrin (Figure 3E). Based on our previous research, we confirmed that the best anti-
tumor effect was achieved when the mass ratio of PTX/MMST was 1:1 [58]. Therefore,
TMNPs with a PTX/MMST ratio of 1:1 was used to confirm the toxicity in 4T1 cells. As
expected, TMNPs showed greater toxicity than PTX@TF when the concentration of PTX
was higher than 1 µg/mL. Additionally, the toxicity of TMNPs became more significant
after HT treatment (Figure 3E), implying that the temperature sensitivity of TMNPs affects
this as well. This result was confirmed by the apoptosis analysis with Annexin V-FITC/PI
double staining monitored by flow cytometry (Figure 3F). Compared with the 4T1 cells
treated with PBS, the cell apoptosis rate of those treated with TMNPs or TMNPs + HT
was significantly enhanced, which indicated that TMNPs can effectively promote the
apoptosis of tumor cells (Figure 3G). Interestingly, the cell apoptosis rate of TMNPs was
significantly higher than PTX@TF. In order to investigate the mechanism of the high cell
apoptosis induced by TMNPs, MTT assay was performed in 4T1 cells incubated with
MMST, MMST/LTSLs and MMST/LTSLs + HT at different concentrations. As shown in
Figure S2, free MMST did not show significant cytotoxicity in 4T1 cells even at high concen-
trations, whereas the MMST/LTSLs and MMST/LTSLs with HT treatment (MMST/LTSLs
+ HT) displayed significant cytotoxicity at high MATT concentrations. It was mainly due to
this that LTSLs were able to effectively deliver MMST to the TME and increase the bind
between MMST and membrane-type MMPs (MT-MMPs), which presented in the cell mem-
brane and regulated apoptosis of cancer cells by cleaving pro-apoptotic-related ligands or
receptors [63–65]. Therefore, unlike free MMST, MMST/LTSLs and MMST/LTSLs + HT
induced higher cytotoxicity and apoptosis rate in breast cancer cells (Figure 3F). In addition,
the result of combination index showed that when the total concentration of TMNPs or
TMNPs + HT was higher than 0.2 µg/mL (CI < 1, at a concentration of 0.1 µg/mL PTX
or MMST), indicating the combination of the PTX@TF and MMST/LTSLs, they exhibited
an obvious synergistic effect and hypothermia treatment further boosted the efficacy of
TMNPs (Figure S3). In conclusion, TMNPs and TMNPs + HT showed prominent in vitro
anti-tumor effects.

3.4. In Vivo Tumor Targeting Ability and Biodistribution

Transferrin receptors (TFR) have been reported to be overexpressed 100-fold more
in tumor cells than in normal cells, as iron supplementation is desired to maintain the
metabolism, proliferation and survival of tumors [66,67]. Elevated TFR is closely associated
with a poor outcome for breast cancer patients, making it an attractive molecule for the
targeted therapy of breast cancer [68–70]. This provided the rationale to enhance the
tumor targeting ability of TMNPs with the modification of PTX@TF. For the study of the
biodistribution of TMNPs, LTSLs laded with a fluorescent probe DiR (DiR-LTSLs) were
prepared. The dynamic behavior of PTX@TF/DiR-LTSLs can represent TMNPs to some
extent because of the similarities in structure. Compared to free DiR, mice treated with
DiR-LTSLs or PTX@TF/DiR-LTSLs achieved remarkably increased fluorescence intensity
accumulated in tumors (Figure 4A,B). PTX@TF with one-step facile preparation significantly
enhanced the accumulation of nanoparticles at the site of tumors by 1.6-fold via TFR-
mediated endocytosis, compared to DiR-LTSLs at 8 h. The main tissues and tumors were
collected at 24 h after injection. Compared to the mice treated with free DiR or DiR-
LTSLs, the ex vivo fluorescence signal of tumor was significantly enhanced, demonstrating
the excellent transferrin-mediated tumor targeting of TMNPs (Figure 4C,D). It is also
important to note that although the TMNPs can significantly increase the accumulation of
the loading drug at the tumor site, large accumulations of the DiR were also shown in other
normal tissues (Figure 4C,D). It is mainly due to the characteristics of liposomes that make
DiR-LTSLs and PTX@TF/DiR-LTSLs phagocytosed by abundant macrophages in some
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organs [71,72]. In addition, transferrin receptors were distributed in many cells, such as
activated lymphocytes and serum-induced fibroblasts, that needed iron for normal growth
and development, but not in tumor cells [73]. This resulted in the high accumulation of
PTX@TF/DiR-LTSLs in some tissues, such as spleen and liver tissue [74].

Figure 4. Tumor targeting ability of TMNPs in vivo. 4T1 tumor-bearing BALB/C mice were ran-
domly assigned into three groups (three mice per group) and injected with free DiR, DiR/LTSLs or
PTX@TF/DiR-LTSLs at a fixed concentration of 0.5 mg/kg DiR. The PTX@TF/DiR-LTSLs were used
to replace the TMNPs for better observation. Free DiR was used as control. (A) The representative
in vivo fluorescence imaging collected at 0.5, 1, 2, 4, 8, 24 h. (B) Quantification of fluorescence
intensity (DiR) at the tumor site (n = 3, * p < 0.05, ** p < 0.01). (C) Ex vivo fluorescence images of
tissues, including tumor, heart, liver, spleen, lung, and kidneys harvested at 24 h post-injection of
different formulations. (D) Quantification of fluorescence intensity (DiR) in the major organs and
tumors (n = 3, * p < 0.05, ** p < 0.01).

3.5. In Vivo Immune Regulation and T Cell Recruitment

MMPs play a role in cancer-mediated immune suppression by regulating the response
of T lymphocytes against tumor cells [75]. MMP-9 can inactivate or antagonize the bio-
logical functions of tumor-suppressing cytokines and chemokines by proteolytic cleavage
and thereby jeopardize the efficacy of chemoimmunotherapy [76,77]. MMP-9 has been
reported to cleave and potentially degrade T-helper cell 1 (Th1)-type chemokines like CXC
ligand CXCL10 and inhibit their anti-tumor outcome, including the recruitment of CD4+ T
cells and CD8+ T cells, and their tumor-killing effect [27,29,78]. To explore the mechanism
of MMP inhibition and immune enhancement therapy of TMNPs in vivo, Western blot
was used to investigate the expression levels of MMP-9 (92 kDa) and CXCL10 (10 kDa)
in tumor tissues collected after treatment by saline, PTX@TF, MMST/LTSLs + HT and
TMNPs + HT seven times every three days, respectively, in the 4T1 tumor-bearing BALB/C
mouse model (Figure 5A). MMST/LTSLs + HT and TMNPs + HT inhibited the expression
of MMP-9 and induced the increase of CXCL10 (Figure 5B,C). To further study the effects
of TMNPs + HT on T cells, we investigated the expression of p-STAT5 (90 kDa), an indi-
cator of T cell activation and proliferation in tumor-infiltrating lymphocytes by Western
blot (Figure 5D). Consistent with our hypothesis, TMNPs + HT treatment increased the
expression of p-STAT5, implying the improved activation and proliferation of T cells.

To study the effects of TMNPs + HT on the immune system, we extracted lympho-
cytes from tumor tissues. Compared with the saline group, TMNPs + HT treatment
increased the proportion of CD3+ cells by 108.5% (Figure 5E), CD4+ helper T cells by
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73.9% and CD8+ cytotoxic T cells by 325.8%, respectively (Figure 5F,G), among tumor-
infiltrating lymphocytes, suggesting that the MMST/PTX combination treatment promoted
the functional T cell-mediated anti-tumor response. Meanwhile, lower Treg cell abundance
(CD4+CD25+FoxP3+) was obtained after TMNPs + HT treatment, which was mainly due
to the inhibition of MMST on Treg cell differentiation by suppressing the expression level
of TGF-β (Figures 5H and 6C,D) [79,80]. It was also noteworthy that PTX@TF decreased
the percentage of Treg cells by impairing their viabilities and tumor-suppressing functions
rather than CD3+CD4+ helper T cells and CD3+CD8+ cytotoxic T cells (Figure 5F–H), which
could further enable PTX to synergize with MMST to achieve a potent chemoimmunother-
apeutic effect in the breast cancer.

Figure 5. T cell recruiting ability of MMST. 4T1 tumor-bearing mice were euthanized to separate
breast tumor at day 29 after saline, PTX@TF, MMST/LTSLs + HT and TMNPs + HT treatment, seven
times every three days. (A) The expression of MMP-9 and CXCL-10 in tumor tissues and p-STAT5
in lymphocytes of tumor tissues assessed by Western blot. β-Actin was used as a loading control.
Dark bands indicate protein expression. Quantitative analysis of the expression of (B) MMP-9, (C)
CXCL10 and (D) p-STAT5 by Image pro plus (ChemiScope analysis, mean ± SEM, n = 3, * p < 0.05,
** p < 0.01, *** p < 0.001). (E) The proportions of CD3+ T-cells (CD3+), (F) CD4+ T-cells (CD3+CD4+),
(G) CD8+ T-cells (CD3+CD8+) and (H) Treg cells (CD4+CD25+FoxP3+) in tumors were determined
by flow cytometry (mean ± SEM, n = 3, * p < 0.05, ** p < 0.01).

3.6. Immune-Related Cytokines in Tumors

T cells exposed to breast cancer cells can produce cytokines like IL-2, IFN-γ and TGF-β
to mediate immune responses [81]. IL-2 associated with T cell proliferation can be activated
by IL-2Rα signaling in vivo and can contribute to cancer immunotherapy [82]. IFN-γ is a
multifunctional immunoregulatory cytokine, mainly produced by CD4+ T cells, CD8+ T
cells and NK cells, and plays a crucial role in both innate and adaptive immunity [83,84].
However, certain MMPs like MMP-2 and MMP-9 can cleave IL-2Rα on the T cell surface,
weaken the IL-2 function and then decrease the expansion of natural killer (NK) cells and T
lymphocytes. On the other hand, MMPs regulate the activation of TGF-β to promote the
recruitment of Treg cells, and reduce the activity of NK cells and CD8+ T lymphocytes, thus
leading to tumor progression [85]. To examine the alternation of cytokine levels after TMNP
treatment in the 4T1 tumor-bearing mouse model, tumor tissues were homogenized in PBS
(0.01 M, PH 7.4) buffer and then supernatants were collected for analysis of cytokine levels
by ELISA kit. Compared to the saline group, the levels of IL-2 and IFN-γ were significantly
increased by 5.4-fold and 3.9-fold after treatment with TMNPs + HT (Figure 6A,B), which
provided the supporting proof for the recruitment of cytotoxic T cells by MMP inhibition.
Meanwhile, the level of TGF-β was significantly downregulated by 3.1-fold (Figure 6C)
with accordingly reduced numbers of Treg cells (Figure 5H). An immunohistochemistry
(IHC) assessment of IL-2, IFN-γ and TGF-β expression in tumor tissues (Figure 6D–G)
showed a consistent result with ELISA analysis. These findings confirmed that TMNPs
+ HT were capable to potentiate the immune response and inhibit immunosuppressive
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activity in breast cancer through the downregulation of MMPs and the regulation of
cytokine levels.

Figure 6. Alternation of immune-related cytokines by TMNPs in tumors. Quantitative analysis of (A)
IL-2, (B) IFN-γ and (C) TGF-β in tumor tissues. Breast tumor fragments were harvested at day 29
after tumor implantation. Cytokines were measured by ELISA kit (mean ± SEM, n = 3, * p < 0.05,
** p < 0.01, *** p < 0.001). (D) Immunochemistry staining of IL-2, IFN-γ and TGF-β in tumor tissues.
The scale bar is 20 µm. Integrated optical density (IOD) of (E) IL-2, (F) IFN-γ and (G) TGF-β in tumor
tissues were quantified by Image Pro Plus (ImageJ 1.8.0, mean ± SEM, n = 3, * p < 0.05, ** p < 0.01).

3.7. In Vivo Anti-Tumor Efficacy

The failure of treatments for breast cancer is generally due to multidrug resistance,
low immunogenicity and intense immunosuppressive environment [86]. As a result, it is
insufficient to treat breast cancer by chemotherapy alone. Therefore, the combination of
chemotherapy and immunotherapy is a reasonable method for breast cancer treatment.
The anti-tumor effects of different formulations were evaluated by tumor volume and
tumor weight in a xenograft 4T1 tumor-bearing BALB/C mouse model (Figure 7A,B).
The tumor volume of the control group significantly increased on day 28 after tumor
inoculation (Figure 7A). Meanwhile, the tumor growth rate of mice treated with other
formulations was significantly lower than that of the control group. Remarkably, the
drug delivered via the nanocomplex (PTX@TF) or liposomes (MMST/LTSLs) could inhibit
tumor growth better than the free drug (PTX and MMST). Notably, the mice injected with
TMNPs and locally heated at the tumor site achieved the best anti-tumor therapeutic
effect. The weight measurement of isolated tumors collected at the end of the experiment
reinforced the highest anti-tumor efficacy of TMNPs, with 2.45- and 1.82-fold less than
MMST/LTSLs and PTX@TF, respectively (Figure 7C,D). Importantly, TMNPs with HT
treatment (TMNPs + HT) showed an enhanced anti-tumor efficacy compared to TMNPs
without HT treatment, with 1.7- and 1.69-fold less in tumor volume and tumor weight,
respectively, demonstrating that TMNPs have a significant temperature sensitivity and can
achieve a reinforced anti-tumor efficacy after HT treatment.
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Figure 7. In vivo anti-tumor activity. The 4T1 tumor-bearing mice were treated with different samples
(5 mg/kg PTX and/or 5 mg/kg MMST, n = 6) via tail vein injection at 10 days after tumor inoculation.
The treatment was performed seven times every three days. (A) Tumor volume and (B) body weight
growth curves after final treatment at day 29. (C) Tumor weight and (D) representative images of
tumor tissues after treatment with different formulations at day 28 after tumor implantation (mean ±
SEM, n = 6, * p < 0.05, ** p < 0.01). (E) Histological observation of the tumor tissues stained with H&E
analysis, immunohistochemistry of Ki67 and TUNEL assay. The brown-staining cells represent the
positive cells in the TUNEL and Ki67 assay. Nuclei were stained blue while the extracellular matrix
and cytoplasm were stained red in the H&E analysis. The scale bar is 20 µm. Quantitative analysis
of (F) proliferation and (G) cell apoptosis (mean ± SEM, n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001).
(H) Hematoxylin and eosin (H&E) stained organ slices from the normal BALB/c mice treated with PBS
(control), MMST/LTSLs, PTX@TF, TF/LTSLs (blank carriers) and TMNPs (n = 5). The scale bar is 100 µm.

In order to further evaluate the anti-tumor effect of TMNPs in vivo, tumor tissue sec-
tions were investigated. As shown in histological sections (Figure 7E), the tumor cells were
dense in normal tumor tissue, but the intact morphology of tumor tissue was destroyed
after treatment with different formulations. Among them, the TMNPs + HT group had the
strongest tumor cell necrosis and the most obvious morphological changes. Ki67 immuno-
histochemistry and TUNEL staining also showed that TMNPs could significantly increase
the apoptosis of tumor cells in tumor tissue and inhibit the proliferation of tumor cells
(Figure 7G,F). All of these results suggested that co-delivery of PTX@TF and MMST/LTSLs
by TMNPs can achieve enhanced anti-tumor efficacy in breast cancer.

3.8. In Vivo Biocompatibility

LTSLs have displayed their fantastic safety and biocompatibility in our previous
study and we did not observe significant cytotoxicity induced by TF during our in vitro
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anti-tumor efficacy study (Figure 3E,F) [58]. Nevertheless, it is concerning that PTX has
been associated with the elevation of glutamic–pyruvic transaminase (ALT) and glutamic–
oxalacetic transaminase (AST) ranging from 7% to 26% in cancer patients [87]. With a
large number of TMNPs accumulating in the liver due to phagocytosis of the reticuloen-
dothelial system (Figure 4C) [88], it is necessary to explore the biocompatibility of TMNPs
to grant a sophisticated understanding for the safety and possible adverse effects of this
hybrid thermosensitive delivery system. Healthy BALB/c mice were administrated with
MMST/LTSLs, PTX@TF, TF/LTSLs and TMNPs at a PTX dose of 5 mg/kg or at 5 mg/kg
of MMST, seven times every three days. Compared with the control group, the injection of
these formulations displayed no obvious organ damage in H&E staining (Figure 7H). The
serum levels of glutamic–pyruvic transaminase (ALT) and glutamic–oxalacetic transami-
nase (AST) were measured to further explore whether there were potentially toxic effects
caused by MMST/LTSLs and TMNPs on the liver [89]. Compared with the control group,
the levels of ALT and AST for the mice treated with MMST/LTSLs were slightly increased,
suggesting that the accumulation of MMST did not cause much damage to the liver.
(Figure S4A,B) In addition, the levels of ALT and AST for PTX@TF and TMNPs treatment
were increased by 1.41-fold and 1.38-fold, respectively, compared to the control group,
which was a less than 3-fold upper change limit according to the Guidelines for the man-
agement of drug-induced liver injury [90–92]. These results indicated that no acute hepatic
necrosis was induced by this delivery system, and TMNPs with robust in vivo anti-tumor
activity and good tolerance had no significant toxic effects on major organs in mice.

In conclusion, successful chemoimmunotherapy was achieved through the versatile
nanoplatform self-assembled by the transferrin-based nanocomplex and the thermosen-
sitive liposome, which could intelligently deliver the chemotherapeutic PTX and the
immunomodulator MMST to their action sites, separately but at the same time. The ac-
curate targeting ability of the nanoplatform was endowed by the collapse of the vector
under local hyperthermia treatment, leading to the release and separation of the PTX@TF
and MMST. PTX@TF killed tumor cells with higher efficiency due to the enhanced cellular
uptake mediated by transferrin. MMST interacted with the MMPs in the TME to reduce
the chemokine degradation, which improved the immune microenvironment by increasing
T cells and the inflammatory factor with its anti-tumor effect to work synergistically with
PTX. Due to the smart design and the synergistic effect of the two payloads, TMNPs could
exert better therapeutic effect in breast carcinoma.

4. Discussion

Hyperthermia treatment, as an adjuvant therapeutic modality to room temperature, is
an effective means to greatly increase nanoparticle concentration in tumors by improving
local blood and interstitial fluid flow [93]. Local drug delivery of MMST with thermosen-
sitive liposomes and hyperthermia to target the tumor microenvironment has shown to
achieve high local drug concentrations with good therapeutic efficacy in our previous
study. Nevertheless, with the dissemblance of the thermosensitive liposomes, encapsulated
chemotherapy agents like PTX can be released followed by weakened cellular uptake
efficiency and poor tumor penetration due to the hydrophobicity. To solve this problem,
synthesis procedures were explored to conjugate PTX with hyaluronic acid (HA-PTX) to
promote its endocytosis by cancer cells [58], but it was time-consuming and difficult to
scale-up for industry purpose. Inspired by the concept of protein-based delivery named
“Drug-delivering-drug”, as we previously investigated [94], dual-functional transferrin
was selected as the protein carrier for PTX and the targeting ligand for transferrin re-
ceptors overexpressed on cancer cells, to achieve a decent drug loading of 16.7% and a
fine self-assembly with LTSLs by electrostatic interaction in this study (Figure 2A). The
protein-based thermosensitive nanoplatform was characterized by its profound accumula-
tion and penetration in tumor sites, which was recognized by TFR-mediated endocytosis
in breast cancer cells (Figure 3A,D) and the significant tumor accumulation of TMNPs in
4T1 tumor-bearing mouse model (Figure 4).
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The development and progression of breast cancer is influenced by multiple elements
in the tumor microenvironment. We proposed the chemoimmunotherapeutic strategy by
synergizing PTX with the immunomodulator MMST to recruit CD4+ T helper cells and
cytotoxic CD8+ T cells (Figure 5), and to restrict the escape of cancer cells from immuno-
surveillance, as immune cells are considered to be the most important factor throughout
breast carcinogenesis [95]. For the activation of immune cells with MMP inhibition by
MMST, CXCL-10 stimulated immune cells through polarization and activation of Type 1
T-helper cells, resulting in the enhanced paracrine secretion of IFN-γ and IL-2 to facilitate
the anti-tumor efficacy of TMNPs + HT (Figures 5A, 6 and 7). With a higher number of
tumor-infiltrating lymphocytes after the treatment of TMNPs + HT (Figure 5F,G), it is
promising to have more favorable outcomes after TMNPs + HT chemoimmunotherapeu-
tic treatment including prognosis amelioration and prolonged survival in breast cancer
patients. However, the autocrine CXCL9, -10, -11/CXCR3 signaling axis in cancer cells
has the potential to increase proliferation, angiogenesis, and metastasis of cancer cells [96],
which indicates the balance between pro-inflammation and anti-inflammation in the tumor
microenvironment should be considered during chemoimmunotherapy. Poor prognos-
tic scenarios could occur if pro-inflammation dominates the tumor microenvironment
and the vicious transformational epithelial cells escape from immune surveillance [97].
Based on this, the most striking result of our study was that a better balance between pro-
and anti-inflammatory effects as the best anti-tumor effect by TMNPs + HT treatment
in 4T1 tumor-bearing mouse model was obtained through the alternation of cytokine
levels by MMP inhibition and CXCL-10 promotion, and no tumor progression induced
by autocrine CXCL9, -10, -11/CXCR3 signaling in TMNPs or TMNPs + HT groups was
observed (Figure 6). Therefore, the sufficient activation of an immunosuppressive tumor
microenvironment probably benefited from the protein-based complexes thermosensitive
delivery system via transferrin-receptor-mediated endocytosis, synergistic effect of PTX
and MMST in chemoimmunotherapy, and the optimized dose and ratio of PTX and MMST.

5. Conclusions

This study established a novel nanoparticle based on a transferrin-modified chemother-
apy nanocomplex and thermo-sensitive liposomes for breast cancer treatment. We believe
this hybrid nanoplatform can be a promising drug delivery system for cancer treatment by
modifying the transferrin and liposomes with other active compounds, and could easily en-
able industrial production to meet the criteria for clinical trials due to its simple preparation
process. In addition, we uncovered that MMP inhibitors could achieve anti-tumor efficacy
by exerting anti-immunosuppression effects, but not anti-metastasis and anti-angiogenesis
effects. These findings will help us expand the role of MMP inhibitors in cancer treatment.
However, the accumulation of TMNPs in other normal organs is associated with minor
liver damage. How to further improve the targeting ability or reduce the side effects of
the hybrid nanoparticles will be the next problem that needs to be solved. In addition,
the mechanism of the combined treatment of PTX and MMST also needs to be further ex-
plored. In conclusion, we fabricated a new nanoplatform assembled by a transferrin-based
nanocomplex and thermo-sensitive liposomes for dual- targeting drug delivery, which is a
potent tumor therapy strategy with good prospects.
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