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Abstract: In recent years, the rapid development of Deep Learning (DL) has provided a new method
for ship detection in Synthetic Aperture Radar (SAR) images. However, there are still four challenges
in this task. (1) The ship targets in SAR images are very sparse. A large number of unnecessary anchor
boxes may be generated on the feature map when using traditional anchor-based detection models,
which could greatly increase the amount of computation and make it difficult to achieve real-time
rapid detection. (2) The size of the ship targets in SAR images is relatively small. Most of the detection
methods have poor performance on small ships in large scenes. (3) The terrestrial background in SAR
images is very complicated. Ship targets are susceptible to interference from complex backgrounds,
and there are serious false detections and missed detections. (4) The ship targets in SAR images
are characterized by a large aspect ratio, arbitrary direction and dense arrangement. Traditional
horizontal box detection can cause non-target areas to interfere with the extraction of ship features,
and it is difficult to accurately express the length, width and axial information of ship targets. To solve
these problems, we propose an effective lightweight anchor-free detector called R-Centernet+ in the
paper. Its features are as follows: the Convolutional Block Attention Module (CBAM) is introduced
to the backbone network to improve the focusing ability on small ships; the Foreground Enhance
Module (FEM) is used to introduce foreground information to reduce the interference of the complex
background; the detection head that can output the ship angle map is designed to realize the rotation
detection of ship targets. To verify the validity of the proposed model in this paper, experiments
are performed on two public SAR image datasets, i.e., SAR Ship Detection Dataset (SSDD) and
AIR-SARShip. The results show that the proposed R-Centernet+ detector can detect both inshore and
offshore ships with higher accuracy than traditional models with an average precision of 95.11% on
SSDD and 84.89% on AIR-SARShip, and the detection speed is quite fast with 33 frames per second.

Keywords: SAR image; ship detection; deep learning model; anchor-free detector; attention

1. Introduction

Synthetic aperture radar (SAR) is an active microwave sensor with high resolution
and wide swath [1]. Because of the ability to provide all-day and all-weather images of
the ocean environment, it has been widely used in marine surveillance and deformation
monitoring [2,3]. As an important task of marine surveillance, ship detection in SAR images
is attracting increasing attention.

SAR images are different from optical images due to the complex imaging mechanisms
and speckle noises. Moreover, phase errors caused by topography variations lead to the
degradation of the focusing quality and geometric distortion of High-Resolution SAR
images [4]. The interpretation and understanding of SAR images are very difficult, so it is
necessary to establish the automatic target recognition (ATR) system of SAR images [5].
Numerous SAR ship detection methods have been proposed in recent years. There are
three traditional methods for ship detection, including threshold methods [6], statistics
methods [7], and transformation methods [8]. Among these methods, the constant false
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alarm rate (CFAR) and its improved versions [9–15] have been extensively studied and
applied. However, the CFAR performs poorly in small object detection and complex scene
detection. It cannot meet the requirements of high-precision ship detection.

Due to the powerful ability of feature extraction and expression, Convolution Neural
Network (CNN) has become the mainstream approach for object detection [16]. Currently,
object detection methods based on of Deep Learning (DL) can be roughly divided into two
categories. The first is anchor-based methods such as Faster Region-CNN (R-CNN) [17],
Mask R-CNN [18], Single Shot MultiBox Detector (SSD) [19] and RetinaNet [20]. Anchor-
based methods introduce a Region Proposal Network (RPN) to generate a large number
of candidate regions where targets may be included. Then, the candidate regions are
classified and turned by CNN to obtain bounding boxes. This kind of method has relatively
high accuracy with huge time consumption. The second is anchor-free methods such as
You Only Look Once v1 (YOLOv1) [21], CornerNet [22], CenterNet [23] and Fully Convo-
lutional One-Stage (FCOS) [24]. Anchor-free methods do not generate candidate regions in
advance, and directly regress the category and location of bounding boxes. This kind of
method is relatively fast and easy to train. This means they are more suitable for real-time
processing and mobile deployment.

The number of available SAR images has increased greatly in recent years, which
makes it possible to use the DL method for SAR ship detection. More and more scholars use
DL methods to detect ships in SAR images. Most of the studies are based on anchor-based
detection methods. For example, Li et al. [25] proposed an improved faster R-CNN method
and released an SAR Ship Detection Dataset (SSDD). Kang et al. [26] came up with a contex-
tual region-based CNN with multilayer fusion to rule out false alarms. Jiao et al. [27]
improved faster R-CNN with Feature Pyramid Networks (FPN) to detect multiscale
ships. A dense attention pyramid network was invented to detect dense small ships [28].
Zhao et al. [29] proposed a cascade coupled convolutional network with an attention mech-
anism to alleviate the problem of missing detections for small and densely clustered ships.
Wang et al. [30] applied an object detector based on RetinaNet in multi-resolution SAR
images. Wang et al. [31] combined SSD with transfer learning to address ship detection
in complex scenes. Mao et al. [32] put forward an efficient SAR ship detector based on
simplified U-Net.

In order to realize real-time detection, more and more methods focus on the high-
speed processing of SAR ship detection. What is significantly different from other images
is that ship targets are very sparse in SAR images. Considering this characteristic of
SAR images, some scholars use anchor-free methods for SAR ship detection to accelerate
the SAR image processing speed. Gao et al. [33] designed an anchor-free detector with
lightweight backbone MobileNetV2. Guo et al. [34] improved CenterNet with a feature
refinement module, feature pyramids fusion module and head enhancement module.

Although the above studies show that the DL methods can be applied in SAR ship
detection, there are still four challenges affecting its performance: Heavy time cost, small
ship detection, complex background and lack of accurate ship size and axial information.
In order to solve the above problems, we propose an effective anchor-free detector for SAR
ship detection called R-CenterNet+. First, to improve the focusing ability on small ships,
we introduce an attention mechanism to the backbone network. Second, to distinguish
between ships and complex background, FEM is employed to refine the feature map.
Finally, we adopt the rotating bounding box to annotate ships and add the angle regression
branch to the original detection head to predict ships’ rotation angle.

The main contributions of our work in this paper are as follows:

(1) For small ship detection, the feature extraction network Convolutional Block Attention
Module Deep Layer Aggregation 34 (CBAM-DLA34) is established, which improves
the performance of small ship detection;

(2) For the complex background, we adopt FEM to improve the robustness of ship
detection in a complex background;
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(3) We realize the rotation detection of ship targets to extract accurate ship size and axial
information;

(4) The annotations based on rotating bounding box of SSDD and AIR-SARShip are
established to evaluate the proposed model; and

(5) We conduct extensive experiments on SSDD and AIR-SARShip. The results show that
our R-Centernet+ detector is an effective detector for both inshore and offshore ships,
which is superior to the traditional models in accuracy and speed.

2. Data
2.1. SSDD Dataset
2.1.1. Dataset Introduction

The SSDD dataset, established in 2017, is the first published dataset specifically for
ship target detection in SAR images at home and abroad [25]. The SSDD dataset contains
various images of different sensors, resolutions, polarizations, and scenes, etc. Using the
production process of the PASCAL VOC dataset for reference, the SSDD dataset can be
used to train and test ship detection algorithms, which enables researchers to compare
algorithm performance under the same conditions. The detailed descriptions of the SSDD
dataset are shown in Table 1.

Table 1. The SSDD dataset.

Parameter Value

Sensors TerraSAR-X, RardarSat-2, Sentinel-1
Resolution (m) 1~15

Polarization HH, VV, VH, HV
Scene Inshore, Offshore

Sea condition Good, bad
Images Size (pixel) 196~524 × 214~668

Images 1160
Ships 2578

2.1.2. Dataset Processing

(1) Ship target classification

The distribution of ship pixel size on the SSDD dataset is shown in Figure 1. In
Figure 1, we measure ship size from the pixel level (i.e., the number of pixels) rather than
the physical level. The reasons are as follows: (1) SAR images in different datasets have
inconsistent resolutions, and these datasets’ publishers only provided a rough resolution
range, so we cannot perform a strict comparison using the physical size; (2) in the deep
learning community, it is common sense to use pixels to measure the object size in a relative
pixel proportion among the whole image [35]. As can be seen from the Figure 1, the SSDD
dataset is mainly composed of small ships. Moreover, the ship size varies greatly, with
the smallest being about 7 × 4 pixels and the largest being about 381 × 69 pixels, which
increases the diversity of ships on the dataset.

In order to improve the detection performance of the proposed model for multi-scale
ships, we classify the ship targets on the SSDD dataset by ship pixel size. We classify ship
objects with an area less than 32× 32 pixels as small ships, with an area from 32× 32 pixels
to 64 × 64 pixels as medium-sized ships, and with an area larger than 64 × 64 pixels as
large ships. The statistical results of ship targets are shown in Table 2.
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Figure 1. Distribution of ship size on SSDD.

Table 2. Statistical results of multiscale ships in SSDD.

Dataset
Ship Size

Small Medium Large

SSDD 1877 559 142

(2) Inshore and offshore dataset classification

In general, it is difficult to detect inshore ships due to the interference of complex
backgrounds [28]. In order to effectively reduce the interference of complex backgrounds
and better detect inshore ships, we regard images containing land as inshore samples, and
images not containing land as offshore samples, and then establish SSDD-inshore and
SSDD-offshore datasets, which are shown in Table 3.

Table 3. SSDD-inshore and SSDD-offshore.

Datasets Images Ships

SSDD-inshore 227 668
SSDD-offshore 933 1910

SSDD 1160 2578

(3) Oversample of local image data

The SSDD dataset contains some densely arranged small ships, which are relatively
few compared to larger-sized ships. This imbalance of data distribution will cause the
model to pay more attention to larger-sized ships, which will confuse multiple densely
arranged small ship targets with one larger ship target, resulting in serious missed de-
tections. In order to improve the detection performance, during the training process, we
perform oversample data enhancement on images containing densely arranged small ships
to encourage the model to pay more attention to them. The method of the oversample is
shown in Figure 2.
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2.2. AIR-SARShip Dataset
2.2.1. Dataset Introduction

The AIR-SARShip dataset, established in 2019, is a SAR ship detection dataset of high
resolution and large-size scene [36]. The dataset contains 31 large-scale SAR images of
Gaofen-3 (GF-3). The scene types include ports, islands and reefs, sea surface with different
levels of sea state, etc. The background covers various scenes such as inshore and offshore
scenes. The AIR-SARShip dataset uses the production process of PASCAL VOC dataset for
reference. The detailed descriptions of AIR-SARShip are shown in Table 4.

Table 4. AIR-SARShip dataset.

Parameter Value

Sensors GF-3
Resolution (m) 1~3

Polarization Single
Scene Inshore, Offshore

Sea condition Good, bad
Images Size (pixel) 3000 × 3000

Images 31
Ships 1585

2.2.2. Dataset Processing

(1) Image cropping into sub-images

Taking into account the limitation of Graphics Processing Unit (GPU) memory, we
crop 31 large images into sub-images of 512 × 512 pixels in steps of 256 pixels. In order to
reduce the imbalance between the foreground and background of the dataset, only reserve
sub-images containing ship targets were used for training and testing. In the end, the
cropped AIR-SARShip dataset includes a total of 719 sub-images and 1585 ship targets.
This kind of image cropping is common sense in the DL community, and the original large
SAR images with 24,000 × 16,000 pixels in the LS-SSDD-v1.0 dataset [37] are cropped into
small sub-images with 800 × 800 pixels for the neural network training.

(2) Ship target classification

The distribution of ship pixel size on the cropped AIR-SARShip dataset is shown in
Figure 3. As can be seen from the figure, the AIR-SARShip dataset is mainly composed
of small- and medium-sized ships. Ship size varies greatly, with the smallest being about
18 × 4 pixels and the largest being about 344 × 72 pixels.
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Figure 3. Distribution of ship size on AIR-SARShip.

Similar to the processing of the SSDD dataset, we classify ship targets of the cropped
AIR-SARShip dataset by size. The results are shown in Table 5.

Table 5. Statistical results of multiscale ships in AIR-SARShip.

Dataset
Ship Size

Small Medium Large

AIR-SARShip 318 1094 173

(3) Inshore and offshore dataset classification

We establish AIR-SARShip-inshore and AIR-SARShip-offshore datasets, as shown in
Table 6.

Table 6. AIR-SARShip-inshore and AIR-SARShip-offshore.

Datasets Images Ships

AIR-SARShip-inshore 168 396
AIR-SARShip-offshore 551 1189

AIR-SARShip 719 1585
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3. Materials and Methods

The proposed model is an anchor-free detector based on Centernet, and its overall
framework is shown in Figure 4. The target detection process is as follows: first, use the
backbone network of CBAM-DLA34 to extract ship features; then, input the original feature
map into FEM and output the foreground enhancement feature map; finally, conduct
regression for the center point coordinates, size, offset, and rotation angle of the ship, so as
to realize the rotation detection of ship targets.
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3.1. CBAM-DLA34

The imaging mechanism of SAR images is quite different to that of ordinary optical
images. There are a lot of speckle noises, which makes it difficult to extract and merge
features of SAR images, and leads to a weak focus on small ship targets. Therefore, we
introduce the lightweight attention module CBAM [38] into the backbone network to build
CBAM-DLA34. CBAM is an attention module that combines channel and space. It infers
attention weights along two independent dimensions of the channel and space in turn,
and then multiplies the attention weights with the input feature map for adaptive feature
optimization. The attention module improves the feature expression ability of the feature
extraction network for ship targets in SAR images, and improves the focus on small-scale
ship targets.

The specific implementation of the channel attention module includes three steps.
(1) Perform global average pooling and maximum pooling of the spatial dimension

on the input feature F of size H ×W × C, respectively, and obtain two feature maps of
1× 1× C;

(2) Through multilayer perceptron (MLP), add the features output by the perceptron
element by element; and

(3) Obtain the channel attention weight Mc through Sigmoid activation function. It is
shown in Formula (1):

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ

(
W1

(
W0

(
Fc

avg

))
+ W0(W1(Fc

max))
) (1)

In the formula, σ represents Sigmoid activation function, W0 and W1 represent the
weight of MLP, Fc

avg and Fc
max represent the features output by global average pooling and

maximum pooling, respectively.
The specific implementation of the spatial attention module is as follows.
(1) Perform global average pooling and maximum pooling of the channel dimension

on the input feature F′, respectively, and obtain two feature maps of size H ×W × 1.
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(2) Splice the feature maps together according to the channels, and perform the
convolution operation through a 7× 7 convolution layer; and

(3) Obtain the spatial attention weight Ms through Sigmoid activation function. It is
shown in Formula (2):

Ms(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)])
)

= σ
(

f 7×7
([

Fs
avg; Fs

max

]))
(2)

In the formula, σ represents Sigmoid activation function, f 7×7 represents a convolution
operation with the filter size of 7× 7, Fs

avg and Fs
max represent the features output by

global average pooling and maximum pooling, respectively.
The method of adding CBAM to ResBlock [39] is shown in Figure 5. First, perform a

convolution calculation on the feature map generated by the previous residual block to
generate an input feature map F. Second, Input F into the channel attention module to
obtain the channel attention feature Mc, and then obtain the feature map F′ by multiplying
F and Mc element by element. Third, input F′ into the spatial attention module to obtain
the spatial attention feature Ms, and then obtain the feature map F′′ by multiplying F′ and
Ms element by element. Finally, perform a shortcut connection to obtain the final feature
map F′′′, which is used as the input of the next ResBlock.
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Figure 5. The overview of CBAM. The module has two sequential sub-modules: channel and spatial. The intermediate
feature map is adaptively refined through CBAM at every ResBlock of DLA34.

DLA is a network with hierarchical skip connections [40]. It designs two structures:
Iterative Deep Aggregation (IDA) and Hierarchical Deep Aggregation (HDA). According
to the basic network structure, IDA refines the resolution and aggregation scale step by
step to integrate semantic information. HDA aggregates various levels into representations
of different grades through its own tree-like connection structure to integrate spatial
information.

We improve the DLA network, and propose CBAM-DLA34, which uses CBAM-ResBlock
as the basic module. The specific structure of CBAM-DLA34 is shown in Figure 6.
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3.2. FEM

Due to the special imaging environment, the background of the SAR image is very
complicated. Ship targets are easily affected by islands, reefs and speckle noise, especially
in the detection of inshore ships. The traditional DL model is easy to confuse the ship
target with the background of the similar shape, resulting in false detections and missed
detections. Studies [41–43] show that semantic segmentation can assist object detection.
The R-Centernet+ detector model proposed in this paper adopts an FEM based on semantic
segmentation to predict the foreground area in advance to reduce the interference of
complex backgrounds.

The implementation of the FEM is shown in Figure 7. We perform continuous con-
volution on the original feature map extracted by the backbone network to obtain the
foreground image F. Element-wise multiplication on the foreground image F and the
original feature map FM generates a foreground enhanced feature map FEFM.

FEFM = FM� F (3)
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In order to mark the foreground accurately, the foreground labels based on semantic
segmentation are used to train FEM. The generation method of foreground labels is shown
in Figure 8. First, project the groundtruth bounding box of an SAR image with a width (W)
and a height (H) to the corresponding position under the output stride of R. Then create a
label of size W

R ×
H
R × 1. If the pixel is within the projected bounding box, set the value

to 1, otherwise set the value to 0.
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3.3. Improved Detection Head

Ship targets in SAR images are characterized by a large aspect ratio, arbitrary direction
and dense arrangement. As shown in the left figure of Figure 9, the traditional horizontal
box detection is difficult to accurately express the length, width and axial information
of ship targets. More importantly, in complex scenes, the horizontal box contains a lot
of non-target area information. Compared with the horizontal box, the rotating box can
reflect the ship information more accurately, and avoid the interference of the non-target
area on the ship feature extraction, which meets the actual requirements of ship target
feature extraction in SAR images. In order to achieve the fine detection of ship targets, the
detection head structure of the Centernet network is improved, and the output of the angle
map is added on the original basis, which realizes the rotation detection of ship targets in
SAR images.
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An SAR image with a width of W and a height of H can generate four regression maps:

(1) In the branch of position regression, the center point heat map P ∈ [0, 1]
W
R ×

H
R×C is

generated, where R is the scaling ratio of output size, and C is the number of object types in
the ship detection (C = 1). When Pxyc = 1, it means the center point is detected. Gaussian

kernel Yxyc = exp
(
− (x− p̃x)+(y− p̃y)

2

2σ2
p

)
is used to map each center point to the center point

heat map, where p̃ =| p
R | is the center point corresponding to low resolution, and σp is the

standard deviation related to the target size. In the inference, the first 100 peaks in the heat
map whose values are not less than 8 connected neighbors are used as the center points for
prediction;

(2) In the branch of size regression, the size prediction map
∧
s ∈ R

W
R ×

H
R×2 is generated.

For a center point pk, there is a size prediction Sk = (wk, hk), where wk and hk correspond
to the width and height of the ship target, respectively;

(3) In the branch of center point offset regression, the center point offset prediction

map
∧
o ∈ R

W
R ×

H
R×2 is generated. All the ship targets share the same offset prediction value

Ok = (δk, δk) to recover the discretization error caused by the output step size; and

(4) In the branch of angle regression, the angle prediction map
∧
s ∈ R

W
R ×

H
R×1 is

generated. The angle prediction value Ak = θk corresponds to the rotation angle of a
ship target.

In order to realize the regression of the ship rotation angle, we use the rotating
rectangular box to mark the ship target. In this paper, the method of the rotating rectangular
box is defined as (x, y, w, h, θ), where (x, y) is the center point coordinate of the rotating
rectangle, w is the long side of the rectangle, and h is the short side of the rectangle. As
shown in Figure 10, θ represents the angle that the positive direction of y-axis rotates
clockwise to the long side of the rectangle, and its range is [0, 180).
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3.4. Loss Function

The loss function can be divided into five parts: 1© L f is the loss of foreground
prediction; 2© Lp is the loss of center point prediction; 3© Ls is the loss of size prediction;

4© Lo is the loss of center point offset prediction; 5© La is the loss of angle prediction.
L f and Lp use the modified f ocal loss, as respectively shown in Formulas (4) and (5).

L f =
−1
N ∑

xyc


(
1− Fxyc

)αlog
(

Fxyc
)

G fxyc = 1(
1− G fxyc

)β(
Fxyc

)α

log
(
1− Fxyc

)
otherwise

(4)
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In the formula, Fxyc is the predicted value of the foreground point, G fxyc is its groundtruth,
N is the number of foreground points in the picture, and α and β are hyperparameters.
According to [22] and our experiments before, we set α = 2, β = 4 in the experiments that
result in the best outcomes.

Lp =
−1
N ∑

xyc


(
1− Pxyc

)αlog
(

Pxyc
)

Gpxyc = 1(
1− Gpxyc

)β(
Pxyc

)α

log
(
1− Pxyc

)
otherwise

(5)

In the formula, Pxyc is the predicted value of the center point, Gpxyc is its groundtruth,
N is the number of center points in the picture, α and β are hyperparameters. We also set
α = 2, β = 4.

Ls, Lo and La use the modified smooth L1 loss, as shown in Formulas (6)–(8),
respectively.

Ls =
1
N

N

∑
k=1

{
0.5 ∗ (Sk − Gsk)

2 i f |Sk − Gsk| < 1
|Sk − Gsk| − 0.5 otherwise

(6)

In the formula, Sk is the predicted value of the target size at the center point Pk, and
Gsk is its groundtruth.

Ls =
1
N

N

∑
k=1

{
0.5 ∗ (Ok − Gok)

2 i f |Ok − Gok| < 1
|Ok − Gok| − 0.5 otherwise

(7)

In the formula, Ok is the predicted value of the center point offset at the center point
Pk, and Gok is its groundtruth.

Ls =
1
N

N

∑
k=1

{
0.5 ∗ (Ak − Gak)

2 i f |Ak − Gak| < 1
|Ak − Gak| − 0.5 otherwise

(8)

In the formula, Ak is the predicted value of the target rotation angle at the center point
Pk, and Gak is its groundtruth.

The overall loss function is:

L = λ f L f + λpLp + λsLs + λoLo + λaLa (9)

In the formula, λ f , λp, λs, λo, λa are the weight coefficients of five parts of loss value,
respectively.

4. Experiment and Analysis

We conduct experiments on two SAR image ship datasets SSDD and AIR-SARShip.
The experiments are implemented in the Pytorch DL environment built on Windows10
system, with NVIDIA 2070 Super, CUDA v10.0, cuDNN v7.4.2.

4.1. Evaluation Metric

We use Precision (P), Recall (R), Average Precision (AP), Frame Per Second (FPS) and
FLoating-point Operations (FLOPs) to evaluate the effect of ship detection. The calculation
formulas of P and R are as follows [44]:

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

In the formula, TP means true positive, FP means false positive, and FN means false
negative. Generally speaking, P and R are a pair of values that affect each other, so it is
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difficult to evaluate the overall performance. Therefore, this paper uses AP to evaluate the
detection model more objectively, which is expressed as:

AP =
∫ 1

0
P(R)dR (12)

Detection speed is an important indicator of whether the model can be applied to
actual detection tasks, and it should be paid attention to as much as detection precision.
In order to comprehensively evaluate the performance of the proposed model, FPS is
introduced to evaluate the speed of model detection.

FPS =
Frames

1s
(13)

In the formula, Frames represents the number of pictures processed by the detection
model per second.

The time complexity is an important evaluation metric of the deep learning model. It
determines the training and prediction time of the model. If the complexity is too high, it
will lead to a lot of time for model training and prediction, which cannot quickly verify the
idea and improve the model, nor can it achieve rapid prediction. We use FLOPs to measure
the time complexity of the deep learning model. FLOPs of convolutional layers and fully
connected layers are expressed as:

FLOPsconv =
(

2× Ci × K2 − 1
)
× H ×W × Co (14)

FLOPs f c = (2× I − 1)×O (15)

In the formula, Ci represents input channel, K represents kernel size, H and W rep-
resent output feature map size, Co represents output channel, I represents input neuron
numbers and O represents output neuron numbers.

4.2. Experiments on SSDD

For SSDD, 80% of the entire dataset is randomly selected as the training set, and 20% of
the entire dataset as the test set. During the training process of the SSDD dataset, the input
SAR image is transformed to 512 × 512 pixels. The Adam optimizer with 0.9 momentum
and 1 × 10−4 weight decay is used for training. The number in the batch size is 8. The
initial learning rate is set to 1.25 × 10−4, and the training epoch is 120. After 60 epochs of
training, the learning rate is further attenuated to 1.25 × 10−5, and after 90 epochs, it is
further attenuated to 1.25 × 10−6. We set λp = 1.0, λs = 0.1, and λo = 1.0 according to
the reference of [23] (Zhou X etc., 2019). We performed four experiments on λa and λ f to
determine the optimal weight assignments. The experimental results on different weight
assignments are shown in Table 7. Finally, we set λp = 1.0, λs = 0.1, λo = 1.0, λa = 0.1,
and λ f = 1 in all our experiments.

Table 7. Experimental results on different weight assignments.

λp λs λo λa λf AP (%)

1.0 0.1 1.0 0.1 0.1 94.83
1.0 0.1 1.0 0.1 1.0 95.11
1.0 0.1 1.0 1.0 0.1 79.32
1.0 0.1 1.0 1.0 1 81.18

In the training process, in addition to using an oversample, data enhancement methods
such as random horizontal flipping and random cropping are also used. The loss changes
during the training on the SSDD dataset are shown in Figure 11. As the number of training
increases, the loss decreases constantly and the model converges.
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Figure 11. Variation of loss during training on the SSDD dataset.

The satisfactory detection results on the SSDD dataset are shown in Figure 12. The first
row of pictures shows the results of small ship detection, which is a challenging problem
for ship detection. Obviously, the R-Centernet+ detector can effectively detect small ships.
This shows that CBAM can improve the feature expression ability of the feature extraction
network for ship targets, and enhance the focus on small ships. The second row of pictures
shows the results of detecting ships in complex backgrounds. Obviously, R-Centernet+
detector can effectively distinguish ships from complex backgrounds. This shows that
FEM is beneficial to distinguish the foreground and the background, and improve the
performance of the detection model in complex scenes.
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Figure 12. Satisfactory testing results of the SSDD dataset. Both small ships and ships in complex backgrounds can be
detected correctly.

However, there are still some false detections and missed detections in the SSDD
dataset. As shown in Figure 13a, small ships close to each other are prone to missed
detections. As shown in Figure 13b, a small number of small offshore islands are easily
confused with ship targets.
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Figure 13. (a,b) Undesired results in the SSDD. Blue bounding box means ships that were detected,
red bounding box means ships that were missed, and orange bounding box means false alarms.

The P-R curves of R-Centernet+, Centernet and Faster-RCNN on SSDD, SSDD-inshore
and SSDD-offshore datasets are shown in Figure 14. It can be seen that both in inshore
and offshore scenes, the P-R curves of the proposed method are relatively smooth, and the
detection performance is better than the other two methods. The detailed experimental
results on the SSDD dataset are shown in Table 8. The AP of the proposed method on
the SSDD dataset reaches 95.11%, and the detection performance is quite great on the
whole. The proposed R-Centernet+ detector can detect offshore ships of various scales
well, and the AP of the proposed method on SSDD-offshore dataset reaches 97.84%. More
importantly, this model can better detect inshore ships in complex backgrounds, and the
AP value reaches 93.72%, which is superior to the Faster-RCNN and Centernet.
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Table 8. Experimental results on the SSDD dataset.

Datasets Models Precision Recall AP (AP50) APS APM APL

SSDD
R-Centernet+ 95.21 95.58 95.11 93.01 97.87 98.52

Centernet 93.44 94.28 93.82 92.15 96.08 96.14
Faster-RCNN 89.48 89.80 88.96 86.95 89.53 87.02

SSDD-
inshore

R-Centernet+ 93.64 92.65 93.72 92.05 94.53 94.92
Centernet 91.50 92.11 92.08 90.43 92.66 94.08

Faster-RCNN 87.92 87.42 86.98 85.91 87.55 85.39

SSDD-
offshore

R-Centernet+ 96.75 97.85 97.84 97.24 99.83 99.72
Centernet 94.62 94.85 95.32 93.07 96.96 97.26

Faster-RCNN 89.42 91.18 90.05 88.84 91.36 89.78

4.3. Experiments on AIR-SARShip

For the AIR-SARShip dataset, 21 of the 31 SAR images are used as the training set,
and the remaining 10 are used as the test set. After image cropping, there are 474 sub-
images in the training set and 245 sub-images in the test set. In the training process of the
AIR-SARShip dataset, the input SAR image is transformed to 512 × 512 pixels. We use an
Adam optimizer with 0.9 momentum and 1 × 10−4 weight decay for training. The number
of the batch size is 8. The initial learning rate is set to 1 × 10−4, and the training epoch
is 100. After 60 epochs of training, the learning rate further decays to 1 × 10−5, and after
80 epochs of training, it further decays to 1 × 10−6.

In the training process, the data enhancement methods of random horizontal flipping
and random cropping are used.

The loss changes during the training on the AIR-SARShip dataset are shown in Figure 15.
As the number of training increases, the loss decreases constantly and the model converges.
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The satisfactory detection results on the Air-SARShip dataset are shown in Figure 16.
The first row of pictures shows the results of detecting small ships, and the second row of
pictures shows the results of detecting ships in complex backgrounds.
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Figure 16. Satisfactory detection results on the AIR-SARShip dataset. Both small ships and ships in
complex backgrounds can be detected correctly.

Some false detections and missed detections on the AIR-SARShip dataset are shown
in Figure 17a,b.
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Figure 17. (a,b) Undesired result on the AIR-SARShip. Blue bounding box indicates the detected
ships, red bounding box indicates the missed ships, and orange bounding box indicates false alarms.

The P-R curves of R-Centernet+, Centernet and Faster-RCNN on AIR-SARShip, AIR-
SARShip-inshore and AIR-SARShip-offshore datasets are shown in Figure 18. As shown
in the figure, the detection performance of the proposed method is superior to the Faster-
RCNN and Centernet. The detailed experimental results of the AIR-SARShip dataset are
shown in Table 9. The AP of the proposed method on the AIR-SARShip dataset reaches
84.89%, which can be applied in actual detection task. The AP of the proposed method
on the AIR-SARShip-offshore dataset reaches 87.43%, and on the AIR-SARShip-inshore
dataset reaches 68.45%. On the AIR-SARShip dataset, the detection performance is lower
than that on the SSDD dataset due to the great differences between the training set and
the test set of the AIR-SARShip dataset. It is a challenging research topic to increase the
migration ability of models in large detection scenes.
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Table 9. Experimental results on the AIR-SARShip dataset.

Datasets Models Precision Recall AP (AP50) APS APM APL

AIR-
SARShip

R-Centernet+ 86.99 86.08 84.89 75.41 89.76 70.44
Centernet 83.07 85.10 83.71 74.87 88.35 70.12

Faster-RCNN 79.96 83.33 79.18 73.96 84.58 67.33

AIR-
SARShip-
inshore

R-Centernet+ 72.92 76.09 68.45 67.77 83.18 63.91
Centernet 71.97 75.70 66.83 66.04 82.97 62.88

Faster-RCNN 80.39 55.16 58.72 56.38 69.86 62.02

AIR-
SARShip-
offshore

R-Centernet+ 85.45 88.68 87.43 83.24 90.19 70.84
Centernet 85.23 86.27 85.56 80.29 89.51 70.03

Faster-RCNN 84.73 83.04 83.16 78.36 86.82 69.23

4.4. Comparisons with the State-of-the-Arts

We compare the R-Centernet+ detector with the state-of-the-art detection models on
SSDD and AIR-SARShip datasets under the same conditions. The results of the comparisons
are shown in Table 10. On the whole, the proposed R-Centernet+ detector is a stable and
efficient SAR image ship detection model with high accuracy and fast speed.

Table 10. Comparisons of detection performance with state-of-the-art models on SAR images.

Models Backbone SSDD AIR-SARShip FPS

Faster-RCNN Resnet34 88.96 79.18 14
Centernet DLA34 93.82 83.71 36

R-Centernet+ CBAM-DLA34 95.11 84.89 33
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First, we compare the proposed R-Centernet+ detector with the classic anchor-based
detection model Faster-RCNN [14]. On the SSDD dataset, the AP of the proposed model
is 95.11%, which is 6.51% higher than that of Faster-RCNN. On the AIR-SARShip dataset,
the AP of the proposed model is 84.89%, which is 5.71% higher than that of Faster-RCNN.
The main reason is that the center point can well represent the features of the ships, which
has a great advantage over using the anchor box. And because there is no anchor and no
Non-Maximum Suppression (NMS), the speed of the proposed method has been greatly
improved, from 14 to 33 FPS. It indicates that the proposed R-Centernet+ detector shows
great application value in real-time SAR ship detection.

The proposed R-Centernet+ detector is compared with the classic anchor-free detection
model Centernet [20]. On the SSDD dataset, the AP of the proposed model is 1.29% higher
than that of Centernet. On the AIR-SARShip dataset, the AP of the proposed model is
1.18% higher than that of Centernet. The main reason is that R-Centernet+ detector model
adds the CBAM and FEM, which improves the detection performance of small ships and
ships in complex scenes. In addition, the R-Centernet+ detector realizes rotation detection,
reduces the interference of non-target areas on ship features extraction, and also increases
the robustness of the detection model.

We also compare the number of the parameters, FLOPs and the model size of these
methods. The results of the comparisons are shown in Table 11. It can be found from Table 11
that the addition of CBAM and FEM have little effect on the model parameters, FLOPs and
model size. The number of parameters of the proposed method is low, which indicates it is a
lightweight network. The model size of the proposed method is only 77.92 MB, and such a
lightweight model is convenient for the future FPGA or DSP porting.

Table 11. Model comparisons with state-of-the-art models.

Models Parameters GFLOPs Model Size (MB)

Faster-RCNN 192,764,867 23.93 539.06
Centernet 16,520,998 28.28 75.15

R-Centernet+ 17,100,223 30.64 77.92

5. Discussion

CBAM and FEM are added to R-Centernet+ detector. In order to verify the effective-
ness of each module, ablation experiments are performed on the SSDD dataset. The results
of the ablation experiment are shown in Table 12.

Table 12. Ablation experiments and results.

CBAM FEM Precision Recall AP (%)

No No 92.05 92.63 93.82
Yes No 94.52 93.62 94.62
No Yes 94.37 94.58 94.91
Yes Yes 95.21 95.58 95.11

5.1. Effectiveness of CBAM

In order to verify the effectiveness of the CBAM, a contrast experiment is performed
on the SSDD dataset. The detection results of the selected typical scenes in which small
ships assemble are shown in Figure 19. It can be seen from Figure 19 that the introduction
of the attention mechanism can make it better to extract the features of small ships, thereby
increasing the focus on small ships and reducing the missed detection rate of ships. Adding
CBAM makes the performance of the R-Centernet+ detector better, and the AP increases
by 0.80%. This illustrates the advantages of the CBAM method for ship detection in SAR
images, especially for the small ships that are not easy to detect.
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Figure 19. The effect of CBAM. (a) The detection result of the experiment setting of NO CBAM and
NO FEM. (b) The detection result of the experiment setting of NO CBAM and YES FEM. (c) The
detection result of the experiment setting of YES CBAM and NO FEM. (d) The detection result of the
experiment setting of YES CBAM and YES FEM. The blue rectangles indicate detected ships. The red
rectangles indicate missed ships.

5.2. Effectiveness of FEM

In order to verify the effectiveness of FEM, a contrast experiment is performed on the
SSDD dataset. The detection results of the selected typical complex scenes are shown in
Figure 20. It can be seen from Figure 20 that FEM shields islands and reefs that are very
similar to ships, and reduces the false detection rate of ships. FEM improves AP by 1.09%.
The detection results show that FEM enhances the foreground features and reduces the
interference of complex backgrounds on ships.
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6. Conclusions

The paper proposes a lightweight anchor-free detector for ship detection called
R-Centernet+, which can balance precision and speed well. CBAM-DLA34 is used to
extract ship features with attention. FEM is adopted to introduce foreground features in
advance to obtain a feature map with enhanced foreground. The detection head is designed
to conduct regression for the center point coordinates, size, offset and rotation angle of
the ships, and realize the rotation detection of ship targets. We conduct the ship detection
experiment on SSDD and AIR-SARShip datasets, the AP is 95.11% and 84.89%, respec-
tively, and we achieve a high detection speed with a value of 33 FPS. Through comparison
with Faster-RCNN and Centernet, the performance of the proposed model is better than
these state-of-the-art detection models, which proves the robustness and practicability of
the model.

Inshore ship datasets and offshore ship datasets are established based on SSDD and
AIR-SARShip datasets, respectively, to evaluate the effectiveness of reducing background
interference of the proposed model. For the inshore ships, the AP of the proposed model
on SSDD-inshore and AIR-SARShip-inshore reach 93.72% and 68.45%, respectively. For the
offshore ships, the AP of the proposed model on SSDD-offshore and AIR-SARShip-offshore
reach 97.84% and 87.43%, respectively. The detection performance of ships of various sizes
is satisfactory. The results show that the model can detect ships of multi-scale in inshore
and offshore scenes.

In future work, we will continue to improve FEM. We will use the instance segmen-
tation method to mark the foreground area of each ship target, respectively, to achieve a
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more refined foreground enhancement. On the basis of distinguishing ship targets and
complex backgrounds, we will further distinguish different ship targets to better detect
densely arranged ships.
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